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Abstract

Against the current COVID-19 pandemic, governments worldwide have devised a variety of non-
pharmaceutical interventions to suppress it, but the efficacy of distinct measures is not yet well quan-
tified. In this paper, we propose a novel tool to achieve this quantification. In fact, this paper develops
a new extended epidemic SEIR model, informed by a socio-political classification of different interven-
tions, to assess the value of several suppression approaches. First, we inquire the conceptual effect of
suppression parameters on the infection curve. Then, we illustrate the potential of our model on data
from a number of countries, to perform cross-country comparisons. This gives information on the best
synergies of interventions to control epidemic outbreaks while minimising impact on socio-economic
needs. For instance, our results suggest that, while rapid and strong lock-down is an effective pan-
demic suppression measure, a combination of social distancing and contact tracing can achieve similar
suppression synergistically. This quantitative understanding will support the establishment of mid-
and long-term interventions, to prepare containment strategies against further outbreaks. This paper
also provides an online tool that allows researchers and decision makers to interactively simulate di-
verse scenarios with our model.
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1 Introduction

The current global COVID-19 epidemic has led to significant impairments of public life world-wide. To
suppress the spread of the virus and to prevent dramatic situations in the healthcare systems, many
countries have implemented a combination of rigorous measures like lock-down, isolation of symp-
tomatic cases and the tracing, testing, and quarantine of their contacts. In order to gain information
about the efficacy of such measures, a quantitative understanding of their impact is necessary. This
can be based on statistical methods [1] and on epidemiological models [2]. While statistical methods
allow for accurate characterization of the population’s health state, epidemiological modeling can pro-
vide more detailed mechanisms for the epidemic dynamics and allow investigating how epidemics will
develop under different assumptions.
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Preliminary efforts have been made to quantify the contribution of different policy interventions [3],
but these rely on complex models based on a number of assumptions. We base our study on a clas-
sical SEIR-like epidemiological model. SEIR models are minimal mechanistic models that consider
individuals transitioning through Susceptible → Exposed → Infectious → Removed state during the
epidemics [4]. The essential control parameter is the basic reproduction number R0 [5], that worldwide
non-pharmaceutical suppression strategies aim at reducing below the threshold value 1. Building on
this, we incorporate additional compartments reflecting different categories of intervention strategies,
identified by socio-political studies [6]. In particular, the model focuses on three main suppression pro-
grams: social distancing (lowering the rate of social contacts), active protection (decreasing the number
of susceptible people), and active removal of latent asymptomatic carriers [7]. This study investigates
how these programs achieve repression both individually and combined, first conceptually and then
by cross-country comparison. This information can supply Government decisions, helping to avoid
overloading the healthcare system and to minimise stressing the economic system (due to prolonged
lock-down). We expect our model, together with its interactive online tool, to contribute to crucial tasks
of decision making and to prepare containment strategies against further outbreaks.

2 Methods

This study links policy measures to epidemiological modelling and uses the developed model to quan-
titatively assess the efficacy of different interventions in six countries. In this section, we illustrate the
modelling choice and the use of data.

2.1 The classical SEIR model

SEIR models are continuous-time, mass conservative compartment-based models of infectious diseases
[4, 8]. They assume homogeneous propagation media (or fully connected graphs) and focus on the evo-
lution of mean properties of the closed system. All of these models, from the more conceptual to more
realistic versions, e.g. SEIR with delay [9], spatial coupling [10], or individual-based models [11], are
classical and widely used tools to investigate the principal mechanisms governing the spread of infec-
tions and their dynamics.
Main compartments of SEIR models (see Fig. 1, framed) are: susceptible S (the pool of individuals likely
to be infected), exposed E (corresponding to latent carriers of the infection), infectious I (individuals
having developed the disease and being contagious) and removed R (those that have processed the dis-
ease, being either recovered or dead). The model’s default parameters are the average contact rate β,
the inverse of mean incubation period α and the inverse of mean contagious period γ. When focusing
on infection dynamics rather than patients’ fate, the latter combines recovery and death rate [12]. From
these parameters, epidemiologists calculate the “basic reproduction number” R0 = β/γ [13] at the epi-
demic beginning. During the epidemic progression, isolation after diagnosis, vaccination campaigns
and active suppression measures are in action. Hence, we speak of “effective reproduction number”
R̂(T ) [14].

