COVID-19 containment policies through time may cost more lives at metapopulation level

Authors: Konstans Wells*1, Miguel Lurgi¹

*Corresponding author; E-mail: k.l.wells@swansea.ac.uk

Affiliations:

5

10

¹ Department of Biosciences, Swansea University, Swansea SA2 8PP, Wales, UK

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

COVID-19 mitigation outcomes

Abstract:

15

20

25

30

The rapid and pandemic spread of COVID-19 has led to unprecedented containment policies

in response to overloaded health care systems. Disease mitigation strategies require informed

decision-making to ensure a balance between the protection of the vulnerable from disease and

the maintenance of global economies. We show that temporally restricted containment efforts,

that have the potential to flatten epidemic curves, can result in wider disease spread and larger

epidemic sizes in metapopulations. Longer-term rewiring of metapopulation networks or the

enforcement of feasible long-term measures that decrease disease transmissions appear to be

more efficient than temporarily restricted intensive mitigation strategies (e.g. short-term mass

quarantine). Our results may inform balanced containment strategies for short-term disease

spread mitigation in response to overloaded health care systems and longer-term

epidemiological sizes.

COVID-19 mitigation outcomes

Main Text:

35

40

45

50

55

The rapid and unprecedented pandemic spread of the newly emerged coronavirus SARS-CoV-

2 imposes a significant burden on national health systems, with alarmingly high fatality and

hospitalization rates (1). While this novel virus has affected the human population worldwide,

severe cases are mostly confined to elderly people above 70 years old, and those with

underlying conditions such as cardiovascular and respiratory disease, cancer, or diabetes (2).

Immediate national responses have been numerous and varied. Nonetheless, by early April

2020, only four months after the first records of the virus in Wuhan, China, a considerable

proportion of the world population have found themselves being mass-quarantined through

'stay-at-home' policies.

Without any protective pharmaceutical treatment (e.g. vaccination) available, disease control

is a challenging task because it relies solely on combating pathogen spread resulting from the

myriads of host interactions. There is consensus that 'flattening the epidemic curve' by

delaying disease spread through physical distancing measures, can lower the pressure on health

services during the most critical periods of epidemic spread (3, 4). Nevertheless, the long-term

and large-scale outcomes of intensive short-term mitigation strategies are little understood.

Escaping infection at the individual level throughout the course of entire epidemics can only

be achieved by permanently avoiding contacts with infectious agents. Hence, unless the disease

is extirpated at the population level, the individual risk of infection can only be lowered by

rigorous isolation or by depriving pool of susceptible individuals, hence lowering the force of

infection through herd immunity (5).

The key assumption of homogeneous mixing of populations in traditional epidemiological

models, which have played a central role in the study of the epidemic spread of COVID-19 so

far (3, 6) are not met at large landscape scales. This is mainly due to the large heterogeneity in

metapopulation networks and the spatial aggregation of individuals into different communities

60

65

70

75

80

from household to city levels (7). In fact, it is well known that contact network structure and

patterns of connectivity among local populations are main drivers of contagion processes from

local to regional scale, with contact frequencies among populations largely determining

whether local epidemics are coupled or not (8). However, the extent to which temporarily

restricted intensive mitigation strategies (e.g. short-term total containment) in response to the

COVID-19 epidemic can successfully lower overall epidemic size, and protect those most

vulnerable, has yet to be quantified. and compared across different scenarios of landscape-level

connectivity (i.e. metapopulation structure).

Theory predicts that metapopulation extinction-colonization dynamics can maintain disease

persistence even with frequent local fade-out and extirpation (9). If local epidemics in different

populations are weakly coupled, synchronous but short-term mitigation strategies may fail their

target to contain disease spread during epidemic peaks (10). Further, local containment of

outbreaks with delayed local extirpation may facilitate disease spread at the metapopulation

level. Metapopulation source-sink dynamics, the effect of metapopulation structure, and the

role of depleted pools of susceptible individuals (i.e. herd immunity), have been studied in the

context of disease spread for decades (11). Nevertheless, there is a lack of understanding of

whether and how temporally restricted intensive mitigation strategies, could result in long-term

reduction of overall infection rates on spatially structured metapopulations. Understanding the

usefulness of short-term intensive containment strategies constitutes a pressing challenge in

times of the ongoing COVID-19 crisis. More generally, this understanding will contribute to

the unresolved debate on whether it is possible to establish alternatives to socioeconomically

detrimental mass quarantines (6, 12).

