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Inf-Net: Automatic COVID-19 Lung Infection
Segmentation from CT Scans

Deng-Ping Fan, Tao Zhou, Ge-Peng Ji, Yi Zhou, Geng Chen, Huazhu Fu, Jianbing Shen, and Ling Shao

Abstract—Coronavirus Disease 2019 (COVID-19) spread glob-
ally in early 2020, causing the world to face an existential health
crisis. Automated detection of lung infections from computed
tomography (CT) images offers a great potential to augment
the traditional healthcare strategy for tackling COVID-19. How-
ever, segmenting infected regions from CT scans faces several
challenges, including high variation in infection characteristics,
and low intensity contrast between infections and normal tissues.
Further, collecting a large amount of data is impractical within
a short time period, inhibiting the training of a deep model. To
address these challenges, a novel COVID-19 Lung Infection Seg-
mentation Deep Network (Inf-Net) is proposed to automatically
identify infected regions from chest CT scans. In our Inf-Net,
a parallel partial decoder is used to aggregate the high-level
features and generate a global map. Then, the implicit reverse
attention and explicit edge-attention are utilized to model the
boundaries and enhance the representations. Moreover, to allevi-
ate the shortage of labeled data, we present a semi-supervised seg-
mentation framework based on a randomly selected propagation
strategy, which only requires a few labeled images and leverages
primarily unlabeled data. Our semi-supervised framework can
improve the learning ability and achieve a higher performance.
Extensive experiments on our COVID-SemiSeg and and real CT
volumes demonstrate that the proposed Inf-Net outperforms most
cutting-edge segmentation models and advances the state-of-the-
art performance.

Index Terms—COVID-19, CT scan, infection segmentation,
semi-supervised learning.

I. INTRODUCTION

S INCE December 2019, the world has been facing a global
health crisis: the pandemic of a novel Coronavirus Disease

(COVID-19) [1], [2]. According to the global case count from
the Center for Systems Science and Engineering (CSSE) at
Johns Hopkins University (JHU) [3] (updated 1 May, 2020),
3,257,660 identified cases of COVID-19 have been reported
so far, including 233,416 deaths and impacting more than
187 countries/regions. For COVID-19 screening, the reverse-
transcription polymerase chain reaction (RT-PCR) has been
considered the gold standard. However, the shortage of equip-
ment and strict requirements for testing environments limit the
rapid and accurate screening of suspected subjects. Further,
RT-PCR testing is also reported to suffer from high false neg-
ative rates [4]. As an important complement to RT-PCR tests,
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(A) (B)
Fig. 1. Example of COVID-19 infected regions (B) in CT axial slice
(A), where the red and green masks denote the GGO and consolidation,
respectively. The images are collected from [9].

the radiological imaging techniques, e.g., X-rays and computed
tomography (CT), have also demonstrated effectiveness in
both current diagnosis, including follow-up assessment and
evaluation of disease evolution [5], [6]. Moreover, a clinical
study with 1014 patients in Wuhan China, has shown that chest
CT analysis can achieve 0.97 of sensitivity, 0.25 of specificity,
and 0.68 of accuracy for the detection of COVID-19, with RT-
PCR results for reference [4]. Similar observations were also
reported in other studies [7], [8], suggesting that radiological
imaging may be helpful in supporting early screening of
COVID-19.

Compared to X-rays, CT screening is widely preferred
due to its merit and three-dimensional view of the lung. In
recent studies [4], [10], the typical signs of infection could be
observed from CT scans, e.g., ground-glass opacity (GGO) in
the early stage, and pulmonary consolidation in the late stage,
as shown in Fig. 1. The qualitative evaluation of infection and
longitudinal changes in CT scans could thus provide useful
and important information in fighting against COVID-19.
However, the manual delineation of lung infections is tedious
and time-consuming work. In addition, infection annotation
by radiologists is a highly subjective task, often influenced by
individual bias and clinical experiences.

Recently, deep learning systems have been proposed to
detect patients infected with COVID-19 via radiological imag-
ing [6], [15]. For example, a COVID-Net was proposed to de-
tect COVID-19 cases from chest radiography images [16]. An
anomaly detection model was designed to assist radiologists
in analyzing the vast amounts of chest X-ray images [17]. For
CT imaging, a location-attention oriented model was employed
in [18] to calculate the infection probability of COVID-19. A
weakly-supervised deep learning-based software system was
developed in [19] using 3D CT volumes to detect COVID-
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TABLE I
A SUMMARY OF PUBLIC COVID-19 IMAGING DATASETS. #COV AND

#NON-COV DENOTE THE NUMBERS OF COVID-19 AND NON-COVID-19
CASES. † DENOTES THE NUMBER IS PRESENTED FROM CORRESPONDING

GITHUB LINK.