2.2 Data and analyzed countries

Governments worldwide have issued a number of social measures, including those for public health
safeguard, economic support, movement restriction and non-pharmaceutical interventions to hamper
disease spreading. Scholars from political sciences and sociology have recorded and classified such mea-
sures [15, 16]. Among the resources listed on the World Health Organization “Tracking Public Health
and Policy Measures” [6], we used information from the ACAPS database [17] that contains a curated
categorization of policy measures. ACAPS is an independent, non-profit information provider helping
humanitarian actors respond more effectively to disasters. The ACAPS analysis team has aggregated
and classified interventions from different sources (media, governments and international organiza-
tions), for all countries and in time. Suppression measures against the epidemic are classified under
“Movement restrictions”, “Lock-down”, “Social Distancing” and “Monitoring and Surveillance”. Our
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Country Measures Param. involved Starting Date Population (rounded)
Austria (AT) Partial lock-down µ, ρ 16 Mar 9,000,000

Social distancing ρ, µ 16 Mar
9 Contact tracing χ 16 Mar

Phase-out Around 14 April
Denmark (DK) Social distancing ρ, µ 13 Mar 6,000,000

Mild surveillance χ 13 Mar
Phase-out 14 Apr

Ireland (IR) Partial lock-down µ, ρ 28 Mar 5,000,000
Social distancing ρ, µ 13 Mar
Phase-out 18 May

Israel (IL) Partial lock-down µ, ρ 15 Mar 9,000,000
Social distancing ρ, µ 15 Mar
Contact tracing χ 15 Mar
Phase-out 19 April

Lombardy (LO) Lock-down µ, ρ 13 Mar (Italian) 10,000,000
Social distancing ρ, µ 13 Mar
Phase-out Around 15 Apr

Switzerland (CH) Lock-down. µ, ρ 16 Mar 8,500,000
Social distancing ρ, µ 16 Mar
Phase-out 27 Apr

Table 1: Test countries, with measures implemented (following the ACAPS database [17]), correspond-
ing parameter in our SPQEIR model and starting date. For Lombardy, we used the Italian official date
for lock-down. Differently from other countries, Ireland issued measures on two different dates; we
use this case to compare social distancing and lock-down effect in a single country. We also report the
(rounded) population of each country.

modelling choice is based on these categories, which are reflected by additional compartments to the
classical SEIR model (see next section).

Epidemiological data for all selected countries and regions were obtained from the COVID-19 Data
Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University [18].
The data are from 22 Jan 2020 to 08 July 2020. Lombardy data were obtained from the Protezione Civile
Italiana data repository “Dati COVID-19 Italia” [19], from 22 Feb 2020 to 08 July 2020.

This study analyses the effect of suppression measures in flattening the curve. Despite having a
precise starting date, such measures take some days to be fully effective. We estimate an average delay
using the Google Mobility Reports [20, 21] for the selected countries. Google provides changes in mo-
bility with respect to a monthly baseline, w.r.t. 6 locations: Retail & Recreation, Grocery & Pharmacy,
Transit stations, Workplaces, Residential, Parks. We average the decrease in mobility at the first four
locations (corresponding to those where social mixing happens more frequently [22]) to get a proxy of
the time needed for hard lock-down to be fully effective (cf. Fig. 4c).

2.3 The extended SPQEIR model to reflect suppression strategies

SEIR models reproduce the typical bell-shaped epidemic curves for the number of infected (and still
infectious) people. These quantify the main stressors for both the health system, i.e. the peak of the
curve, and the economic system, i.e. the time T passed until no new infections occur. Mainstream
suppression measures against the epidemic aim at flattening the curve of new infections [7]. However,
the classical SEIR model is not granular enough to investigate suppression measures when they need to
be considered or should be sequentially reduced if already in place. Therefore, we extend the classical
SEIR model as in Fig. 1 (red insertions) into the SPQEIR model, to reflect the intervention categories
described above. The model can be summarized as follows:
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• The classical blocks S, E, I, R are maintained;

• A social distancing parameter ρ is included to tune the contact rate β;

• Two new compartments are introduced where:

– Protected P includes individuals that are isolated from the virus through lock-down, thus
reducing the susceptible pool ;

– Quarantined Q describes latent carriers that are identified and quarantined after monitoring
and tracing.

We do not introduce a second quarantined state for isolation of confirmed cases after the Infectious
state [23, 2] but consider this together with the Removed state (see Liu et al. [24] and references therein).
Quarantining infected symptomatic patients is a necessary first step in every epidemic [25]. An addi-
tional link from Q to R, even though realistic, is neglected as both compartments are already outside the
“contagion system” and would therefore be redundant from the perspective of evolution of the infec-
tion. In general, protected individuals can get back to the pool of susceptible after a while, but here we
neglect this transition, to focus on simulating repression programs alone. Long-term predictions could
be modelled even more realistically by considering such link, that would lead to an additional parame-
ter to be estimated and is beyond the scope of the present paper.