COVID-19 mitigation outcomes

85

90

95

100

We address this challenge using an individual-based epidemiological model, that incorporates

landscape-scale connectivity structure among local populations (i.e. metapopulation), to

explore the outcome of the spread of COVID-19 and equivalent emerging infectious diseases

in metapopulation networks after one year and under different mitigation scenarios. The

interplay between transmission rates at local scales, and metapopulation dynamics (e.g. source-

sink), which ultimately results in the possible depletion or replenishment of the pool of

susceptible individuals, should determine the outcome of temporal mitigation strategies – either

through escape from epidemic waves by accurately timed isolation or through more prolonged

exposure induced by temporarily arrested and sustained epidemic spread.

Modelling metapopulation epidemics with short-term containment efforts

We were interested in exploring the extent to which network structure and mitigation strategies

may impact the outcomes of disease spread. We created synthetic metapopulations by linking

discrete local populations according to three well known connectivity structures: random,

scale-free and small world networks (13). We then modelled temporary mitigation on

metapopulations as reduced transmission rates (the likely outcome of physical distancing

measures) within certain time windows for the entire metapopulation. We additionally explored

the effects of more selective mitigation strategies, in which transmission rates are only reduced

for subsets of individuals assumed to be at high risk of severe disease effects (see methods).

On each of the three metapopulation structures, we ran numerical simulations of an individual-

based SEIR model (see methods) across a sensible range of parameter values of (i) transmission

rates (β) , (ii) network connectivity (C), and individual commuter travel to (iii) neighbouring or

(iv) distant populations (δ and ρ , respectively). We explored scenarios of lowering transmission

rates (ϕ) between 10–90% over time windows of 21–300 days (η), which we believe to

105

110

115

120

125

represent a range of possible mitigation strategies to prevent COVID-19 spread. This allowed

us to compare the outcomes of different mitigation strategies in terms of relative epidemic sizes

(the difference in epidemic sizes resulting from different mitigation strategies applied over the

same transmission scenario) and spatial spread for different network types and mitigation

strategies: (1) no mitigation, (2) whole-population mitigation, and (3) selective mitigation

applied to vulnerable individuals only.

Rewiring contact structures and constantly low transmission rates minimizes epidemics

Across all scenarios, we found strong support for scale-free connectivity structures among local

populations being likely to minimize disease spread. Under no mitigation, total epidemic sizes

were limited to <66% of the metapopulation infected and <30% local populations affected in

scale-free networks (Fig. 1). Epidemic sizes and fractions of affected populations varied greatly

among different transmission scenarios in random and small world networks, ranging from

rapid disease extirpation with small epidemic sizes to spread into entire metapopulations (Fig.

1). This variation is mostly explained by differences in transmission rates β for all network

types and connectivity C in scale-free networks (Table S2).

Short-term mitigation efforts are not always beneficial

While constantly low transmission rates (and hence low basic reproductive numbers R₀) are

the most crucial aspect in containing epidemic sizes and disease spread, we found rather

intriguing and counterintuitive outcomes when temporary mitigation strategies are enforced.

Epidemic size was smaller without any mitigation strategies in 29% of all transmission

scenarios compared to scenarios where whole-population or selective mitigation strategies are

enforced. In particular, no mitigation was likely to results in smaller relative epidemic sizes for

transmission scenarios with large transmission rates β and weak containment efforts ϕ (Table

COVID-19 mitigation outcomes

130

135

140

145

150

S3). In contrast, relative epidemic size was smallest in 41% of transmission scenarios with

whole-populations mitigation policy, especially for transmission scenarios with small β , high

commuter travel δ and strong containment efforts ϕ (Table S3). Selective mitigation strategies,

in turn, resulted in the smallest relative epidemic sizes and the lowest numbers of vulnerable

individuals infected in transmission scenarios with large β in combination with weak

containment efforts η and in scale-free networks (Table S3).