Dataset Modality #Cov/#Non-COV Task

COVID-19 X-ray Collection [11] X-rays 229† / 0 Diagnosis

COVID-19 CT Collection [11] CT volume 20 / 0 Diagnosis

COVID-CT-Dataset [12] CT image 288 / 1000 Diagnosis

COVID-19 Patients Lungs [13] X-rays 70 / 28 Diagnosis

COVID-19 Radiography [14] X-rays 219 / 2,686 Diagnosis

COVID-19 CT Segmentation [9] CT image 110 / 0 Segmentation

19. A paper list for COVID19 imaging-based AI works could
be found in [20]. Although plenty of AI systems have been
proposed to provide assistance in diagnosing COVID-19 in
clinical practice, there are only a few works related infection
segmentation in CT scans [21], [22]. COVID-19 infection
detection in CT scans is still a challenging task, for several
issues: 1) The high variation in texture, size and position
of infections in CT scans is challenging for detection. For
example, consolidations are tiny/small, which easily results in
the false-negative detection from a whole CT scans. 2) The
inter-class variance is small. For example, GGO boundaries
often have low contrast and blurred appearances, making them
difficult to identify. 3) Due to the emergency of COVID-
19, it is difficult to collect sufficient labeled data within a
short time for training deep model. Further, acquiring high-
quality pixel-level annotation of lung infections in CT scans
is expensive and time-consuming. Table I reports a list of the
public COVID-19 imaging datasets, most of which focus on
diagnosis, with only one dataset providing segmentation labels.

To address above issues, we propose a novel COVID-19
Lung Infection Segmentation Deep Network (Inf-Net) for CT
Scans. Our motivation stems from the fact that, during lung
infection detection, clinicians first roughly locate an infected
region and then accurately extract its contour according to the
local appearances. We therefore argue that the area and bound-
ary are two key characteristics that distinguish normal tissues
and infection. Thus, our Inf-Net first predicts the coarse areas
and then implicitly models the boundaries by means of reverse
attention and edge constraint guidance to explicitly enhance the
boundary identification. Moreover, to alleviate the shortage of
labeled data, we also provide a semi-supervised segmentation
system, which only requires a few labeled COVID-19 infection
images and then enables the model to leverage unlabeled data.
Specifically, our semi-supervised system utilizes a randomly
selected propagation of unlabeled data to improve the learning
capability and obtain a higher performance than some cutting
edge models. In a nutshell, our contributions in this paper are
threefold:

• We present a novel COVID-19 Lung Infection Segmenta-
tion Deep Network (Inf-Net) for CT Scans. By aggregat-
ing features from high-level layers using a parallel partial
decoder (PPD), the combined feature takes contextual
information and generates a global map as the initial
guidance areas for the subsequent steps. To further mine

the boundary cues, we leverage a set of implicitly recur-
rent reverse attention (RA) modules and explicit edge-
attention guidance to establish the relationship between
areas and boundary cues.

• A semi-supervised segmentation system for COVID-19
infection segmentation is introduced to alleviate the short-
age of labeled data. Based on a randomly selected prop-
agation, our semi-supervised system has better learning
ability (see § IV).

• We also build a semi-supervised COVID-19 infection
segmentation (COVID-SemiSeg) dataset, with 100 la-
beled CT scans from the COVID-19 CT Segmenta-
tion dataset [9] and 1600 unlabeled images from the
COVID-19 CT Collection dataset [11]. Extensive ex-
periments on this dataset demonstrate that the proposed
Inf-Net and Semi-Inf-Net outperform most cutting-edge
segmentation models and advances the state-of-the-art
performance. The code and dataset will be released at:
https://github.com/DengPingFan/Inf-Net

II. RELATED WORKS

In this section, we discuss three types of works that are most
related to our work, including: segmentation in chest CT, semi-
supervised learning, and artificial intelligence for COVID-19.

A. Segmentation in Chest CT

CT imaging is a popular technique for the diagnosis of lung
diseases [23], [24]. In practice, segmenting different organs
and lesions from chest CT scans can provide crucial informa-
tion for doctors to diagnose and quantify lung diseases [25],
[26]. Recently, many works have been provided and obtained
promising performances. These algorithms often employ a
classifier with extracted features for nodule segmentation in
chest CT. For example, Keshani et al. [27] utilized the support
vector machine (SVM) classifier to detect the lung nodule
from CT scans. Shen et al. [28] presented an automated
lung segmentation system based on bidirectional chain code
to improve the performance. However, the similar visual
appearances of nodules and background makes it difficult
for extracting the nodule regions. To overcome this issue,
several deep learning algorithms have been proposed to learn a
powerful visual representations [29]–[31]. For instance, Wang
et al. [29] developed a central focused convolutional neural
network to segment lung nodules from heterogeneous CT
scans. Jin et al. [30] utilized GAN-synthesized data to improve
the training of a discriminative model for pathological lung
segmentation. Jiang et al. [31] designed two deep networks
to segment lung tumors from CT scans by adding multiple
residual streams of varying resolutions.

B. Annotation-Efficient Deep Learning

In our work, we aim to segment the COVID-19 infection
regions for quantifying and evaluating the disease progression.
The (unsupervised) anomaly detection/segmentation could de-
tect the anomaly region [32]–[34], however, it can not identify
whether the anomaly region is related to COVID-19. By
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contrast, based on the few labeled data, the semi-supervised
model could identify the target region from other anomaly
region, which is better suit for assessment of COVID-19.
Moreover, the transfer learning technique is another good
choice for dealing with limited data [35], [36]. But currently,
the major issue for segmentation of COVID-19 infection is that
there are already some public datasets (see [20]), but, being
short of high quality pixel-level annotations. This problem
will become more pronounced, even collecting large scale
COVID-19 dataset, where the annotations are still expensive
to acquire. Thus, our target is to utilize the limited annotation
efficiently and leverage unannotated data. Semi-supervised
learning provides a more suitable solution to address this issue.