Susceptible Exposed 
(Latent) Infectious Removed

𝜌 " 𝛽 𝛾𝛼

Protected

𝜇

Quarantined

𝜒

Fig. 1 Scheme of the SPQEIR model. The basic SEIR model (framed blue blocks) is extended by the red blocks to
the SPQEIR model. Parameters that are linked to repression strategies are shown in red. Interpretation and values
of parameters are given in Table 2.

The model has in total 6 parameters. Three of them (β, α, γ introduced in Fig. 1) are based on the
classical SEIR model. The new parameters ρ, µ, χ account for alternative repression programs (see Table
2 for details). Commonly, social distancing is modeled by the parameter ρ. It tunes the contact rate
parameter β, resulting in the effective reproduction number R̂ = ρ · βγ−1. This occurs in a closed-
system setting where all individuals belong to the susceptible pool, but interact less intensively with
each other. The parameter µ stably decreases the susceptible population by introducing an active pro-
tection rate. This accounts for improvements of public health, e.g. stricter lock-down of communities,
or physical reduction of a country’s population like reduced commuters’ activity. This changes the ef-
fective reproduction number into R̂ = βγ−1(1− µ)T with T being the number of days the measures are
effective [26]. The parameter χ introduces an active removal rate of latent carriers. Intensive contact
tracing and improved methods to detect asymptomatic latent carriers may enhance the removal of ex-
posed subjects from the infectious network. Following earlier works [27, 28] and adjusting the current
parameters, R̂ can be then expressed as R̂ = βγ−1α (α+ χ)

−1. Parameter values that are not related to
suppression strategies are set from COVID-19 epidemic literature [24, 29]. We use mean values as the
main focus of the present model lies on sensitivity analysis of suppression parameters. Our model can
be further extended by time dependent parameters [25]. Default values for suppression parameters are
{ρ, µ, χ} = {1, 0, 0}, corresponding to the classical SEIR model.
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The dynamics of our SPQEIR model is described by the following system of differential equations:

Ṡ = −ρβSI
N
− µS ,

Ė =
ρβSI
N
− (χ+ α)E ,

İ = αE − γI ,

Ṙ = γI ,

Ṗ = µS ,

Q̇ = χE ,

with conservation of the total number of individuals, meaning Ṅ = 0 with N = S + E + I + R + P + Q. As
value for the qualitative study, we used N = 10,000. For the cross-country assessment, N is adjusted to
true population values for each country. Overall, the effective reproductive number becomes

R̂ =
ρβ

γ

α

α+ χ
(1− µ)T , (1)

with T being the number of days that the measures leading to compartment P are active.
Suppression measures are initiated several days after the first infection case. Hence, we activate non-
default parameter values after a delay τ . In conceptual simulations, we set it arbitrarily without loss
of generality. For data fitting, we fit and compare it to the official date when measures are initialized
(cf. Table 1). To integrate the model numerically, we use the odeint function from scipy.integrate Python
library.

Fixed parameters Suppression parameters
β = (average contact rate in the population) = 0.85 d−1 µ = (rate of active protection) [d−1]
α = (mean incubation period)−1 = 0.2 d−1 ρ = (social distancing tuning)
γ = (mean infectious period)−1 = 0.34 d−1 χ = (active removal rate) [d−1]
R0 = 2.5

Table 2: SPQEIR model parameters with their standard values for the COVID-19 pandemic from litera-
ture [24, 30]. Here “d” stands for days.

2.4 Model fitting

We fit the model to the official number of currently infected (active) cases, for each considered country.
Model fitting to the infectious curves is performed in two steps, using the parameters known to be active
(cf. Table 1). First, we estimate the “model consistent” date of first infection, so that the simulated curve
matches the reported data of active infections. This initial step corresponds to setting the time initial
conditions of the SEIR model [2, 26]. The fitting is performed with default parameter values, on a subset
of data corresponding to the first outbreak, from first case until when measures are implemented (cf.
Table 1). We use a grid search method for least squares, sufficient to fit a single parameter:

t0 =

t′ | RMS = min
t′

√∑tm
i=t′(x(i)− x̂(i))2

n

 (2)

where t0 is the ”model consistent” estimated date of first infection, tm refers to the date measures are
implemented, x̂ and x are respectively reported and model-predicted data, and n is the number of points
between t and tm.
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The second step estimates the suppression parameters that yield the best fitting of the simulated
SPQEIR curve on reported data, during the first phase with implemented measures. This period is iden-
tified between the starting date tm (also included in the fitting) and the phase-out date tp, cf. Table
1. Holding the epidemic parameters to literature values to achieve cross-country comparison on inter-
vention parameters alone, the fitting is performed for a set of suppression parameters relative to each
country, as reported by policy databases (cf. Table 1). The fit is performed with lmfit Python library.