Notably, the fraction of populations affected increased significantly, with relative larger

epidemic sizes, when mitigation strategies are implemented, compared to scenarios without

mitigation, regardless of transmission rates (Fig. 2, Table S4). This indicates that mitigation

policies may come at the cost of larger epidemic sizes if they do not contain disease within

affected populations.

As expected, epidemic peak size (relative to total epidemic size) was lowered with whole-

population mitigation strategies, while increasing considerably for larger transmission rates β

(Fig. 3, Table S5). There was however no apparent advantage of whole-population versus

selective mitigation on epidemic peak sizes for vulnerable individuals only (Table S5). This

highlights the crucial roles of transmission rates in driving the extents of epidemic peak sizes.

Low transmission rates are thus key, along with strong short-term containment efforts, to

effectively avoid overwhelming health care systems.

Discussion

Our results highlight that strict short-term disease containment actions designed to halt the

rapid increase in cases during peaks of local COVID-19, may have idiosyncratic outcomes and

do not necessarily guarantee optimal protection of global populations over larger

spatiotemporal scales. The modelled variation in underlying transmission scenarios may well

represent the diversity of conditions and uncertainty we encounter in real worlds, resulted in a

160

165

170

175

8

considerable number of scenarios having smaller total epidemic sizes without any stricter short-term containment measures. Selective containment measures can, under some conditions, protect more individuals form infections than apparently more costly whole-population containment efforts.

The intriguing result that short-term mitigation is not necessarily beneficial appears counterintuitive at first glance. This result, however is in line with general expectations of how metapopulations dynamics explain disease persistence alongside local suppression and spatial dissemination among connected populations (9, 14, 15). If short-term intensive containment efforts designed to flatten the epidemic curves of COVID-19 result in more prolonged ('flattened') local epidemics (4), disease spread among different populations can be particularly facilitated in highly connected populations and unfold its adverse effects at larger scale. This effect helps to explain the surprisingly low benefit of temporary mitigation strategies, including whole population isolation measures over several weeks or months.

Crucially, we do want to emphasize that containment efforts are absolutely vital for protecting people from infection by newly emerging disease such as COVI-19 until global vaccinations campaigns are in place to contain any further spread. We contend that constantly lowering transmission rates and carefully circumventing those links in metapopulation networks most supportive for disease spread, can ultimately reduce epidemic size at metapopulation scale. Efficient mitigation strategies are urgently needed to contain the spread of SARS-CoV-2 and save lives, but temporarily restricted intensive mitigation strategies (e.g. strict short-term containment and mass quarantine) in response to overloaded health care systems cannot replace efficient long-term mitigation strategies such as rigorous physical distancing or revisiting contact structure at landscape scale according to our results. Our results suggest that the ease or entire uplifting of existing intensive short-term containment efforts, such as mass quarantine, can be dangerous and may result in unprecedented disease spread. At the same time, achieving

180

185

190

195

200

the long-term escape of vulnerable individuals from infection requires reliable containment

9

measures that can be applied over the entire course of pandemics or until global vaccination

campaigns offer better solutions. This may include measures to lower disease transmission

such as protective gear and restructuring professional and social contact networks to resemble

scale-free rather than small worlds or random connections among people and populations as

much as possible. The dramatic differences in our model outcomes along the gradient of

parameter values explored highlights the importance of accounting for regional conditions in

real-world decision making. Both local human settlement density and connectivity structure,

along with travel and social behaviour, which together set the stage for disease spread, differ

widely across the globe. Informed decision making for rewiring interpersonal contacts or

measures aimed at lowering transmission rates thus require taking regional conditions and

feasibility into account. This knowledge will help policy makers planning adequate strategies

to prevent the overwhelming of health care systems worldwide, and, ultimately, to protect lives.

