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 33 

Abstract 34 

The new coronavirus disease, officially known as COVID-19, originated in China in 2019 and 35 

has since spread around the globe. We presented a modified Susceptible-Latent-Infected-36 

Removed (SLIR) compartmental model of COVID-19 disease transmission with nonlinear 37 

incidence during the epidemic period. We provided the model calibration to estimate 38 

parameters with day wise corona virus (COVID-19) data i.e. reported cases by worldometer 39 

from the period of 15th February to 30th March, 2020 in six high burden countries including 40 

Australia, Italy, Spain, USA, UK and Canada. We estimate transmission rates for each 41 

countries and found that the highest transmission rate country in Spain, which may be increase 42 

the new cases and deaths in Spain than the other countries. Sensitivity analysis was used to 43 

identify the most important parameters through the partial rank correlation coefficient method. 44 

We found that the transmission rate of COVID-19 had the largest influence on the prevalence. 45 

We also provides the prediction of new cases in COVID-19 until May 18, 2020 using the 46 

developed model and recommends, control strategies of COVID-19. The information that we 47 

generated from this study would be useful to the decision makers of various organizations 48 

across the world including the Ministry of Health in Australia, Italy, Spain, USA, UK and 49 

Canada to control COVID-19.  50 

 51 
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1. Introduction 68 

Following the outbreak of novel Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-69 

Cov-2) or COVID-19 constitute a persistent and significant public-health problem across the 70 

globe. As of March 30th, 2020, the ongoing global epidemic outbreak of COVID1-19 has 71 

spread to at least 180 countries and territories on 6 countries including Australia, Italy, Spain, 72 

USA, UK and Canada, resulted approximately 946,876 cases of COVID-19, and 48,137 73 

individuals died from this disease [1]. In the Australia, Italy, Spain, USA, UK and Canada 74 

COVID-19 infection and death reached 4460, 101739, 87956, 163788, 22141 and 7448, as well 75 

as 30, 11591, 7716, 3143, 1408 and 89 with mortality ratios nearly 0.67%, 11.39%, 8.77%, 76 

1,9%, 6.4% and 1.2% respectively [1]. Figure 1 shows the cumulative number of confirmed 77 

cases and deaths of COVID-19 in six selected countries from February 15th to March 30th, 78 

2020. 79 

(A) 

 

(B) 

 

  

Figure 1: Graphs of six selected countries using a log scale (A)–cumulative number of COVID-19 cases 80 
and (B)–cumulative number of COVID-19 deaths. 81 
 82 

The highest burden of COVID-19 is not only dependent on the health system but also depend 83 

quickly response. For example, in Italy, the first confirmed COVID-19 cases on February 15 84 

and then after few days thousands of people infected by COVID-19. The problem is not that 85 

the Italy government didn’t respond to the COVID-19. The problem is that it always responded 86 

slightly too slow and with slightly too much moderation. What has resulted in China reveals 87 

that quarantine, social distance, and isolation of infected populations can contain the epidemic. 88 

This impact of the COVID-19 response in China is advocating for many countries where 89 

COVID-19 is starting to spread. However, it is unclear whether other countries can implement 90 

the stringent measures China eventually adopted. Singapore and Hong Kong, both of which 91 
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had severe acute respiratory syndrome (SARS) epidemics in 2002–03, present concern and 92 

many lessons to other countries. In both places, COVID-19 has been maintained well to date, 93 

notwithstanding early cases, by early government progress and through social distancing 94 

patterns used by individuals. 95 

 96 

The course of an epidemic is defined by a series of key factors, some of which are poorly 97 

understood at present for COVID-19. Mathematical modelling is one of the most powerful 98 

tools for infectious disease control that can be used for both predictions about behaviour and 99 

for understanding infectious disease dynamics [2-4]. Many researchers have implemented 100 

mathematical modelling frameworks to gain insights into different types of infectious diseases 101 

[5-9]. Although models can range from very simple to highly complex, one of the commonest 102 

practices to improve understanding of infectious disease dynamics is the compartmental 103 

mathematical model [10]. 104 

 105 

In mathematical models, the incidence rate plays an important role in the transmission of 106 

infectious diseases. The number of individuals who become infected per unit time is called the 107 

incidence rate in the epidemiology perspective [11]. Here, we consider the nonlinear incidence 108 

rate due to the number of effective contact between infective and susceptible individuals may 109 

saturate at high levels through the crowding of infectives individuals [12]. This model is also 110 

used to calibrate and make prediction the number of COVID-19 cases data in six countries 111 

including Australia, Italy, Spain, USA, UK and Canada to estimate the model parameters. 112 