When more parameters are involved at once, we also perform a comparative information analysis
between our extended model and the simplest SEIR that lumps parameters under a single “social dis-
tancing” ρ. This shows what we gain in distinguishing the intervention parameters, not only in terms of
improved interpretation, but also in terms of model fitting. We employ a reduced χ2 metric to evaluate
the goodness-of-fit for both models, considering the degrees of freedom [31]:

χ2
red =

1

n′ − 1− k

n′∑
j=1

(yj − ŷj)2

ŷj
(3)

where n′ is the number of data points until phase-out, k is the number of parameters in the model, yj
are estimated values and ŷj the expected ones. The lower the χ2

red value, the better the SPQEIR model
fits the data w.r.t. the simplest “social distancing” SEIR model.

3 Results

We first focus on the conceptual analysis of the effect of suppression interventions, initially for single
measures (social distancing, active protection and active quarantining) and subsequently for a number
of synergistic approaches. In particular, we study how crucial quantities, namely the infectious peak
height and time to zero infectious, depend on suppression parameters and affect R̂. We define T as the
time when there are less than 0.5 individuals in the I compartment. This because ODE models approx-
imate discrete quantities with continuous variables. Finally, we perform model fitting and intervention
assessment over a set of countries. This provides quantitative outputs about the effectiveness of real
measures, informing about the synergies applied and enabling cross comparison.

3.1 Mathematical analysis of single suppression measures

3.1.1 Only social distancing

The parameter ρ captures social distancing effects, taking values in the interval [0, 1], where 0 indicates
no contacts among individuals while 1 is equivalent to no actions taken. Without loss of generality,
simulations consider a delay of 10 days from the first infection to the time social distancing is initiated.
Fig. 2 reports simulation results. The curve of infectious is progressively flattened by social distancing
(2a) and its peak suppressed (2b). However, the eradication time gets delayed for decreasing ρ, until
a threshold yielding a disease-free equilibrium rapidly (2c). In this case, the critical value for ρ is 0.4,
leading to R̂ < 1. However, we notice that values of ρ ' 0.3 or lower are more effective in suppressing
the epidemic faster. This is in line with early findings, suggesting that epidemic control with social
distancing alone should be done “well or not at all” [32].

3.1.2 Only active protection

As above, our simulations take into account 10 days delay from the first infection to the initiation of
active protection. The range of µ is only up to values similar to those measured in China [26]. Higher
values are considered for step-wise hard lock-down (see below). The results are reported in Fig. 3. We
see that small precautions can make an initial difference, but then the effects saturate (Fig. 3a,b). The
time to zero infectious is decreased with higher values of active protection (Fig. 3a,b). In particular,
µ = 0.01 d−1 suppresses the epidemics in about 6 months by protecting 70% of the population. Higher
values of µ achieve suppression faster, while protecting almost 100% of the population. If protection is
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b)a) c)

Fig. 2 (a) Effects of social distancing on the epidemic curve. The grey area indicates when measures are not yet
in place. (b) The peak is progressively flattened until a suppression is reached for sufficiently small ρ. For these
settings, the critical value for ρ is 0.4 (it pushes R̂ below 1). (c) Unless ρ is small enough, stronger measures of this
kind might delay the suppression time T of the epidemic.

mostly achieved through isolation, this is unrealistic. However, this models effective vaccination strate-
gies.

We also consider hard lock-down strategies which isolate many people at once [33]. This corresponds
to reducing S to a relatively small fraction rapidly. Since µ is a rate, we mimic a step-wise hard lock-
down by setting a high value to µ, but its effect only lasts for a short period of time, see Fig. 4b. We
thus use the notation µld. In the figure, an example shows how to rapidly protect about 68% of the
population with a step-wise µld function. In particular, we use an average four-days long step-wise µld

function (Fig. 4b) to mimic the rapid, but not abrupt, change in mobility observed in many countries by
Google Mobility Reports [21] (Fig. 4c). Lock-down effects are reported in Fig. 4a: a hard lock-down is
effective in suppressing the epidemic curve and in lowering the eradication time.

b)a) c)

Fig. 3 (a) Effects of active protection on the infectious curve. The grey area indicates when measures are not yet
in place. µ is expressed in d−1. (b) Dependency of peak height on µ: the peak is rapidly flattened for increasing µ,
then it is smoothly reduced for higher parameter values. (c) High µ values are effective in anticipating the complete
eradication of the epidemic, but require protecting more than 90% of the population.

