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We show that the COVID-19 pandemic under social distancing exhibits universal dynamics. The
cumulative numbers of both infections and deaths quickly cross over from exponential growth at
early times to a longer period of power law growth, before eventually slowing. In agreement with
a recent statistical forecasting model by the IHME, we show that this dynamics is well described
by the erf function. Using this functional form, we perform a data collapse across countries and
US states with very different population characteristics and social distancing policies, confirming
the universal behavior of the COVID-19 outbreak. We show that the predictive power of statistical
models is limited until a few days before curves flatten, forecast deaths and infections assuming
current policies continue and compare our predictions to the IHME models. We present simulations
showing this universal dynamics is consistent with disease transmission on scale-free networks and
random networks with non-Markovian transmission dynamics.

INTRODUCTION

The COVID-19 pandemic represents a unique chal-
lenge for understanding and predicting the dynamics of
disease spreading and fatalities. The large number of in-
dividuals infected, the global nature of disease transmis-
sion, and the limited ability to test individuals highlight
the importance of formulating effective mathematical and
statistical models for forecasting disease dynamics. For-
tunately, the challenges posed by COVID-19 have also led
to an impressive effort at collecting and centralizing data
on infections and fatalities across countries and regions
[1]. Using this data, there have been numerous efforts
to understand and forecast the disease dynamics of the
COVID-19 pandemic.

These efforts fall into two major categories. The first
approach is based on fitting this data to classical mod-
els from mathematical epidemiology such as SIR models,
with various level of detail and complexity [2, 3]. A major
advantage of this approach is that the dynamics of SIR
models can be parameterized using only a few parame-
ters, most notably R0, the average number of individuals
that will be infected by an individual who has the disease
[4, 5]. This allows for concrete predictions [6] and assess-
ment of how mechanistic processes such as seasonal vari-
ation [7, 8] and social policies [9] affect disease dynam-
ics. However, such mathematical models approaches also
suffer from a number of drawbacks. Many of these mod-
els often assume well-mixed populations (with or with-
out population structure), implicitly ignoring the effect
of network and spatial structure [10, 11] . While many
of these difficulties can be overcome by considering more
refined models [12–14], this requires access to detailed
data that is often unavailable.

A second widely used approach for modeling the
COVID-19 pandemic is to use statistical models to make
predictions. A particularly prominent example of this
are recent forecasts by the Institute for Health Metrics
and Evaluation (IHME) at the University of Washington,
made by fitting the number of deaths as a function of time
using the cumulative distribution function of the normal
distribution (we will use the shorthand “erf function” for
this functional form through out the manuscript) [15].
This approach has yielded tangible and sensible predic-
tions and has been used to guide policy by state and
national governments. However, unlike the mathemati-
cal models discussed above, it remains unclear why and
when the erf function gives a good fit to disease dynam-
ics. In particular, there is no mechanistic understanding
of what epidemiological processes give rise to this fitting
form or how to incorporate the effect of various interven-
tions on disease propagation. Understanding the answers
to these pressing questions is especially important given
the significant role that these models are playing in guid-
ing public policy.

To begin addressing these shortcomings, in this paper
we make use of the extensive data on COVID-19 infec-
tions and death across regions, US states, and countries
to show that COVID-19 spread follows a universal dy-
namics: exponential growth at early times (less than
∼ 10 days after the fifth death), followed by a longer
period where infections and deaths grow as a power law,
before eventually saturating at later times. We show that
this entire dynamics is well fit by the erf function, allow-
ing us to perform a data collapse on dynamics across
countries and US states. Surprisingly, this single func-
tional form can capture the dynamics of disease progres-
sion in regions/countries with extremely different pop-
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ulation characteristics and social policies. Nevertheless,
we show that it is difficult to make accurate predictions
until a few days before infections peak. We compare and
contrast our predictions to the IHME model and present
plots integrating our predictions with the country-specific
social stringency index compiled by Oxford COVID-19
Government Response Tracker [16]. We show that the
erf model follows naturally from considering transmis-
sion on social networks. We conclude by discussing the
practical implications of our results.

ASSUMPTIONS AND LIMITATIONS

Before presenting our results, we briefly review the as-
sumptions and limitations of our approach.

• We stress first of all that the present work only
deals with disease dynamics under the policies of
social distancing currently implemented in each
country. Understanding this existing data is an
essential prerequisite for adequately answering the
urgent practical question about the expected re-
sults of relaxing current policies. The main contri-
bution of the present analysis is to provide a uni-
fied framework for summarizing the characteristics
of these dynamics in each country and showing that
each timeseries can be represented by just two pa-
rameters. This provides a foundation for further
analysis of how social policies, population charac-
teristics and other factors affect the values of these
parameters.