The main goal of semi-supervised learning (SSL) is to
improve model performance using a limited number of labeled
data and a large amount of unlabeled data [37]. Currently,
there is increasing focus on training deep neural network
using the SSL strategy [38]. These methods often optimize
a supervised loss on labeled data along with an unsupervised
loss imposed on either unlabeled data [39] or both the labeled
and unlabeled data [40], [41]. Lee et al. [39] provided to
utilize a cross-entropy loss by computing on the pseudo
labels of unlabeled data, which is considered as an additional
supervision loss. In summary, existing deep SSL algorithms
regularize the network by enforcing smooth and consistent
classification boundaries, which are robust to a random per-
turbation [41], and other approaches enrich the supervision
signals by exploring the knowledge learned, e.g., based on the
temporally ensembled prediction [40] and pseudo label [39].
In addition, semi-supervised learning has been widely applied
in medical segmentation task, where a frequent issue is the
lack of pixel-level labeled data, even when large scale set of
unlabeled image could be available [36], [42]. For example,
Nie et al. [43] proposed an attention-based semi-supervised
deep network for pelvic organ segmentation, in which a semi-
supervised region-attention loss is developed to address the
insufficient data issue for training deep learning models. Cui
et al. [44] modified a mean teacher framework for the task
of stroke lesion segmentation in MR images. Zhao et al. [45]
proposed a semi-supervised segmentation method based on a
self-ensemble architecture and a random patch-size training
strategy. Different from these existing methods, our semi-
supervised framework is based on a random sampling strategy
for progressively enlarging the training dataset with unlabeled
data.

C. Artificial Intelligence for COVID-19

Artificial intelligence technologies have been employed in
a large number of applications against COVID-19 [6], [15].
Joseph et al. [15] categorized these applications into three
scales, including patient scale (e.g., medical imaging for
diagnosis [46], [47]), molecular scale (e.g., protein structure
prediction [48]), and societal scale (e.g., epidemiology [49]).
In this work, we focus on patient scale applications [18], [22],
[46], [47], [50]–[53], especially those based on CT scans.
For instance, Wang et al. [46] proposed a modified inception
neural network [54] for classifying COVID-19 patients and

normal controls. Instead of directly training on complete CT
images, they trained the network on the regions of interest,
which are identified by two radiologists based on the fea-
tures of pneumonia. Chen et al. [47] collected 46,096 CT
image slices from COVID-19 patients and control patients
of other disease. The CT images collected were utilized to
train a U-Net++ [55] for identifying COVID-19 patients. Their
experimental results suggest that the trained model performs
comparably with expert radiologists in terms of COVID-
19 diagnosis. In addition, other network architectures have
also been considered in developing AI-assisted COVID-19
diagnosis systems. Typical examples include ResNet, used in
[18], [50], and U-Net [56], used in [51]. Finally, deep learning
has been employed to segment the infection regions in lung CT
scans so that the resulting quantitative features can be utilized
for severity assessment [52], large-scale screening [53], and
lung infection quantification [15], [21], [22] of COVID-19.

III. PROPOSED METHOD

In this section, we first provide details of our Inf-Net in
terms of network architecture, core network components, and
loss function. We then present the semi-supervised version
of Inf-Net and clarify how to use a semi-supervised learning
framework to enlarge the limited number of training samples
for improving the segmentation accuracy. We also show an
extension of our framework for the multi-class labeling of
different types of lung infections. Finally, we provide the
implementation details.

A. Lung Infection Segmentation Network (Inf-Net)

Overview of Network: The architecture of our Inf-Net is
shown in Fig. 2. As can be observed, CT images are first
fed to two convolutional layers to extract high-resolution,
semantically weak (i.e., low-level) features. Herein, we add an
edge attention module to explicitly improve the representation
of objective region boundaries. Then, the low-level features
f2 obtained are fed to three convolutional layers for extracting
the high-level features, which are used for two purposes. First,
we utilize a parallel partial decoder (PPD) to aggregate these
features and generate a global map Sg for the coarse local-
ization of lung infections. Second, these features combined
with f2 are fed to multiple reverse attention (RA) modules
under the guidance of the Sg . It is worth noting that the RA
modules are organized in a cascaded fashion. For instance, as
shown in Fig. 2, R4 relies on the output of another RA R5.
Finally, the output of the last RA, i.e., S3, is fed to a sigmoid
activation function for the final prediction of lung infection
regions. We now detail the key components of Inf-Net and
our loss function.

Edge Attention Module: Several works have shown that
edge information can provide useful constraints to guide fea-
ture extraction for segmentation [57]–[59]. Thus, considering
that the low-level features (e.g., f2 in our model) preserve
some sufficient edge information, we feed the low-level feature
f2 with moderate resolution to the proposed edge attention
(EA) module to explicitly learn an edge-attention representa-
tion. Specifically, the feature f2 is fed to a convolutional layer
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with one filter to produce the edge map. Then, we can measure
the dissimilarity of the EA module between the produced edge
map and the edge map Ge derived from the ground-truth (GT),

which is constrained by the standard Binary Cross Entropy
(BCE) loss function:

Ledge = −
w∑
x=1

h∑
y=1

[Gelog(Se) + (1−Ge)log(1− Se)], (1)

where (x, y) are the coordinates of each pixel in the pre-
dicted edge map Se and edge ground-truth map Ge. The
Ge is calculated using the gradient of the ground-truth map
Gs. Additionally, w and h denote the width and height of
corresponding map, respectively.