Sensitivity analysis also performed to identify the most important model parameters that could 113 

potentially support policymakers to control COVID-19 outbreak in the selected countries. The 114 

model findings can be also helpful to many other countries which are dealing with critical 115 

outbreak of COVID-19.      116 

 117 

The rest of the paper is structured as follows: Section 2 presents model descriptions. Sections 118 

3 and 4 performed the model calibration and sensitivity analysis. A brief discussion and 119 

concluding remarks finalize the paper. 120 

 121 

2. Model description and analysis 122 

We considered a modified SLIR compartmental model of COVID-19 transmission with 123 

nonlinear incidence between the following mutually exclusive compartments: S(t)- susceptible 124 
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individuals; L(t)- latent individuals who have not yet progressed to active infection; I(t)- 125 

infected individuals who are both infected and infectious, and R(t)-recovered individuals who 126 

are previously infected but successfully recovered. A typical SLIR model is depicted in Figure 127 

2. 128 

 129 

Figure 2: Flow chart of the SLIR mathematical model showing the four states and the transitions in and 130 
out of each state. Here, S = Susceptible population, L = Latent population, I = Infected population, 131 
R = Removal population, Λ = recruited rate, μ = Death rate, β = Transmission rate, α=Force of 132 
saturates infection, ω = Progression rate to active disease, γ = Recovery rate.   133 
 134 

Let the susceptible individuals be recruited at a constant rate Λ and they may be infected at a 135 

time dependent rate 
β I(t)

1+α I (t)
. Here, 

β I(t)

1+α I (t)
 is represents the saturated incidence rate, which 136 

tends to a saturated level when I(t)  gets large. βI(t) measures the force of infection when the 137 

disease is entering a fully susceptible population, and 
1

(1+αI)
  measures the inhibition effect from 138 

the behaviour change of susceptible individuals when their number increase or from the effect 139 

of risk factors including crowded environment of the infective individuals with α determines 140 

the level at which the force of infection saturates. Individuals in the different compartments 141 

suffer from natural death at the same constant rate μ. All infected individuals move to the 142 

latently infected compartment, L(t). Those with latent infection progress to active infection 143 

(the I compartment) as a result of reactivation of the latent infection at rate ω. A proportion of 144 

the infected individuals recover through treatment and natural recovery rate γ and move into 145 

the recovered compartment R(t).  In this case the model can be expressed by the following four 146 

differential equations:  147 

 148 

dS

dt
= Λ −

βS I

1+αI
− μS,                                                                                                                                                  (1) 149 

dL

dt
=

βS I

1+αI
− (ω + μ)L,                                                                                                                                           (2) 150 

dI

dt
= ωL − (γ + μ)I,                                                                                                                                                      (3) 151 

dR

dt
= γI − μR.                                                                                                                                                                   (4) 152 
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 153 

Given non-negative initial conditions for the system above, it is straightforward to show that 154 

each of the state variables remain non-negative for all t > 0. Moreover, summing equations 155 

(1)-(4) we find that the size of the total population, N(t) satisfies  156 

dN(t)

dt
≤ Λ − μN.  157 

Integrating this equation we find 158 

N(t) ≤
Λ

μ
+ N(0)e−μt.  159 

This shows that the total population size N(t) is bounded in this case, and naturally it follows 160 

that each of the compartment states (i.e. S, L, and I etc.) are also bounded. 161 

 162 

3. Estimation of model parameters 163 

In this section we estimated the model parameters based on the available six countries COVID-164 

19 reported cases data from the worldometers.info [1]. Figure 3 presents the curve of 165 

cumulative confirmed COVID-19 cases in each day during the period from the 15th February 166 

to 30th March 2020 in Australia, Italy, Spain, USA, UK and Canada. In order to parameterise 167 

the model (1) – (4), we obtained some of the parameter values from the literature (see, Table 168 

1), other were estimated or fitted from the data. The best-fitted parameter values were obtained 169 

by minimizing the error using least-square fitting method between the COVID-19 cases data 170 

and the solution of the proposed model (1) – (4) (see, blue solid graph in Figure 3).  171 

 172 

The objective function used in the parameter estimation is as follows 173 

 θ̂ = argmin ∑ (ωL − datat𝑖
)

2𝑛
𝑖=1   174 

where datati
 denotes the COVID-19 data and ωL are the corresponding model solution at 175 

time ti, while n is the number of available actual data points. Findings reveal that the proposed 176 

model is well-fitted with the data. 177 

 178 
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(A) 

 

(B) 

 

(C) 

 

(D) 

 

(E) 

 

(F) 

 

Figure 3: Measured and predicted number of cumulative COVID-19 cases from February 15, 2020 to 179 
May 18, 2020 (red dot) in six different high burden countries (A) Australia, (B) Italy, (C) Spain, (D) 180 
USA, (E) UK and (F) Canada, and the corresponding model (blue solid curve) with the 95% confidence 181 
interval (CI) measure in the blue shaded limits.  182 