• Secondly, we emphasize that the confidence in-
tervals we provided on our predictions are lower
bounds on the true amount of uncertainty. These
intervals are calculated under the assumption that
the data is accurately described by the fitting func-
tion given in Eq. (1) below, with no changes in
parameter values, and with all deviations from this
function due to random multiplicative noise. The
confidence intervals do not account for possible fu-
ture changes in social policy, or for systematic de-
viations from the fitting function that may arise at
late times. In particular, unlike prominent mod-
els such as those from the IHME, we make no
attempt to model the effects of social policy on in-
fections and deaths. Instead, we seek to understand
the differences and similarities of disease spreading
dynamics across countries given their current social
policies. For this reason, these models are unable
to answer questions about what would happen if a
country adopted social policies that were dramati-
cally different from those that are currently being
pursued in our dataset.

• Finally, we point out that variability in reporting

standards and other issues of reliability necessarily
affect any real-time global data aggregation effort.
This is especially true of the test result data which
depends on the availability of testing in each re-
gion as well as on government policies for admin-
istration of the tests. For this reason, we focus on
fatality data in the main text, which is commonly
taken to be more reliable. Nevertheless, the stan-
dards for attributing a fatality to COVID-19 vary
significantly from region to region and over time,
complicating the interpretation of these data sets
as well. Despite this variation, the observed uni-
versal curves for both fatalities and cases indicate
that meaningful information on the intrinsic disease
dynamics can still be extracted from these reports
for many countries.

RESULTS

We analyzed the US and global time series data on
infections and deaths from the Johns Hopkins Univer-
sity Coronavirus Resource Center, which are updated
daily [1]. Since we were interested in universal dynam-
ics, we only used times after the cumulative number of
confirmed cases in the region exceeded 500 for infection
data, or the cumulative number of fatalities exceeded 50
for death data (see Materials and Methods). We use
these cutoffs to minimize the effects of stochastic fluctu-
ations arising from small numbers of infected individu-
als at early times. We required at least 6 data points
to remain in the time series after truncation in order to
proceed with model fitting. This limited our analysis to
79 out of 322 total regions and countries in the global
data, including 30 out of fifty US states. Since the data
is updated daily, in all our analysis we limit ourselves to
data up to April 15 (though the scripts can be rerun eas-
ily for the most current data set). All code is available as
Juypter Notebooks on Github at https://github.com/
Emergent-Behaviors-in-Biology/covid19. In the
main text, we focus on plots of cumulative deaths. Anal-
ogous plots for cumulative cases can be found in the ap-
pendix.

Power law growth dominates early COVID-19
disease dynamics

We begin by plotting the cumulative cases and deaths
of three regions/countries whose death rate curves had
flattened by Wednesday, April 1: Hubei, China, Italy,
and Spain. Many models and discussions of disease dy-
namics emphasize the exponential growth of cases at
early times. If cumulative deaths and cases are grow-
ing exponentially, then the data should fall on a straight
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FIG. 1: Post-peak countries show power-law dynamics at intermediate times. Cumulative fatalities (blue points)
versus time for three countries that passed their peak rate of new deaths before April 1, 2020. First two columns show the
dynamics for 30 days after the day t0 when the number of cumulative fatalities first exceeded 5. The time axis in the first
column is on a linear scale, while in the second it is logarithmic. Fatalities are shown on a logarithmic scale for both columns.
Straight lines are included for reference, indicating an initial phase of exponential growth (straight line on log-linear plot)
followed by a phase of power-law growth (straight line on log-log plot). Third column shows cumulative normal distribution,
Eq. (1), fit to the entire timeseries (through April 15, 2020), on log-log axes. The day t0 when the number of fatalities first
exceeded 5 is indicated in each row.

line in a semi-log plot (i.e. log number of deaths vs time).
The left hand panels of Figure 1 show semi-log plots of
cumulative deaths as a function of time for China, Italy,
and Spain (see left panel of Fig. 10 for analogous pan-
els for the number of confirmed cases). As expected, at
early times the dynamics follow an exponential growth
curve and are well fit by a straight line on the log-log
plot. However, after about ten days, the data quickly
deviates from the straight line, indicating a slowdown in
the growth of the number of deaths and cases.