Parallel Partial Decoder: Several existing medical image
segmentation networks segment interested organs/lesions using
all high- and low-level features in the encoder branch [55],
[56], [60]–[62]. However, Wu et al. [63] pointed out that,
compared with high-level features, low-level features demand
more computational resources due to larger spatial resolutions,
but contribute less to the performance. Inspired by this obser-
vation, we propose to only aggregate high-level features with
a parallel partial decoder component, illustrated in Fig. 3.
Specifically, for an input CT image I , we first extract two
sets of low-level features {fi, i = 1, 2} and three sets of high-
level features {fi, i = 3, 4, 5} using the first five convolutional
blocks of Res2Net [64]. We then utilize the partial decoder
pd(·) [63], a novel decoder component, to aggregate the high-
level features with a paralleled connection. The partial decoder
yields a coarse global map Sg = pd(f3, f4, f5), which then
serves as global guidance in our RA modules.

Reverse Attention Module: In clinical practice, clinicians
usually segment lung infection regions via a two-step pro-
cedure, by roughly localizing the infection regions and then
accurately labeling these regions by inspecting the local tissue
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structures. Inspired by this procedure, we design Inf-Net using
two different network components that act as a rough locator
and a fine labeler, respectively. First, the PPD acts as the rough
locator and yields a global map Sg , which provides the rough
location of lung infection regions, without structural details
(see Fig. 2). Second, we propose a progressive framework,
acting as the fine labeler, to mine discriminative infection
regions in an erasing manner [65], [66]. Specifically, instead
of simply aggregating features from all levels [66], we propose
to adaptively learn the reverse attention in three parallel
high-level features. Our architecture can sequentially exploit
complementary regions and details by erasing the estimated
infection regions from high-level side-output features, where
the existing estimation is up-sampled from the deeper layer.

We obtain the output RA features Ri by multiplying
(element-wise �) the fusion of high-level side-output features
{fi, i = 3, 4, 5} and edge attention features eatt = f2 with
RA weights Ai, i.e.,

Ri = C(fi, Dow(eatt))�Ai, (2)

where Dow(·) denotes the down-sampling operation, C(·)
denotes the concatenation operation follow by two 2-D con-
volutional layers with 64 filters.

The RA weight Ai is de-facto for salient object detection
in the computer vision community [66], and it is defined as:

Ai = E(�(σ(P(Si+1)))), (3)

where P(·) denotes an up-sampling operation, σ(·) is a
sigmoid activation function, and �(·) is a reverse operation
subtracting the input from matrix E, in which all the elements
are 1. Symbol E denotes expanding a single channel feature
to 64 repeated tensors, which involves reversing each channel
of the candidate tensor in Eq. (2). Details of this procedure
are shown in Fig. 4. It is worth noting that the erasing strategy
driven by RA can eventually refine the imprecise and coarse
estimation into an accurate and complete prediction map.

Loss Function: As mentioned above in Eq. (1), we propose
the loss function Ledge for edge supervision. Here, we define
our loss function Lseg as a combination of a weighted IoU
loss LwIoU and a weighted binary cross entropy (BCE) loss
LwBCE for each segmentation supervision, i.e.,

Lseg = LwIoU + LwBCE . (4)

The two parts of Lseg provide effective global (image-level)
and local (pixel-level) supervision for accurate segmentation.
Unlike the standard IoU loss, which has been widely adopted
in segmentation tasks, the weighted IoU loss increases the
weights of hard pixels to highlight their importance. In addi-
tion, compared with the standard BCE loss, LwBCE puts more
emphasis on hard pixels rather than assigning all pixels equal
weights. The definitions of these losses are the same as in [67],
[68] and their effectiveness has been validated in the field of
salient object detection.

Finally, we adopt deep supervision for the three side-outputs
(i.e., S3, S4, and S5) and the global map Sg . Each map is
up-sampled (e.g., Sup3 ) to the same size as the object-level

Algorithm 1 Semi-Supervised Inf-Net
Input: Labeled training data DLabeled and unlabeled training

data DUnlabeled
Output: Trained Inf-Net M

1: Construct a training dataset DTraining using all the labeled
CT images from DLabeled

2: Train our model M using DTraining
3: repeat
4: Perform testing using the trained model M and K CT

images randomly selected from DUnlabeled, which yields
network-labeled data DNet-labeled, consisting of K CT
images with pseudo labels

5: Enlarge the training dataset using DNet-labeled, i.e.,
DTraining = DTraining ∪ DNet-labeled

6: Remove the K testing CT images from DUnlabeled
7: Fine-tune M using DTraining
8: until DUnlabeled is empty
9: return Trained model M

segmentation ground-truth map Gs. Thus, the total loss in
Eq. (4) is extended to

Ltotal = Lseg(Gs, Supg ) + Ledge +
i=5∑
i=3

Lseg(Gs, Supi ). (5)

B. Semi-Supervised Inf-Net

Currently, there is very limited number of CT images with
segmentation annotations, since manually segmenting lung
infection regions are difficult and time-consuming, and the
disease is at an early stage of outbreak. To resolve this issue,
we improve Inf-Net using a semi-supervised learning strategy,
which leverages a large number of unlabeled CT images to
effectively augment the training dataset. An overview of our
semi-supervised learning framework is shown in Fig. 5. Our
framework is mainly inspired by the work in [69], which
is based on a random sampling strategy for progressively
enlarging the training dataset with unlabeled data. Specifically,
we generate the pseudo labels for unlabeled CT images using
the procedure described in Algorithm 1. The resulting CT
images with pseudo labels are then utilized to train our model
using a two-step strategy detailed in Section III-D.