3.1.3 Only active quarantining

The simulations in this part are based on realistic assumptions: testing a person is effective only after
a few days that that person has been exposed (to have a viral charge that is detectable). This induces
a maximal quarantining rate θ, which we set θ = 0.33 d−1 as testing is often considered effective after
about 3 days from contagion [34]. Therefore, we get the active quarantining rate χ = χ′ · θ, where χ′ is a
tuning parameter associated e.g. to contact tracing. As θ is fixed, we focus our analysis on χ′. As above,
we also assume that testing starts after the epidemic is seen in the population, i.e. some infectious are
identified with the usual 10 days delay in the activation of measures.
The corresponding results are reported in Fig. 5. The curve is progressively flattened by latent carriers
quarantining and its peak suppressed, but the eradication time gets delayed for increasing χ′. This hap-
pens until a threshold value of χ′thr = 0.9 that pushes R̂ below 1. This value holds if we accept a strategy
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Fig. 4 (a) Flattening the infectious curve by hard lock-down. Rapidly isolating a large population fraction is ef-
fective in suppressing the epidemic spreading. (b) Modeling hard lock-down: high µld (orange) is active for four
days to isolate and protect a large population fraction rapidly (blue). As an example, we show µld = 0.28 d−1 if
t ∈ [10, 14]. It results in protecting about 68% of the population in two days. Higher values, e.g. µld = 0.65 d−1

would protect 93% of the population at once. (c) Google Mobility Report visualization [21] for analysed countries,
around the date of measures setting. Each line reports the mean in mobility change across Retail & Recreation,
Grocery & Pharmacy, Transit stations, and Workplaces, around the date of implementation of the measures. A min-
imum of 4 days (from top to bottom of steep decrease) is required for measures to be fully effective. Abbreviation
explanations: AT = Austria, CH = Switzerland, DK = Denmark, IL = Israel, IR = Ireland, LO = Lombardy.

based on testing, with θ = 0.33. If preventive quarantine of suspected cases does not need testing (for
instance, it is achieved by contact tracing apps), the critical χ′ value could be drastically lower. In par-
ticular, χ′thr = 0.3 d−1 if θ = 1 d−1, i.e. latent carriers are quarantined the day after a contact.

b)a) c)

Fig. 5 (a) Effects of active latent carriers quarantining on the epidemic curve. The grey area indicates when mea-
sures are not yet in place. (b) The peak is progressively flattened until a disease-free equilibrium is reached for
sufficiently large χ. (c) Unless χ′ is large enough, stronger measures of this kind might delay the complete eradi-
cation of the epidemic. Note that the critical χ′ can be lowered for higher θ, e.g. if preventive quarantine does not
wait for a positive test.

The parameter χ′ tunes the rate of removing latent carriers. Hence, it combines tracing and testing
capacities, i.e. probability of finding latent carriers (Pfind) and probability that their tests are positive
(P+). The latter depends on the false negative rate δ− as

P+ = (1− δ−) . (4)

So, χ′ = Pfind · P+. Hence, suppressing the peak of infectious requires an adequate balance of accu-
rate tests and good tracing success as reported in Fig. 6. Further quantifying the latter would drastically
improve our understanding of the current capabilities and of bottlenecks, towards a more comprehen-
sive feasibility analysis.

3.2 Synergistic scenarios

Fully enhanced active quarantining and active protection might not be always feasible, e.g. because of
limited resources, technological limitations or welfare restrictions. Therefore a synergistic approach is
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Fig. 6 Assessing the impact of Pfind and P+ on the peak of infectious separately. This way, we separate the contri-
bution of those factors to look at resources needed from different fields, e.g. network engineering or wet lab biology.
Solutions to boost the testing capacity like [35] could impact both terms.

very attractive as it can flatten the curve. This section shows a number of possible synergies, concentrat-
ing as before on abstract scenarios to investigate the effect of combining different suppression programs.
As case studies, we consider the 6 synergistic scenarios listed below. Parameters are set without being
specific to real measures taken: their value is so far conceptual and meaningful when compared across
scenarios. Just like above, we consider a 10 days delay from the first infection to issuing measures; as
suggested in other studies [36], delaying action could worsen the situation. To differentiate between a
rapid isolation and a constant protection, we introduce µld (for “hard lock-down strategies”, see Sec-
tion 3.1.2) separated from µ. To get R̂, we follow Eq. 1, considering χ = χ′ · θ as in Section 3.1.3 and
T = 4 (along the steep decay after measures are in place, in a best case scenario). Our scenarios are the
following:

1. Many European countries opted for a lock-down strategy. A quite large fraction of the population
was isolated, individuals were recommended to self-quarantine in case of suspected positiveness,
social distancing got mandatory but was sometimes not fully followed, masks and sprays were
suggested for protection. So, we set an initial “hard lock-down” µld = 0.12 d−1 to protect around
38% of the population quickly. Then we chose ρ = 0.7, χ′ = 0.15 and µ = 0.008 d−1. This yields
R̂ = 0.66.