The data for all three countries quickly transitions
to power law growth, where the cumulative number of
deaths (or confirmed cases), N , grows as a power law
with time, t. In other words, we have that N ∝ tα, with
larger α meaning faster growth. Power-law growth is eas-
iest to see in a log-log plot since logN ∝ α log t, meaning
that the data should fall on a straight line with slope α

on a log-log plot. The middle panels of Figures 1 and
10 show the cumulative deaths and confirmed cases on a
log-log plot. It is clear that for about 20 days the data
is well described by power-law growth before eventually
flattening. This is consistent with previous observations
of early power-law dynamics in other epidemics including
HIV/AIDS and the 2014 Ebola outbreak [24, 28].

Data is well fit by the erf function

While the exponential followed by power law growth
can capture the early growth of cases, these functions
are incapable of capturing the full disease dynamics –
in particular, the eventual flattening and saturation of
the number of confirmed deaths and cases. Recently,
researchers from the IHME noted that the disease dy-
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FIG. 2: Power law behavior observed across many different countries. Log-log plots of cumulative fatalities for the
ten countries (excluding Italy, Spain and China, which were shown above) and ten states with most fatalities. Orange line is
best fit to the cumulative normal (Eq. 1), and gray region is the confidence interval computed as described in the Methods.
Note that this confidence interval is a lower bound on the true amount of uncertainty, since the computation assumes that the
data is accurately described by the fitting function given in Eq. (1) below, with all deviations from this function due to random
multiplicative noise. The uncertainty estimation does not account for possible future changes in social policy, or for systematic
deviations from the fitting function that may arise at late times.

namics is well fit by the erf function (more precisely the
cumulative distribution function of the normal distribu-
tion) [15]. Surprisingly, the IHME found that the erf
function yields much better fits to the data than a sig-
moid (another saturating function) even though the sig-
moid function is thought to be the natural “mean-field”
description of disease propagation of homogenous social
interaction networks [11, 17, 18]. Our initial data explo-
ration confirmed this observation (data not shown) and
for this reason we focused on fitting our full curves using
the erf function suggested in [15].

This fitting function is a saturating function defined
by three parameters: the final number of fatalities/cases
Nmax that will occur in the region, the time th at which
cumulative confirmed fatalities/cases reach Nmax/2, and

a parameter σ that controls the natural time scale of the
infection dynamics. Note that th is also the time at which
the rate of new fatalities/cases reaches its peak. In gen-
eral, these parameters must be inferred directly from the
data in each region or country one wants to make predic-
tions about. Once the parameters are inferred, the dis-
ease dynamics under current social and policy conditions
are fully specified, allowing for forecasting predictions un-
der the assumption that conditions remain the same and
there are no dramatic changes in social policy. Uncer-
tainty in the values of the parameters naturally trans-
lates to uncertainty in predictions since small changes in
these parameters can often result in very different final
dynamics. A detailed description to the fitting procedure
can be found in the Materials and Methods. In brief, the
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FIG. 3: Rescaling time and fatalities using fit parameters yields universal curve. Top: Raw (left) and rescaled (right)
cumulative fatality data for all countries except for US with more than 500 fatalities as of April 15, 2020. Rescaled vertical
axis (“Relative fatalities”) is the cumulative number of fatalities N divided by the best-fit value of Nmax for each country.
Rescaled time axis is the time relative to the best-fit half-max time th, divided by the timescale σ. Middle: Same as above,
but for US states with more than 500 fatalities as of April 15, 2020. Bottom: Same as above, but for all regions (countries and
states/provinces) with sufficient data to fit.

data was fit to the functional form

N(t) = Nmax

[
1

2
+ erf

(
t− th√

2σ

)]
, (1)

where

erf(t) =
1√
π

∫ t

0

e−x
2

dx, (2)

Our fitting procedure differs from recent forecasts by
the IHME in several crucial ways [15]. First, the IHME
used a Generalized Linear Model with linking functions

on the whole global dataset, while we directly fit each re-
gion independently. We make this choice because of the
very different reporting strategies and criteria used by
different governments and regions. Secondly, the IHME
incorporates prior expectations about the disease dynam-
ics into their model, by assuming (1) that the infection
time scale σ of all countries and regions should be similar
to that of Wuhan, China, and (2) that either the total
number of fatalities Nmax or the interval th− t0 between
the beginning of the infection and the peak time depend
on the timing of social distancing. In contrast, our model
makes no assumptions about the infection time scale and
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is agnostic about the effects of social distancing. It as-
sumes as a given the spectrum of social policies adopted
by various regions and countries whose time series we
fit. Finally, to estimate error bars we make use of the
fact that the Fisher Information (inverse Hessian of the
cost function) for our cost functions are effectively one-
dimensional (see Material and Methods and Figure 5).
This simplifies our calculations of confidence intervals.