The advantages of our framework, called Semi-Inf-Net, lie in
two aspects. First, the training and selection strategy is simple
and easy to implement. It does not require measures to assess
the predicted label, and it is also threshold-free. Second, this
strategy can provide more robust performance than other semi-
supervised learning methods and prevent over-fitting. This
conclusion is confirmed by recently released studies [69].

C. Extension to Multi-Class Infection Labeling

Our Semi-Inf-Net is a powerful tool that can provide crucial
information for evaluating overall lung infections. However,
we are aware that, in a clinical setting, in addition to the
overall evaluation, clinicians might also be interested in the
quantitative evaluation of different kinds of lung infections,
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Fig. 5. Overview of the proposed Semi-supervised Inf-Net framework. Please refer to § III-B for more details.

e.g., GGO and consolidation. Therefore, we extend Semi-
Inf-Net to a multi-class lung infection labeling framework
so that it can provide richer information for the further
diagnosis and treatment of COVID-19. The extension of Semi-
Inf-Net is based on an infection region guided multi-class
labeling framework, which is illustrated in Fig. 6. Specifically,
we utilize the infection segmentation results provided by Semi-
Inf-Net to guide the multi-class labeling of different types of
lung infections. For this purpose, we feed both the infection
segmentation results and the corresponding CT images to a
multi-class segmentation network, e.g., FCN8s [70], or U-
Net [56]. This framework can take full advantage of the
infection segmentation results provided by Semi-Inf-Net and
effectively improve the performance of multi-class infection
labeling.

D. Implementation Details
Our model is implemented in PyTorch, and is accelerated

by an NVIDIA TITAN RTX GPU. We describe the implemen-
tation details as follows.

Pseudo label generation: We generate pseudo labels for
unlabeled CT images using the protocol described in Algo-
rithm 1. The number of randomly selected CT images is set
to 5, i.e., K = 5. For 1600 unlabeled images, we need to
perform 320 iterations with a batch size of 16. The entire
procedure takes about 50 hours to complete.

Semi-supervised Inf-Net: Before training, we uniformly re-
size all the inputs to 352×352. We train Inf-Net using a multi-
scale strategy [58]. Specifically, we first re-sample the training
images using different scaling ratios, i.e., {0.75, 1, 1.25}, and
then train Inf-Net using the re-sampled images, which im-
proves the generalization of our model. The Adam optimizer is

Infection 

region guided

Multi-class 

segmentation

Semi-Inf-Net

Fig. 6. Illustration of infection region guided multi-class segmentation for
multi-class labeling task. We feed both the infection segmentation results
provided by Inf-Net and the CT images into FCN8s (or Multi-class U-Net)
for improving the accuracy of multi-class infection labeling.

employed for training and the learning rate is set to 1e−4. Our
training phase consists of two steps: (i) Pre-training on 1600
CT images with pseudo labels, which takes ∼180 minutes to
converge over 100 epochs with a batch size of 24. (ii) Fine-
tuning on 50 CT images with the ground-truth labels, which
takes ∼15 minutes to converge over 100 epochs with a batch
size of 16. For a fair comparison, the training procedure of
Inf-Net follows the same setting described in the second step.

Semi-Inf-Net+Multi-class segmentation: For Multi-class
segmentation network, we are not constrained to specific
choice of the segmentation network, and herein FCN8s [70]
and U-Net [56] are used as two backbones. We resize all the
inputs to 512× 512 before training. The network is initialized
by a uniform Xavier, and trained using an SGD optimizer
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with a learning rate of 1e− 10, weight decay of 5e− 4, and
momentum of 0.99. The entire training procedure takes about
45 minutes to complete.

IV. EXPERIMENTS

A. COVID-19 Segmentation Dataset

As shown in Table I, there is only one segmentation dataset
for CT data, i.e., the COVID-19 CT Segmentation dataset [9]1,
which consists of 100 axial CT images from different COVID-
19 patients. All the CT images were collected by the Italian
Society of Medical and Interventional Radiology, and are
available at here2. A radiologist segmented the CT images
using different labels for identifying lung infections. Although
this is the first open-access COVID-19 dataset for lung infec-
tion segmentation, it suffers from a small sample size, i.e.,
only 100 labeled images are available.

In this work, we collected a semi-supervised COVID-19
infection segmentation dataset (COVID-SemiSeg), to leverage
large-scale unlabeled CT images for augmenting the training
dataset. We employ COVID-19 CT Segmentation [9] as the la-
beled data DLabeled, which consists of 45 CT images randomly
selected as training samples, 5 CT images for validation, and
the remaining 50 images for testing. The unlabeled CT images
are extracted from the COVID-19 CT Collection [11] dataset,
which consists of 20 CT volumes from different COVID-
19 patients. We extracted 1,600 2D CT axial slices from
the 3D volumes, removed non-lung regions, and constructed
an unlabeled training dataset DUnlabeled for effective semi-
supervised segmentation.

B. Experimental Settings

Baselines. For the infection region experiments, we com-
pare the proposed Inf-Net and Semi-Inf-Net with five classical
segmentation models in the medical domain, i.e., U-Net [56],
U-Net++ [55], Attention-UNet [71], Gated-UNet [72], and
DenseU-Net [73]. For the multi-class labeling experiments,
we compare our model with two cutting-edge models from the
computer vision community: DeepLabV3+ [74], FCN8s [70]
and multi-class U-Net [56].