 183 

The prediction results from the model are also depicted in Figure 3 to assist in evidenced based 184 

decision making process. For example, health department and decision makers including 185 
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political leaders of Australia, Italy, Spain, USA, UK and Canada those who bear the greatest 186 

response for national health systems for what is predicted to happen in the days, weeks and 187 

month to come. They can then implement measures regarding staff resources and hospital beds 188 

to meet the challenges of this difficult time. However, if the number of infected individuals 189 

follows this trend for the next month, there will be more than 400,000 in Australia, 350,000,0 190 

in Italy, 400,000,0 in Spain, 180,000,00 in USA, 270,000,0 in UK and 300,000 in Canada 191 

patients infected by May 18, as shown in Figure 3.  192 

 193 

Table 1: Depiction and estimation of the model parameters for six countries 194 

Countries Parameters Description Estimated Values References 

 N Population in 2020 254,998,84 [13] 

 μ Death rate 1

70
 yr−1 

[14] 

 β Transmission rate     1.3137 × 10−7 Fitted 

Australia ω Progression rate from L to I 0.01 Assumed 

 γ    Recovery rate 0.1 Assumed 

 α    Infection saturates rate  0.00001 Assumed 

 𝛬       Recruitment rate                                                                                                                                                                    1  

     

 N Population in 2020 604,618,26 [15] 

 μ Death rate 1

70
 yr−1 

[14] 

 𝛽 Transmission rate     2.5722 × 10−8 Fitted 

Italy ω Progression rate from L to I 0.00931 Assumed 

 γ   Recovery rate 0.16 Assumed 

 α    Infection saturates rate  0.0000058 Assumed 

 𝛬 Recruitment rate                                                                                                                                                                    1  

     

 N Population in 2020 467,547,78 [16] 

 μ Death rate 1

70
 yr−1 [14] 

 β Transmission rate     6.7616 × 10−7 Fitted 

Spain ω Progression rate from L to I 0.00034 Assumed 

 γ   Recovery rate 0.3 Assumed 

 α    Infection saturates rate  0.0000004 Assumed 

 𝛬 Recruitment rate                                                                                                                                                                    1  

     

 N Population in 2020 331,002,651 [17] 

 μ Death rate 1

70
 yr−1 [14] 

USA β Transmission rate     6.1269 × 10−7 Fitted 

 𝜔   Progression rate from L to I 0.03 Assumed 

 𝛾 Recovery rate 0.028 Assumed 

 α    Infection saturates rate 0.00000266 Assumed 

 𝛬 Recruitment rate                                                                                                                                                                    1  
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 N Population in 2020 678,869,11 [18] 

 μ Death rate 1

70
 yr−1 [14] 

 β Transmission rate     5.9950 × 10−7 Fitted 

UK ω Progression rate from L to I 0.0003 Assumed 

 γ   Recovery rate 0.1 Assumed 

 α    Infection saturates rate  0.00001 Assumed 

 𝛬 Recruitment rate                                                                                                                                                                    1  

     

 N Population in 2020 377,421,54 [19] 

 μ Death rate 1

70
 yr−1 [14] 

 β Transmission rate     4.5237 × 10−7 Fitted 

Canada ω Progression rate from L to I 0.0003 Assumed 

 γ   Recovery rate 0.2 Assumed 

 α    Infection saturates rate  0.00001 Assumed 

 𝛬 Recruitment rate                                                                                                                                                                    1  

 195 

4. Sensitivity analysis 196 

Sensitivity analysis is performed to investigate the parameters that process the greatest 197 

influence on the model outputs [20, 21]. In this study, we performed the partial rank correlation 198 

coefficient (PRCC), which is a global sensitivity analysis technique proven to be the most 199 

reliable and efficient sampling based method, is utilized [21, 22]. About 100,000 simulations 200 

are performed and a uniform distribution is assigned to each model parameter and sampling is 201 

performed independently. Positive (negative) correlations suggests that a positive (negative) 202 

variation in the parameter will increase (decrease) the model outcome [21].  Here the model 203 

outputs we consider are the number of infectious individuals I (where, I =
Λβμ−μ(ω+μ)(γ+μ)

(ω+μ)(γ+μ)(β+αμ)
) 204 

and the basic reproduction number R0 (where, R0 =
Λβω

μ(ω+μ)(γ+μ)
). Figure 4 and Figure 5 205 

display the correlation between I and R0 corresponding to the model parameters β, ω, α and γ. 206 

Parameters β and ω have positive PRCC values, implying that a positive change of these 207 

parameters will increases the infectious individuals I and the basic reproduction number R0. In 208 

contract parameters α and γ have negative PRCC values, which implies that increasing theses 209 

parameters will decrease infectious individuals I and the basic reproduction number R0. 210 

 211 
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Figure 4: PRCC values depicting the sensitivities 

of the model output infectious individuals I with 

respect to the estimated parameters β, ω, α and γ. 