The best fits of Eq. (1) to the data from Italy, Spain
and Hubei are shown in the orange lines in the right hand
panels of Figures 1 and 10. As can be seen from the plots,
this functional form yields incredibly good fits to all time
series. However, any realistic forecasting model also re-
quires one to estimate uncertainty about the prediction
parameters. For this reason, it is extremely important to
also provide uncertainty estimates when fitting the data.
Figure 2 shows fits to the erf function with corresponding
uncertainty intervals for countries with over 500 fatali-
ties and the ten US states with the most deaths. Notice,
that while the uncertainty for states and countries that
are clearly deviating from the power-law growth behavior
like Switzerland, and New York is small, the uncertainty
is extremely high for countries and states like Sweden and
Pennsylvania that are still showing power law growth in
dynamics. We return to this points below when we make
forecasts and compare our results to those of the IHME
model.

Data collapse indicate a universal dynamics for
COVID-19 infections

These observations prompted us to better understand
the success of Eq. (1) in fitting COVID-19 data across
regions and countries. In particular, we wanted to ascer-
tain if the reason that the erf function gives such good
fits to curves across all regions and countries is because
this is indicative of some underlying universal dynamics
governing COVID-19 spreading. One powerful method
for detecting universal dynamics that has its origin in
the analysis of physical systems is the idea of a “data
collapse” [19, 20]. Namely, by rescaling the y-axis (cu-
mulative number of deaths or confirmed cases N) and
the x-axis (the time t in days) it should be possible to
make the curves for all regions and countries lie on each
other, indicating the existence of a universal curve that
describes infection dynamics.

The left hand panels of Figure 3 show the cumula-
tive deaths for countries and US states with at least 500
deaths. The right hand panels of the same figure show
the same curves after we have rescaled and shifted the
time axis according to the function t → (t − th)/σ and
rescaled the y-axis according to N → N/Nmax. This
scaling results in a striking collapse of the data with all
the curves lying on top of each other. This is true for
all regions regardless of numerous details that differ be-

tween regions including population density, population
size, social distancing prescriptions, the start time, du-
ration, and severity of the COVID-19 outbreak – though
we emphasize that all countries shown in the top row
had adopted some form of social distancing by the time
of their fifth fatality. The last row of Figure 3 shows the
same data collapse for all 49 countries and 30 states with
at least 50 deaths on April 10th. Remarkably, the same
universal curves seem to capture the disease dynamics
for almost all regions, despite the numerous differences
between countries and states in policy and composition.

The data collapse has numerous practical implications.
First, it indicates that most of the complexities and
place-specific contingencies of disease spread under most
currently implemented forms of social distancing mani-
fest themselves through just two parameters: a natural
time scale σ for the infection, and the total number of
deaths/cumulative infections Nmax. Second, the collapse
suggests that the primary effect of variations in policy
and population characteristics is likely to modify these
two parameters, especially Nmax. Finally, it implies that
if we can fit these two parameters directly we should be
able to make reasonable forecasts for how many cases we
expect and how long it will take the disease to spread as-
suming current policies (or something similar) continue.
As shown in Fig. 12, a similar data collapse is also ob-
served if one uses the number of confirmed cases instead
of the number of deaths.

Prediction is difficult until a few days before peak

At first glance, the existence of universal dynamics
would seem to allow for early and accurate forecasting
under fixed policy conditions. But the confidence inter-
vals for Pennsylvania and Massachusetts in Fig. 2 indi-
cate that a wide range of parameter values can provide
excellent fits to the data even three weeks on from the
beginning of the fatality curve. To gain a better under-
standing of when prediction becomes possible, we stud-
ied the model predictions for fatality dynamics in Italy,
whose initial course of infection was nearly complete by
April 15. We selected four time points before the time of
peak fatalities and made predictions based on data col-
lected before each time point, which were then compared
with the actual outcome. Fig. 4 shows the results of this
exercise, plotted on a log-linear scale.