2. An alternative procedure is to rapidly protect only the population fraction at high risk (µld =
0.06 d−1, driving 15% of initial S to P). Then, we assume an improvement in individual safety
giving µ = 0.01 d−1. Social distancing is relaxed (ρ = 0.8) but latent carrier quarantine is enforced
(χ′ = 0.5). This gives R̂ = 0.63.

3. In case preventive quarantine of latent carriers is not greatly effective (χ′ = 0.1), and in case of low
protection rate and scarce isolation (µ = 0.004 d−1, µld = 0.08 d−1), we rise social distancing for all
individuals doing business as usual (ρ = 0.5). In this case, R̂ = 0.61.

4. If there are no safety devices that provide an adequate protection (µ = 0 d−1), we set ρ = 0.45, µld =

0.2 d−1 and χ′ = 0.2 to get R̂ = 0.51.

5. This case has higher R̂ than the previous ones, namely R̂ = 0.93. The corresponding parameters
are µld = 0.1 d−1, µ = 0.002 d−1, ρ = 0.7, χ′ = 0.1.

6. Finally, we consider “draconian” measures such that R̂ = 0.21 only through isolation and massive
latent carriers quarantining. So, µld = 0.6 d−1 and χ′ = 0.3 while ρ = 1 and µ = 0 d−1.

Simulation results are reported in Fig. 7. Different synergies lead to different timing, even though the
peak is contained similarly (Fig. 7a). This has an impact on the cumulative number of cases (Fig. 7b) that
will be reflected on the death toll. This holds even when the R̂ values are very close, as in scenarios 1 to
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b)a) c)

Fig. 7 Simulations of the 6 synergistic scenarios. (a) Curves of infectious Individuals, (b) Cumulative cases. The
grey area indicates when measures are not yet in place. It is evident that scenarios leading to the same R̂ could
show different patterns and suppression timing. (c) Distribution of times to zero infections T for different scenarios.

4. Focusing on scenarios 2 and 3, we notice that prevention measures and latent quarantine accelerate
the suppression, even when isolating only vulnerable people. This achieves similar effects as strong
social distancing. In addition, active protective measures with relatively low values further concur in
suppressing the peak. This finding asks for rapid assessment of masks and sanitising routines.
Overall, the strength of suppression measures influences how and how fast the epidemic is flattened.
µld mostly governs the peak height after measures are implemented, ρ mainly tunes the curve steepness
together with µ, while χ shifts the decaying slope up and down. Overall, a R̂ < 1 suffices to avoid
breakdown of the health system, but its effects could be too slow for the economic system. Decreasing
its value with synergistic interventions could speed up epidemic suppression. A careful assessment of
measures’ strength is thus recommended for cross-country comparison.

3.3 Model fitting and interventions assessment

3.3.1 Model fitting

As described in the Methods section, we first estimate the ”model consistent” date of first infection t0,
that is, the temporal initial condition for the SPQEIR model. We do not claim that this is the true date of
first infection in a country. On the contrary, it is the starting date of infections in case of homogeneous
transmission, under the assumption of no superspreading events [37], and with the hypothesis of co-
herent R0 (cf. Table 2). During the second fitting step, we also estimate the date at which suppression
measures start having effect on the infectious curve, tm. Comparing tm with official intervention dates
from Table 1, we notice that about 8 days are necessary to register lock-down effects. This is consistent
to early findings on lock-down effectiveness [38]. Estimated dates are reported in Table 3.

Country AT DK IR IL LO CH
1st official detection 24 Feb 04 Mar 29 Feb 21 Feb 21 Feb 25 Feb
t0 22 Jan 22 Jan 29 Jan 24 Jan 05 Jan 14 Jan
tm 26 Mar 21 Mar 06 Apr 30 Mar 19 Mar 21 Mar

Table 3: Dates of official detection of first COVID-19 case [18], estimated dates for first infection t0 (ac-
cording to Eq. 2) and date at which measures start being effective tm, per country. Although consistent
with recent literature [26] that suggests the first infection happened weeks before the first official detec-
tion, these retrospective dates should be interpreted under the model assumptions.