References and Notes

- World Health Organization, Coronavirus Disease 2019 (COVID-19): Situation Report 88 (17 April 2020). https://www.who.int/docs/default-source/coronaviruse/situation-reports/, (accessed 17/04/2020).
 - 2. F. Zhou et al., Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. *The Lancet*. **395**, 1054-1062 (2020). doi:10.1016/S0140-6736(20)30566-3
- 3. R. M. Anderson, H. Heesterbeek, D. Klinkenberg, T. D. Hollingsworth, How will country-based mitigation measures influence the course of the COVID-19 epidemic? *The Lancet.* **395**, 931-934 (2020). doi:10.1016/S0140-6736(20)30567-5
 - 4. B. F. Maier, D. Brockmann, Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China. *Science*. **eabb4557** (2020). doi:10.1126/science.abb4557
- 215 5. P. Fine, K. Eames, D. L. Heymann, "Herd immunity": a rough guide. *Clin. Infect. Dis.* **52**, 911-916 (2011). doi:10.1093/cid/cir007
 - 6. L. Ferretti et al., Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. *Science*. **eabb6936** (2020). doi:10.1126/science.abb6936
- 7. L. Danon, J. M. Read, T. A. House, M. C. Vernon, M. J. Keeling, Social encounter networks: characterizing Great Britain. *Proceedings of the Royal Society B: Biological Sciences.* **280**, (2013). doi:10.1098/rspb.2013.1037
 - 8. H. Heesterbeek et al., Modeling infectious disease dynamics in the complex landscape of global health. *Science*. **347**, (2015). doi:10.1126/science.aaa4339
- M. J. Keeling, C. A. Gilligan, Metapopulation dynamics of bubonic plague. *Nature*.
 407, 903-906 (2000). doi:10.1038/35038073
 - 10. R. E. Rowthorn, R. Laxminarayan, C. A. Gilligan, Optimal control of epidemics in metapopulations. *Journal of The Royal Society Interface*. **6**, 1135-1144 (2009). doi:10.1098/rsif.2008.0402
- 11. M. J. Keeling, P. Rohani, Modeling Infectious Diseases in Humans and Animals (Princeton University Press, 2008).
 - 12. J. Hellewell et al., Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. *The Lancet Global Health.* **8**, e488-e496 (2020). doi:10.1016/S2214-109X(20)30074-7
- 13. M. E. J. Newman, The structure and function of complex networks. *Siam Review*. **45**, 167-256 (2003). doi:10.1137/s003614450342480
 - 14. C. Viboud et al., Synchrony, waves, and spatial hierarchies in the spread of influenza. *Science*. **312**, 447-451 (2006). doi:10.1126/science.1125237

- 15. V. Colizza, A. Vespignani, Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations. *Journal of Theoretical Biology*. **251**, 450-467 (2008). doi:/10.1016/j.jtbi.2007.11.028
- 16. L. Danon, T. A. House, J. M. Read, M. J. Keeling, Social encounter networks: collective properties and disease transmission. *Journal of the Royal Society Interface*. **9**, 2826-2833 (2012). doi:10.1098/rsif.2012.0357
- 17. G. Csardi, T. Nepusz, The igraph software package for complex network research.

 245 *InterJournal, Complex Systems.* **1695**, http://igraph.org (2006).
 - 18. M. Stein, Large sample properties of simulations using latin hypercube sampling. *Technometrics*. **29**, 143–151 (1981).
 - 19. R Development Core Team. (R Foundation for Statistical Computing, Vienna, Austria, 2020). https://cran.r-project.org/
- 20. S. A. Lauer et al., The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. *Annals of Internal Medicine*. (2020). doi:10.7326/M20-0504
- 21. J. M. Read, J. R. Bridgen, D. A. Cummings, A. Ho, C. P. Jewell, Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions. *medRxiv*, 2020.2001.2023.20018549 (2020).

12

270 Acknowledgments:

We thank our families for support while conducting this research in home offices. **Funding:** Funded by Swansea University Research Lectureships to K.W. and M.L. **Author contributions**: K.W. conceived the study and model, K.W. and M.L. analysed the data and wrote the paper. **Competing interests**: The authors declare no competing interests. **Data and materials availability:** All code, and materials used in the analysis are available as Supplementary Materials.