We found that the behavior of the confidence interval
can be categorized into three distinct regimes. In the ini-
tial exponential phase (first panel), the fit contains virtu-
ally no information about the time of the peak or the final
number of fatalities. This can be understood by noting
that in absence of any priors on parameters, unbounded
exponential growth is compatible with our fitting func-
tion. In the subsequent power-law regime, the confidence
interval becomes finite, but remains large (with a spread
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FIG. 4: Prediction is difficult until a few days before peak. Cumulative fatality data for Italy (blue points), along
with best-fit to Eq. (1) (orange lines) and confidence interval (gray region), using data collected before the date indicated
at the top of each panel. Time axis is labeled as days before/after the estimated date of peak fatalities th. The first four
columns show data collected 15, 13, 10 and 5 days before th, while the fifth is 15 days after th. Note that confidence intervals
represent the minimal level of uncertainty, under the assumption that the data is accurately described by Eq. (1) plus random
variations. Systematic deviations from this behavior caused by policy changes or failure of the fitting function at late times are
not accounted for in this estimate.

of greater than 15,000 deaths in the third panel). Finally,
when the data departs from power law behavior, a few
days before the time th of peak deaths, the uncertainty
shrinks to a small fraction of the predicted total number
of fatalities.

We conclude that even when social policies are fairly
consistent, prediction based on historical data for a single
region is possible only after the power law regime begins,
and only becomes reliable a few days before the peak.

Forecasts from our universal dynamic model

Our fitting procedure yields three parameters for each
region/country: Nmax, the predicted number of deaths,
σ, which sets a natural time scale for the dynamics in
days, and th which indicates the expected time that new
infections will peak. Since the errors in our fits are effec-
tively one-dimensional (see Figure 9 and Material Meth-
ods), we can also calculate an upper and lower bound
on all three parameters, reflecting our uncertainty about
predictions. Figure 5 shows a summary of our best fits
to these three parameters with error bars. As can be
seen, while Nmax and th are quite variable across regions
and countries, likely reflecting different population char-
acteristics and social policies, σ is consistently around
8-11 days for almost regions and countries (the US state
of Washington being a notable outlier).This may reflect
the fact that the time scale σ is a property of the virus
itself rather than a property of the region in which the
disease is spreading. This time scale is consistent with
physiological data on recovery times after virus exposure
[21–23]. Detailed predictions for all states and countries
are provided in corresponding interactive notebook and

CSV files on github.

We also compared our forecasts to those from the
IHME [15], as shown in Fig. 6. Notice that for most
states and countries the two models agree. However,
for some countries (Sweden, Netherlands) and US states
(Georgia and Massachusetts) there are significant dis-
crepancies despite the fact that the two models use the
same fitting function. This likely reflects the very dif-
ferent assumptions used in our fitting procedures. The
IHME makes very specific assumptions about how social
distancing affects the number of deaths, places strong
global priors on parameters that are shared across re-
gions and countries, and significantly constrains σ using
the Wuhan, China data. In contrast, our model is ag-
nostic to any social distancing procedures or population
characteristics and fits each region and country indepen-
dently. For this reason, it reflects a more “data-oriented”
approach that make no prior assumptions about COVID-
19 disease dynamics, though it does assume that current
social policies will continue until the fitting function sat-
urates. It will be interesting to see which of these fit-
ting procedures yields better long term predictions where
there is disagreement between the two forecasts.

Assessing the effects of social distancing

One of the most surprising aspects of our analysis is
that regions and countries with very different social dis-
tancing policies all fall on the same universal curve after
rescaling. For this reason, we sought to better under-
stand the effect of social distancing on COVID-19 dy-
namics. To do so, we made use of a country-specific social
stringency index compiled by Oxford COVID-19 Govern-
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FIG. 5: All regions show similar timescales. Left: Predicted total number of fatalities Nmax versus spreading timescale σ
and time to peak th − t0 for countries with more than 500 fatalities as of April 15. Center: Same for all US states with more
than 500 fatalities. Right: Same for all regions that qualified for fitting (including US states). The ends of the error bars in
all panels lie at the joint upper and lower confidence bounds for the pair of parameters (Nmax and σ or Nmax and th − t0).
Parameter combinations compatible with the data should fall close to this line, as explained in Fig. 9 of the Methods. Note
that most regions with fewer than 500 fatalities have extremely large error bars, in agreement with the discussion in Fig. 4
about the difficulty of inferring parameters until late in the epidemic progression. These large error bars do not always pass
through the best-fit point since for these very poor fits the second dimension of the Fisher Information is no longer negligible.

ment Response Tracker (OxCGRT) [16]. The OxCGRT
was created to provide “a systematic way to track the
stringency of government responses to COVID-19 across
countries and time.” Starting on Jan 1, 2020, on each day
the OxCGRT assigned a stringency score to each coun-
try between 0 and 100 that seeks to summarize policies
such as school closures, travel bans, etc. with 0 being
least stringent and 100 corresponding to maximum strin-
gency.