Then, we fit suppression parameters to data affected by policy measures, from their estimated start-
ing date tm to phase-out tp (cf. Table 1). Results of the model fitting are reported in Fig. 8. The SPQEIR
model, with appropriate parameters for each country, is fitted to reported infection curves and, overall,
model fitting have good agreement with data. This supports the model structure as very simple yet
realistic enough to capture the main dynamical behaviour of the infection curves in multiple countries.
In addition, it allows for each country to obtain multiple sets of parameters, providing a good fit and
representing different strategies. Finally, it allows a comparison between different countries through the
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corresponding best fit parameters. For Ireland, although initial social distancing advises were issued on
13th March (cf. Table 1), fitting the complete curve was only possible when considering the lock-down
date (28th March) as the major driver of the suppression.
The model matches very well those regions like Austria and Switzerland that avoided saturation of the
healthcare system and thus reported reliable data (cf. Fig. 4c). Ireland reported intermittent data, while
Lombardy is not perfectly represented, probably because of data reporting and larger heterogeneity in
its spacial patterns.

Finally, the reduced χ2 metric (Eq. 3) usually attains minimum values for the complete SPQEIR
model rather than the simple social distancing one. Hence, the SPQEIR is confirmed to be informa-
tive, on top of being fully interpretable and linked to recognised social policy categories.

Fig. 8 Results of model fitting. Infection curves for the considered countries (dotted) are fitted with the SPQEIR
model with appropriate parameters (red curves). We also show a comparison with the fitted curve obtained from the
“basic” SEIR model with only social distancing (turquoise curves). Parameter values are reported for each country,
as well as the corresponding R̂ (for the gray area, following Eq. 1) and χ2

red. The period of measures enforcement,
from tm to tp, is highlighted by the grey region. Time progresses from the estimated day of first infection t0 (cf.
Table 3). Population fraction refers to country-specific populations (cf. Table 1). After phase-out, we prolong the
fitted curve (parameter values unchanged) to compare observed data with what could have been if measures had
not been lifted (dashed lines). From the data, we can observe a resurgence of cases that points to possible “second
outbreaks” (particularly in Israel).

3.3.2 Cross-country interventions assessment

Fitting a number of countries with the same model containing the same epidemiological parameters
allows to perform a quantitative and consistent comparison on the efficacy of their interventions. In Fig.
8, parameter values providing the best fit of model to data are reported, together with the simulation
results (mean values) calculated by lmfit algorithm. Different synergies yield similar values for R̂, but
the curve is different in its evolution as already observed in the previous sections. As expected from
the model analysis above, the lower R̂ is (below 1), the faster the suppression of the epidemic. In addi-
tion, different parameter combinations generate differing curves, which might well explain differences
in reported total cases and deaths between various countries. Comparing Austria, Denmark and Lom-
bardy we can see that contact tracing and monitoring might play a role in speeding up the curve decay,
despite the fact that population-wide interventions played a major role. In general, combined isolation
and tracing strategies would reduce transmission in addition to social distancing or self-isolation alone.
In particular, social distancing alone is effective only if very stringent, as suggested by “only social dis-
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tancing” fitting. In general, a strong, rapid lock-down seems the best option, as also suggested by the
conceptual analysis. However, intervening with additional synergies is a viable option to suppress the
epidemic faster and with lower lock-down values.
Finally, we observe the value of timely interventions: we see that intervening earlier with respect to
the date of first infection helps reducing the daily curves by almost a factor of 10. For instance, we can
compare Denmark and Lombardy in Fig. 8: the first one got a peak corresponding to about 0.08% of
the whole population, while the second region registered a number of active cases of about 0.5% of the
whole population. This translates in more than 3800 infectious on the Danish peak, and on more than
37000 on Lombardy’s.

4 Discussion

The model is fitted until phase-out dates, when measures are progressively lifted and therefore the
model assumptions do not hold anymore. In Fig. 8 we extrapolate the model, with same parameter
values, after phase-out (dashed lines), to compare observed data to the most optimistic scenario, where
measures would not have been lifted. We observe that, up to July 8th, the infection curves mostly main-
tained an inertial decreasing trend: despite some fluctuations that make them generally higher than the
best scenario, they kept on following a downward trend similar to that of the model. We speculate that
this phenomenon is linked to changed behaviors, face masks [39] and improved sanitising practices that
maintained social distancing values, as well as contact tracing practices issued by many countries along
with the phase-out. However, some countries (Israel in particular, but also Austria) showed a worri-
some upward trend, possibly associate to a second outbreak. As this is not a low probability event, we
stress the usefulness of our analysis to prepare for future developments in pandemic progression.
It has been asked whether the peak of infections was reached because of herd immunity or because of
interventions [40]. An added value of this study is to confirm that the peak of infection, for the consid-
ered countries, was not reached because of herd immunity. On the contrary, it is the effect of a number
of suppression measures that reduced the number of cases artificially. This should warn about the high
numbers of people that are still susceptible.