Evaluation Metrics. Following [22], [53], we use three
widely adopted metrics, i.e., the Dice similarity coefficient,
Sensitivity (Sen.), Specificity (Spec.), and Precision (Prec.).
We also introduce three golden metrics from the object de-
tection field, i.e., Structure Measure [75], Enhance-alignment
Measure [76], and Mean Absolute Error. In our evaluation, we
choose S3 with sigmoid function as the final prediction Sp.
Thus, we measure the similarity/dissimilarity between final the
prediction map and object-level segmentation ground-truth G,
which can be formulated as follows:

1) Structure Measure (Sα): This was proposed to measure
the structural similarity between a prediction map and ground-
truth mask, which is more consistent with the human visual
system:

Sα = (1− α) ∗ So(Sp, G) + α ∗ Sr(Sp, G), (6)

1http://medicalsegmentation.com/covid19/
2https://www.sirm.org/category/senza-categoria/covid-19

where α is a balance factor between object-aware similarity
So and region-aware similarity Sr. We report Sα using the
default setting (α = 0.5) suggested in the original paper [75].

2) Enhanced-alignment Measure (Emeanφ ): This is a re-
cently proposed metric for evaluating both local and global
similarity between two binary maps. The formulation is as
follows:

Eφ =
1

w × h

w∑
x

h∑
y

φ(Sp(x, y), G(x, y)), (7)

where w and h are the width and height of ground-truth G,
and (x, y) denotes the coordinate of each pixel in G. Symbol
φ is the enhanced alignment matrix. We obtain a set of Eφ
by converting the prediction Sp into a binary mask with a
threshold from 0 to 255. In our experiments, we report the
mean of Eξ computed from all the thresholds.

3) Mean Absolute Error (MAE): This measures the pixel-
wise error between Sp and G, which is defined as:

MAE =
1

w × h

w∑
x

h∑
y

|Sp(x, y)−G(x, y)|. (8)

C. Segmentation Results

1) Quantitative Results: To compare the infection seg-
mentation performance, we consider the two state-of-the-art
models U-Net and U-Net++. Quantitative results are shown in
Table II. As can be seen, the proposed Inf-Net outperforms U-
Net and U-Net++ in terms of Dice, Sα, Emeanφ , and MAE
by a large margin. We attribute this improvement to our
implicit reverse attention and explicit edge-attention modeling,
which provide robust feature representations. In addition, by
introducing the semi-supervised learning strategy into our
framework, we can further boost the performance with a 5.7%
improvement in terms of Dice.

As an assistant diagnostic tool, the model is expected to
provide more detailed information regarding the infected areas.
Therefore, we extent to our model to the multi-class (i.e., GGO
and consolidation segmentation) labeling. Table III shows the
quantitative evaluation on our COVID-SemiSeg dataset, where
“Semi-Inf-Net & FCN8s” and “Semi-Inf-Net & MC” denote
the combinations of our Semi-Inf-Netwith FCN8s [70] and
mutli-class U-Net [56], respectively. Our “Semi-Inf-Net &
MC” pipeline achieves the competitive performance on GGO
segmentation in most evaluation metrics. For more challeng-
ing consolidation segmentation, the proposed pipeline also
achieves best results. For instance, in terms of Dice, our
method outperforms the cutting-edge model, Multi-class U-
Net [56], by 12% on average segmentation result. Overall, the
proposed pipeline performs better than existing state-of-the-art
models on multi-class labeling on consolidation segmentation
and average segmentation result in terms of Dice and Sα.

2) Qualitative Results: The lung infection segmentation
results, shown in Fig. 7, indicate that our Semi-Inf-Net and Inf-
Net outperform the baseline methods remarkably. Specifically,
they yield segmentation results that are close to the ground
truth with much less mis-segmented tissue. In contrast, U-
Net gives unsatisfactory results, where a large number of
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CT Image U-Net (MICCAI’15) [56] U-Net++ (TMI’19) [55] Inf-Net (Ours) Semi-Inf-Net (Ours) Ground Truth

Fig. 7. Visual comparison of lung infection segmentation results.

TABLE II
QUANTITATIVE RESULTS OF INFECTION REGIONS ON OUR COVID-SemiSeg DATASET.

Methods Backbone Param. FLOPs Dice Sen. Spec. Sα Emeanφ MAE

U-Net [56] VGG16 7.853 M 38.116 G 0.439 0.534 0.858 0.622 0.625 0.186

Attention-UNet [71] VGG16 8.727 M 31.730 G 0.583 0.637 0.921 0.744 0.739 0.112

Gated-UNet [72] VGG16 175.093 K 714.419 M 0.623 0.658 0.926 0.725 0.814 0.102

Dense-UNet [73] DenseNet161 45.082 M 43.785 G 0.515 0.594 0.840 0.655 0.662 0.184

U-Net++ [55] VGG16 9.163 M 65.938 G 0.581 0.672 0.902 0.722 0.720 0.120

Inf-Net (Ours) Res2Net [64] 33.122 M 13.922 G 0.682 0.692 0.943 0.781 0.838 0.082
Semi-Inf-Net (Ours) Res2Net [64] 33.122 M 13.922 G 0.739 0.725 0.960 0.800 0.894 0.064

mis-segmented tissues exist. U-Net++ improves the results,
but the performance is still not promising. The success of
Inf-Net is owed to our coarse-to-fine segmentation strategy,
where a parallel partial decoder first roughly locates lung
infection regions and then multiple edge attention modules
are employed for fine segmentation. This strategy mimics how
real clinicians segment lung infection regions from CT scans,

and therefore achieves promising performance. In addition,
the advantage of our semi-supervised learning strategy is also
confirmed by Fig. 7. As can be observed, compared with
Inf-Net, Semi-Inf-Net yields segmentation results with more
accurate boundaries. In contrast, Inf-Net gives relatively fuzzy
boundaries, especially in the subtle infection regions.