As discussed above, the existence of universal dynam-
ics means that each country can be characterized by two
parameters: Nmax, the predicted number of deaths, and
σ, a time scale governing the dynamics. The top row of
Figure 7 shows scatter plots of these two quantities, col-
ored by stringency at the time of the fifth death denoted
by t0 (left panel) and the time, measured from t0, it took
a country to implement at least two social distancing
measures corresponding to an OxCGRT index of at least
15 (right panel). Note that red corresponds to high strin-
gency and blue to low stringency. As is clear, all countries

have implemented social distancing measures, but there
is no obvious correlation between the exact level of social
distancing and Nmax. The bottom row shows identical
plots except the y-axis now corresponds to the predicted
per-capita death rates (predicted deaths per 1000 people)
instead of the total number of deaths. Once again, there
is no obvious relationship between the OxCGRT index
and predicted per capita death rates.

This suggests that discerning the effects of social policy
on COVID-19 dynamics may be quite subtle, and great
care should be taken when making causal arguments re-
lating policy choices to outcomes. Alternatively, it may
reflect the fact that different regions and countries have
very different reporting standards, making it difficult to
compare variations in social policy and deaths across re-
gions and countries.

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 24, 2020. ; https://doi.org/10.1101/2020.04.21.20073890doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.21.20073890
http://creativecommons.org/licenses/by-nc/4.0/


9

FIG. 6: Comparing independent fits with globally linked IHME predictions. Our predictions (blue, Nmax) and
IHME prediction (orange, Nmax IHME) for the final total number of fatalities in regions and states analyzed by IHME that
had more than 500 fatalities as of April 15. Differences between the two predictions represent the effect of the linkage functions
and prior expectations employed in the IHME forecasting pipeline.

Origin of universal dynamics for disease spreading

As noted above, power-law spreading at early times has
been observed in several large-scale epidemics, including
HIV/AIDS and the 2014 Ebola outbreak [24]. This ini-
tial sub-exponential dynamics implies that the average
number of new infections generated by each infectious
individual begins decreasing even before a significant
percentage of the population has been exposed to the
disease. This surprising behavior is incompatible with
many epidemiological models based on differential equa-
tions (e.g. SIR type models with or without population
structure, compartments, etc.), and also with a variety
of individual-based network models in both homogeneous
and inhomogeneous networks [11, 12, 12, 25, 26] (see [27]
for notable exception). A number of mechanisms have
been proposed to account for this phenomenon, includ-
ing time-varying parameters due to behavioral changes,
and the constraints on network topology imposed by two-
dimensional spatial structure [28].

Mechanisms involving behavioral change are particu-
larly plausible for the data shown here, where all regions
analyzed have implemented some form of social distanc-
ing. Here, we tested an alternative hypothesis: the uni-
versal curves may be due to non-Markovian dynamics
and significant individual-level heterogeneity in the time
it takes an individual to transmit the virus to their neigh-
bors on a social interaction network. Consistent with
this idea, recent evidence suggests that SARS2-COVID19
may exhibit considerable inter-individual heterogeneity
[21–23]. To test this hypothesis, we performed simula-
tions of disease spreading on social networks on scale
free networks where the degree distribution p(k) take the
form p(k) = 1

kγ . Such power-law distributed graphs have
nodes with large degree distributions and have been ar-

gued to be more realistic approximation to real social
interactions [12, 25, 29]. We also performed simulations
on random Erdös-Rényi graphs with different mean de-
gree.

In each network, N0 nodes (usually 5 in our simula-
tion) were initially designated infected. An infected node
infects a susceptible neighbor node at a time Tg after be-
ing infected, where Tg is edge-specific random variable
drawn from a Gamma distribution with mean µG and
standard deviation σG. This procedure is iterated until
no new nodes can be infected (see Materials and Meth-
ods and corresponding Jupyter notebooks on our Github
repository for details). Note that when µG = σG the
Gamma distribution reduces to the exponential distri-
bution and the dynamics is Markovian (i.e. memory-
less). However, if µG 6= σG then the dynamics is Non-
Markovian. Non-Markovian dynamics introduces addi-
tional time-scales into the problem and hence is much
less studied than its Markovian counterpart [12].