Supplementary materials:

Materials and Methods

280 Figs. S1 to S3

275

285

Tables S1 to S5

Figures and Tables

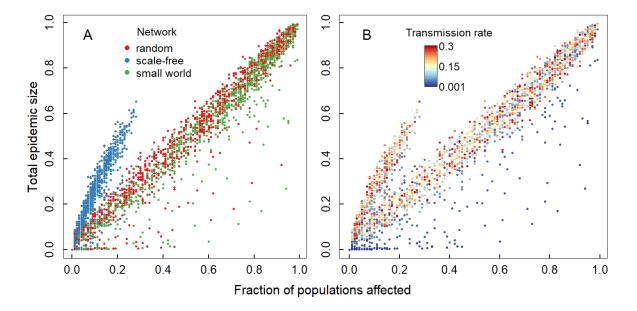
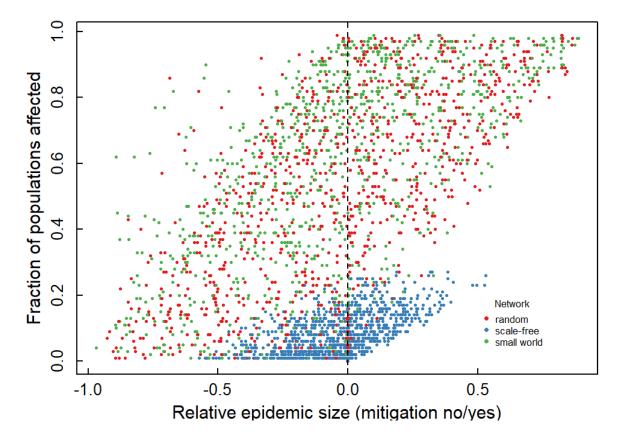



Fig. 1. Fraction of populations affected and total epidemic size of COVID-19 metapopulation spread with different transmission scenarios. (A) Outcomes of disease spread with variable transmission rate, network type and connectivity, and commuter travel rate to neighbouring and distant populations coloured according to underlying network type. (B) Transmission scenarios as in (A) coloured according to the underlying transmission rates β .

305

Fig. 2. Relationship between metapopulation spread of COVID-19 and the relative difference in total epidemic sizes with temporary mitigation policy. Values >0 on the y-axis refer to larger epidemic sizes *with* short-term whole-population mitigation policies in place compared to the same transmission scenarios without any mitigation, whereas values <0 refer to transmission scenarios with larger epidemic sizes *without* mitigation policy. Colours depict different underlying network topographies.

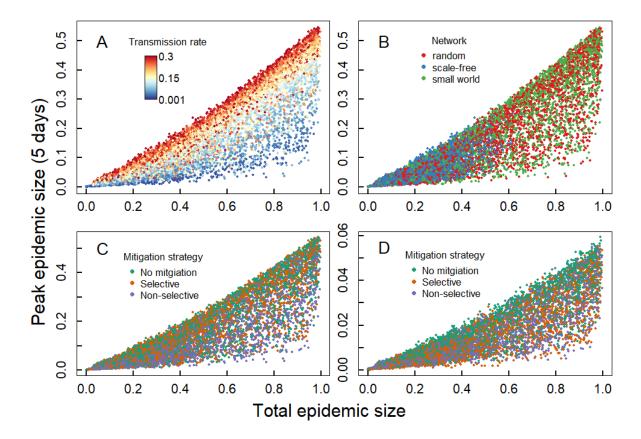


Fig. 3. Relationship between total epidemic sizes and peak epidemic sizes for different transmission scenarios. Outcomes of different transmission scenarios in terms of total epidemic size (proportion of individual infected) and respective peak epidemic size (proportion of individuals infected in 5 days with most new infections). The different panels A-C show the same data for total peak epidemic sizes, plotted in different colour to show patterns in the data in relation to transmission rate (A), network type (B), and mitigation strategy underlying the modelled data. Panel D shows the peak epidemic sizes for high risk individuals only.