 

Figure 5: PRCC values depicting the sensitivities 

of the model output basic reproduction number 

R0 with respect to the estimated parameters β, ω 

and γ. 

 212 

5. Discussion and Concluding remarks 213 

In this paper, we presented a modified SLIR compartmental model with nonlinear incidence. 214 

We estimate number of cases from COVID-19 infection and apply it to data from the COVID-215 

19 epidemics in Australia, Italy, Spain, USA, UK and Canada until 18 May 2020. After model 216 

calibration we estimates the transmission rates in Australia, Italy, Spain, USA, UK and Canada 217 

are 1.3137 × 10−7, 2.5722 × 10−8, 6.7616 × 10−7, 6.1269 × 10−7, 5.9950 × 10−7 and 218 

4.5237 × 10−7 respectively. The model estimates show a strong relationship with transmission 219 

rate and number of cases in COVID-19 of the selected countries. 220 

Within the six different countries we found that Spain has the highest transmission rate than 221 

the other selected countries, which may be increase massive number of COVID-19 cases and 222 

make worst situation in Spain. We assume that initially Spain government may be not taken 223 

proper action to control transmission including handwashing, social distancing and good 224 

respiratory hygiene etc. For instance, in China they take immediate action for transmission 225 

control including lockdown in every cities that is way they are able to minimize the outbreak 226 

of COVID-19. Our finding is consistent with observations, because COVID-19 mainly spread 227 

from person to person through droplet transmission. Droplets are small pieces of saliva, which 228 

are produced when a person coughs or sneezes. Droplets cannot go through skin and can only 229 

lead to infection if they touch your mouth, nose or eye. Therefore, from a public health 230 

perspective it is very important to protect susceptible individuals from TB exposure by 231 

effectively reducing the contact rate between susceptible and infectious individuals. 232 
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There are so many ways that we can control COVID-19 transmission  (i) wash your hands 233 

regularly with soap and water or rubbing an alcohol-based sanitizer into your hands because 234 

washing your hands kills viruses that may be on your hands, (ii) avoid touching your face as 235 

much as possible because virus containing droplets on your hands can be transferred to your 236 

eyes, mouth or nose where they can infect you, (iii) maintain at least 1.5 meters distance 237 

between yourself and anyone who is coughing or sneezing because if you are too close to 238 

someone you might breathe in droplets they cough or sneeze, (iv) make sure you and people 239 

around you follow good respiratory hygiene. Respiratory hygiene is important because droplets 240 

spread virus. By following good respiratory hygiene you catch any droplets that might be 241 

produced, and this protects the people around you from viruses including COVID-19. (v) Must 242 

wear a mask if you are sick with symptoms that might be due to COVID-19 or looking after 243 

someone who may have COVID-19. 244 

However, estimation of transmission rates from different setting must be done with caution, as 245 

the pattern of an epidemic, the standard of care and, as a result, number of cases are time and 246 

setting dependent. For instance, very few cases have been reported so far in Bangladesh [23]. 247 

In this country, health system is very poor which leads to the fewer number of reported cases. 248 

Therefore, data from other countries, in particular the number of cases by date of COVID-19 249 

onset is necessary to better understand the variability in cases across settings.  250 

Our model determined that from the explicit expression for infectious individuals I and the 251 

basic reproduction number R0, it is clear that they are depending on transmission rates β, 252 

progression rates ω, recovery rates γ, and the force of infection saturates rate α. From the 253 

sensitivity analysis it is also clear that the most important parameter is transmission rate β 254 

 followed by recovery rate γ. Therefore, to control and eradicate COVID-19 infection, it is 255 

important to consider the following strategies: (i) the first and most important strategy is to 256 

minimize the contact rates β with infected individuals by decreasing the values of β; (ii) the 257 

second-most important strategy is to increase the recovery rate γ of infective individuals 258 

through treatment. Therefore, we suggest the most feasible and optimal strategy to eliminate 259 

COVID-19 in six different countries including Australia, Italy, Spain, USA, UK and Canada 260 

are to reduce contact rates as well as increase the treatment rate that will be most effective way 261 

to reduce COVID-19 cases in the six countries. Finally, the application of proposed model and 262 

its related outputs can be extended into many other countries which are dealing with such a 263 

critical outbreak of COVID-19 to control this global pandemic disease.         264 

 265 
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