Figure 8 shows the cumulative number of infected
nodes as a function of time for simulated graphs with
N = 5, 000 nodes. Simulations were performed for
scale-free networks with γ = 2.5, 3.1 and Erdös-Rényi
random networks with mean degree 〈k〉 = 2, 6, with
both Markovian (µG = σG = 50) and non-Markovian
(µG = 50, σG = 25) dynamics. The non-Markovian dy-
namics produce excellent fits (after the initial stochastic
regime) for γ > 3 and for small 〈k〉, while the fit quality
degrades for Markovian dynamics or for small γ or large
〈k〉. This suggests that non-Markovian dynamics and
variability among individuals in the time they take to
infect neighbors maybe an important feature controlling
disease spreading in these networks.
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FIG. 7: Effects of social distancing and travel restrictions on parameter values. Predicted total number of fatalities
Nmax (absolute and per-capita) versus timescale σ for countries with more than 500 fatalities, with data points colored by
stringency of social distancing plus travel restrictions as measured by OxCGRT [16]. Left: Stringency at the time t0 of the
fifth fatality. Right: Number of days from t0 to the time when the stringency score reached 15. Note that all countries shown
had implemented at least this level of restriction (which requires at least two of the seven policies included in the score) within
a few days of the fifth death.

DISCUSSION

In this paper, we have used timeseries data from the
Johns Hopkins University Coronavirus Resource Center
on the cumulative number of confirmed cases and deaths
due to COVID-19 to build a data-driven model of infec-
tion dynamics under social distancing. We find that the
COVID-19 pandemic in all regions with sufficient data
can be described by a universal curve where the cumula-

tive numbers of both infections and deaths quickly cross
over from exponential growth at early times to a longer
period of power law growth, before eventually slowing. In
agreement with a recent statistical forecasting model by
the IHME, we show that this dynamics is well described
by the cumulative distribution function of the normal
distribution. Surprisingly, we find that the despite the
enormous variation in region/state/country characteris-
tics and social policy, the infection dynamics across all
regions/countries analyzed can be characterized by two
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FIG. 8: Scale-free and Erdös-Rényi random networks can reproduce observed dynamics. Simulations of virus
spreading on scale-free and Erdös-Rényi random networks with 5,000 nodes were performed as described in the main text and
methods. Scale-free networks were sampled with degree distribution p(k) ∝ 1/kγ , while Erdös-Rényi networks were sampled
with mean degree 〈k〉, shown in each panel title. The time required for a node to infect its neighbor is sampled from a Gamma
distribution with mean µG = 50. Non-Markovian dynamics were generated by choosing standard deviation σG = µG/2 = 25,
while Markovian dynamics were generated by choosing σG = µG = 50 (because the Gamma distribution reduces to the
exponential distribution when µG = σG). Left column is log-linear plot while right is log-log. Black line is a straight line to
guide the eye. Orange line is fit to the cumulative normal given in Eq. (1). The non-Markovian dynamics produce excellent
fits (after the initial stochastic regime) for γ > 3 and for small 〈k〉, while the fit quality degrades for Markovian dynamics or
for smaller γ or large 〈k〉.

quantities: the predicted number of deaths/confirmed
cases in a region Nmax and a scale σ that sets the natu-
ral timescale of infection in a region. Rescaling time and
number of deaths/confirmed cases by these two quanti-
ties resulted in a remarkable data collapse of infection
dynamics across regions, providing strong evidence for
our claim of universal dynamics under current social dis-
tancing policies.

Our analysis also suggests that, for countries and re-

gions that have crossed the 50 death threshold, the pre-
dictive power of any statistical model based on tracking
deaths or cases is likely to be extremely limited until a
few days before the infection peaks. This suggests that
it is very difficult to make predictions before curves start
flattening. However, after the infection peaks, the uncer-
tainty drops dramatically. This suggests that while it is
very hard to make predictions early on, at later times it
is possible to predict both the severity and duration of
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the infections with much more confidence. This uncer-
tainty is present even though social policies may not be
changing much.

We have used our statistical model to make forecasts
for regions, states, and countries where we have enough
data. Importantly, our forecasts assume that there will
be no dramatic shifts in social distancing policies. While
we use the same fitting function as the IHME, our fitting
procedures have crucial differences in the assumptions
they make. Crucially, the IHME fitting procedure makes
specific assumptions about the effects of social distanc-
ing and places strong priors on fitting parameters. In
contrast, our model is agnostic to any social distancing
procedures or population characteristics and fits each re-
gion and country independently. Nonetheless, we are able
to obtain very good fits to the data.