We also show the multi-class infection labeling results
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CT Image DeepLabV3+ (stride = 8) DeepLabV3+ (stride = 16) FCN8s Semi-Inf-Net & MC Ground Truth

Fig. 8. Visual comparison of multi-class lung infection segmentation results, where the red and green labels indicate the GGO and consolidation, respectively.

TABLE III
QUANTITATIVE RESULTS OF GROUND-GLASS OPACITIES AND CONSOLIDATION ON OUR COVID-SemiSeg DATASET. THE BEST TWO

RESULTS ARE SHOWN IN RED AND BLUE FONTS. PLEASE REFER TO OUR MANUSCRIPT FOR THE COMPLETE EVALUATIONS.

Ground-Glass Opacity Consolidation Average

Methods Dice Sen. Spec. Sα Emeanφ MAE Dice Sen. Spec. Sα Emeanφ MAE Dice Sen. Spec. Sα Emeanφ MAE

DeepLabV3+ (stride=8) [74] 0.375 0.478 0.863 0.544 0.675 0.123 0.148 0.152 0.738 0.500 0.523 0.064 0.262 0.315 0.801 0.522 0.599 0.094

DeepLabV3+ (stride=16) [74] 0.443 0.713 0.823 0.548 0.655 0.156 0.238 0.310 0.708 0.517 0.606 0.077 0.341 0.512 0.766 0.533 0.631 0.117

FCN8s [70] 0.471 0.537 0.905 0.582 0.774 0.101 0.279 0.268 0.716 0.560 0.560 0.050 0.375 0.403 0.811 0.571 0.667 0.076

Multi-class U-Net 0.441 0.343 0.984 0.588 0.714 0.082 0.403 0.414 0.967 0.577 0.767 0.055 0.422 0.379 0.976 0.583 0.741 0.066

Semi-Inf-Net & FCN8s 0.646 0.720 0.941 0.711 0.882 0.071 0.301 0.235 0.808 0.571 0.571 0.045 0.474 0.478 0.875 0.641 0.723 0.058
Semi-Inf-Net & MC 0.624 0.618 0.966 0.706 0.889 0.067 0.458 0.509 0.967 0.603 0.767 0.047 0.541 0.564 0.967 0.655 0.828 0.057

in Fig. 8. As can be observed, our model, Semi-Inf-Net &
MC, consistently performs the best among all methods. It is
worth noting that both GGO and consolidation infections are
accurately segmented by Semi-Inf-Net & MC, which further
demonstrates the advantage of our model. In contrast, the
baseline methods, DeepLabV3+ with different strides and

FCNs, all obtain unsatisfactory results, where neither GGO
and consolidation infections can be accurately segmented.

D. Ablation Study

In this subsection, we conduct several experiments to vali-
date the performance of each key component of our Semi-Inf-
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TABLE IV
ABLATION STUDIES OF OUR Semi-Inf-Net. THE BEST TWO

RESULTS ARE SHOWN IN RED AND BLUE FONTS.

Methods Dice Sen. Spec. Sα Emeanφ MAE

(No.1) Backbone 0.442 0.570 0.825 0.651 0.569 0.207

(No.2) Backbone+EA 0.541 0.665 0.807 0.673 0.659 0.205

(No.3) Backbone+PPD 0.669 0.744 0.880 0.720 0.810 0.125

(No.4) Backbone+RA 0.625 0.826 0.809 0.668 0.736 0.177

(No.5) Backbone+RA+EA 0.672 0.754 0.882 0.738 0.804 0.122

(No.6) Backbone+PPD+RA 0.655 0.690 0.927 0.761 0.812 0.098
(No.7) Backbone+PPD+RA+EA 0.739 0.725 0.960 0.800 0.894 0.064

Net, including the PPD, RA, and EA modules.
1) Effectiveness of PPD: To explore the contribution of the

parallel partial decoder, we derive two baselines: No.1 (back-
bone only) & No.3 (backbone+PPD) in Table IV. The results
clearly show that PPD is necessary for boosting performance.

2) Effectiveness of RA: We investigate the importance of
the RA module. From Table IV, we observe that No.4 (back-
bone + RA) increases the backbone performance (No.1) in
terms of major metrics, e.g., Dice, Sensitivity, MAE, etc. This
suggests that introducing the RA component can enable our
model to accurately distinguish true infected areas.

3) Effectiveness of PPD & RA: We also investigate the
importance of the combination of the PPD and RA components
(No.6). As shown in Table IV, No.4 performs better than other
settings (i.e., No.1∼No.4) in most metrics. These improve-
ments demonstrate that the reverse attention together with
the parallel partial decoder are the two central components
responsible for the good performance of Inf-Net.