We acknowledge the limitations of our analysis. Due to its structure and the use of ordinary differ-
ential equations, the model only accounts for average trends. However, it cannot reproduce fluctuations
in the data, being them intrinsic in the epidemic, or from testing and reporting protocols that might
differ among countries. In addition, the constant nature of parameters used in this analysis allows good
agreement between model and data when countries implemented rapid and strong measures point-wise
in time, with little follow-ups. Further statistical studies, with time varying parameters, could obtain
more precise values. In the same way, transferring models from country to country requires fulfilling
the same assumptions on model structure and basic hypothesis. This is shown by the different fitting
performances, that suggest that a transfer is not always possible.
In general, this study is not intended to make a ranking of country responses, nor to suggest that differ-
ent strategies could have led to better outcomes. Contrariwise, it should be used as a methodological
step towards quantitatively inquiring the effect of different intervention categories. It examines possible
abstract scenarios and compares quantitative, model-based outputs, but it is not intended to fully repre-
sent specific countries nor to reproduce the epidemic complexity within societies. In fact, the model does
not provide fine-grained quantification of specific interventions, e.g. how effective masks are in protect-
ing people, how much proximity tracing apps increase Pfind, how changes in behavior are associated
with epidemic decline [41] and so on. We acknowledge that the new compartments cannot perfectly
match policy measures, but are a reasonable approximation. Some real measures might also affect mul-
tiple parameters at once, e.g. safety devices and lock-down could impact both µ and ρ. Comparing
results of this macro-scale model with those of complex, micro-scale ones [3] could inform researchers
and policy makers about the epidemic dynamics and effective synergies to hamper it. Any conclusion
should be carefully interpreted by experts, and the feasibility of tested scenarios should be discussed
before reaching consensus.
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5 Conclusion

We have developed a minimal model to link intervention categories against epidemic spread to epidemi-
ological model compartments. This allows quantitative assessment of non-pharmaceutical suppression
strategies on top of social distancing, for a number of countries. Strategies have different effects on epi-
demic evolution in terms of curve flattening and eradication timing. As with previous studies [22, 42],
we have observed the need to enforce containment measures (i.e., detect and isolate cases, identify and
quarantine contacts and at risk neighborhoods) along with mitigation (i.e., slow down viral spread in
the community with social distancing).
By extending the classic SEIR model into the SPQEIR model, we distinguished the impact of differ-
ent suppression programs in flattening the peak and anticipating the eradication of the epidemic. De-
pending on their strength and synergy, non-pharmaceutical interventions can hamper the disease from
spreading in a population. First, we performed a complete sensitivity analysis of their effects, both
alone and in synergy scenarios. Then, we moved from idealised representations to fitting realistic con-
texts, allowing preliminary mapping of intervention categories to abstract programs. We verified that
the model is informative in interpolating the infection curves for a number of countries, and performed
cross-country comparison. We could then obtain model-based outputs on the strength of interventions,
for a number of countries that respected the model assumptions. This provides better, quantitative in-
sights on the effect of suppression measures and their timing, and allows improved comparison.

Overall, this work could contribute to quantitative assessments of epidemic suppression strategies.
To tackle current epidemic waves, and against possible resurgence of contagion [43] (also cf. Fig 8),
better understanding the effect of different non-pharmaceutical interventions could help planning mid-
and long-term measures and to prepare preventive plans, until a vaccine is available.

6 Shinyapp

A user-friendly online shinyapp to interactively simulate different scenarios with the SPQEIR model
is available on: https://jose-ameijeiras.shinyapps.io/SPQEIR_model/. It allows to repro-
duce the present outputs and to perform sensitivity analysis.

Ethics

The application of anonymized data for the purpose of epidemic modelling has been endorsed by the
accessed databases.

Data accessibility

Databases of social measures can be accessed at https://www.who.int/emergencies/diseases/
novel-coronavirus-2019/phsm [6].
ACAPS database is at https://www.acaps.org/covid19-government-measures-dataset [17].
Worldwide epidemiological data collection from John Hopkins University is at https://github.
com/CSSEGISandData/COVID-19 [18].
Lombardy data were retrived from https://github.com/pcm-dpc/COVID-19 [19].
Google mobility data [21] were accessed through https://ourworldindata.org/covid-mobility-trends
[20].
The code for analysis can be found at https://github.com/daniele-proverbio/assessing_
strategies.
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