4) Effectiveness of EA: Finally, we investigate the impor-
tance of the EA module. From these results in Table IV
(No.2 vs. No.1, No.5 vs. No.4, No.7 vs. No.6), it can be
clearly observed that EA module effectively improves the
segmentation performance in our Inf-Net.

E. Evaluation on Real CT Volumes

In the real application, each CT volume has multiple scans,
where most scans could have no infections. To further validate
the effectiveness of the proposed method on real CT volume,
we utilized the recently released COVID-19 infection seg-
mentation dataset [9], which consists of 638 scans (285 non-
infected scans and 353 infected scans) extracting from 9 CT
volumes of real COVID-19 patients as test set for evaluating
our model performance. The results are shown in Tables V.
Despite containing non-infected scans, our method still obtains
the best performance. Because we employed two datasets for
semi-supervised learning, i.e., labeled data with 100 infected
scans (50 training, 50 testing), and unlabeled data with 1600
CT scans from real volumes. The unlabeled data contains
a lot of non-infected scans to guarantee our model could
deal with non-infected scan well. Moreover, our Inf-Net is
a general infection segmentation framework, which could be
easily implemented for other type of infection.

TABLE V
PERFORMANCES ON NINE real CT volumes WITH 638 SCANS (285

NON-INFECTED AND 353 INFECTED SCANS). THE BEST TWO
RESULTS ARE SHOWN IN RED AND BLUE FONTS.

Model Dice Sen. Spec. Prec. MAE

U-Net [56] 0.308 0.678 0.836 0.265 0.214

Attention-UNet [71] 0.466 0.723 0.930 0.390 0.095

Gated-UNet [72] 0.447 0.674 0.956 0.375 0.066

Dense-UNet [73] 0.410 0.607 0.977 0.415 0.167

U-Net++ [55] 0.444 0.877 0.929 0.369 0.106

Inf-Net (Ours) 0.579 0.870 0.974 0.500 0.047
Semi-Inf-Net (Ours) 0.597 0.865 0.977 0.515 0.033

F. Limitations

Although the proposed Inf-Net achieved promising results
in identifying the infected regions from chest CT scans,
there are some limitations in the current model. First, the
Inf-Net focuses on lung infection segmentation for COVID-
19 patients. However, in clinical practice, it often requires
to classify COVID-19 patients and then segment the infec-
tion regions for further treatment. Thus, we will study an
AI automatic diagnosis system, which integrates COVID-19
detection, lung infection segmentation, and infection regions
quantification into a unified framework. Second, for our multi-
class infection labeling framework, we first apply the Inf-
Net to obtain the infection regions, which can be used to guide
the multi-class labeling of different types of lung infections.
It can be observed that we conduct a two-step strategy to
achieve multi-class infection labeling, which could lead to sub-
optimal learning performance. In future work, we will study
to construct an end-to-end framework to achieve this task.

V. CONCLUSION

In this paper, we have proposed a novel COVID-19 lung
CT infection segmentation network, named Inf-Net, which
utilizes an implicit reverse attention and explicit edge-attention
to improve the identification of infected regions. Moreover,
we have also provided a semi-supervised solution, Semi-Inf-
Net, to alleviate the shortage of high quality labeled data.
Extensive experiments on our COVID-SemiSeg dataset and
real CT volumes have demonstrated that the proposed Inf-
Net and Semi-Inf-Net outperform the cutting-edge segmen-
tation models and advance the state-of-the-art performances.
Our system has great potential to be applied in assessing
the diagnosis of COVID-19, e.g., quantifying the infected
regions, monitoring the longitudinal disease changes, and mass
screening processing.
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[25] P. M. Gordaliza, A. Muñoz-Barrutia, M. Abella, M. Desco, S. Sharpe,
and J. J. Vaquero, “Unsupervised CT lung image segmentation of a
mycobacterium tuberculosis infection model,” Scientific reports, vol. 8,
no. 1, pp. 1–10, 2018.

[26] A. Munoz-Barrutia, M. Ceresa, X. Artaechevarria, L. M. Montuenga,
and C. Ortiz-de Solorzano, “Quantification of lung damage in an
elastase-induced mouse model of emphysema,” International journal of
biomedical imaging, vol. 2012, 2012.

[27] M. Keshani, Z. Azimifar, F. Tajeripour, and R. Boostani, “Lung nodule
segmentation and recognition using SVM classifier and active contour
modeling: A complete intelligent system,” Computers in Biology and
Medicine, vol. 43, no. 4, pp. 287–300, 2013.

[28] S. Shen, A. A. Bui, J. Cong, and W. Hsu, “An automated lung seg-
mentation approach using bidirectional chain codes to improve nodule
detection accuracy,” Computers in Biology and Medicine, vol. 57, pp.
139–149, 2015.

[29] S. Wang, M. Zhou et al., “Central focused convolutional neural net-
works: Developing a data-driven model for lung nodule segmentation,”
Medical image analysis, vol. 40, pp. 172–183, 2017.

[30] D. Jin, Z. Xu, Y. Tang, A. P. Harrison, and D. J. Mollura, “CT-realistic
lung nodule simulation from 3D conditional generative adversarial

networks for robust lung segmentation,” in MICCAI. Springer, 2018,
pp. 732–740.

[31] J. Jiang, Y.-C. Hu et al., “Multiple resolution residually connected
feature streams for automatic lung tumor segmentation from CT images,”
IEEE TMI, vol. 38, no. 1, pp. 134–144, 2018.
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