While many of the predictions between the two models
show good agreement, there are some prominent dispari-
ties. For example using data up to April 15th for the US
state of Massachussets, the IHME model predicts that
there will be more than 8,200 deaths (with confidence
intervals between 1,680 and 25,347) and the infection
will peak on May 5th. In contrast, our model predicts
1,993 deaths (with confidence intervals between 1,302 and
5,366), with a peak time of April 14th. This likely reflects
the fact that the IHME model imposes a large penalty
on Massachusetts for its somewhat less stringent social
distancing policies. A similar explanation likely holds for
the case of Florida. It will be interesting to compare and
contrast these two distinct approaches to fitting to bet-
ter understand how to best forecast COVID-19 disease
dynamics assuming that social policies continue as is.

We also provided a preliminary exploration of how so-
cial distancing policies affect the parameters of the uni-
versal dynamics. To do so, we made use of the country-
specific social stringency index compiled by Oxford
COVID-19 Government Response Tracker [16]. While
there were some anecdotal features in the per-capita fa-
talities of the most lax and most stringent countries,
much more work needs to be done to adequately under-
stand how different stringencies of social distancing affect
disease spreading dynamics. One important caveat of our
analysis of the effects of social distancing is that our sta-
tistical modeling approach is geared towards countries
with relatively large death totals. Our model has lit-
tle to say about countries like South Korea (about 230
deaths on April 15th) that have used extensive testing
and social distancing to successfully contain the COVID-
19 pandemic. Much more work will have to be done to
understand this in greater detail.

We emphasize that our statistical model is neither ca-
pable of, nor designed to, understand what will happen
if policies change substantially. All of the countries we
have analyzed have adopted significant social distancing
protocols. Since we do not explicitly incorporate the ef-
fects of policy in our fits, we have no way of asking about

what will happen if these policies change significantly.
Nonetheless, there seem to be some general lessons to be
learned. First, despite all the variation across regions and
countries, cases and deaths seem to quickly cross over
from exponential to power law growth. Similar behav-
ior was observed in other epidemics including HIV/AIDS
and the 2014 Ebola outbreak [24, 28]. This suggests that
it is useful to plot all data in both log-linear and log-
log scales. Second, it cautions against making extrapo-
lations far into the future based on exponential growth,
since power law growth seems to be quite consistent and
generic.

Finally, to better understand the origin of these dy-
namics, we performed simulations of disease spreading
on social interaction networks. We focused on dynam-
ics where the time it takes an individual to infect their
neighbors follows a non-Markovian waiting time distri-
bution. Furthermore, we assumed that individuals could
have significant heterogeneity in their infection times.
With these assumptions, we were able to reproduce the
universal dynamics observed in real COVID-19 data us-
ing our simulations. While much more work needs to
be done to understand the origin of this universal dy-
namics, these simulations suggest that the combination
of non-Markovian dynamics and significant heterogene-
ity among individual transmission times may be crucial
factors governing disease spreading dynamics.

Practical implications and lessons for policy

We conclude by discussing some practical implications
and lessons from our work.

• Slowing down in the rate of new
cases/deaths in the early weeks may
not indicate progress. We found that are after
a short period of exponential growth, the number
of confirmed cases and deaths quickly transitioned
to power law growth (about 10 days after the fifth
confirmed death). We observed this basic phenom-
ena in regions with extremely different population
characteristics and social policies. Since power law
growth is much slower than exponential growth,
this serves as a strong caution against viewing a
slowing down in the increase of deaths/confirmed
cases in the first few weeks as progress in slowing
down COVID-19 spread or indicating the success
of any particular policy measures or actions. This
is consistent with observations in several other
large-scale epidemics, including HIV/AIDS and
the 2014 Ebola outbreak [24].

• Plot deaths/confirmed cases on log-log plot
rather than log-linear plots. Since infection dy-
namics quickly transition over to power law-like dy-
namics after two weeks, to assess whether the num-
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ber of cases/deaths is flattening it is better to plot
data on a log-log scale (e.g. log deaths vs log time).
In such plots, the number of deaths/confirmed
cases will fall on a straight line whose slope indi-
cates the power-law exponent.

• Flattening should be assessed by deviation
from straight lines on log-log plots. The end
of the power-law growth regime and a slow-down in
new cases is indicated by deviations from a straight
line on log-log plots. This is likely to be a much bet-
ter indication of when infections have peaked than
other heuristics based on comparing to exponential
growth (at least if social policies are fairly consis-
tent).

• Accurately predicting the expected num-
ber of deaths or infection duration is very
difficult until a few days before the peak.
In contrast, after infections peak, the uncertainty
drops quickly allowing for much better estimates
of infection duration and predicted number of
deaths/confirmed cases. Both these facts should
be considered when using forecasts to implement
social policies such as the end of social distancing.

• Standard epidemiological models based on
measuring R0 may be missing crucial aspects
of disease spreading. Classical disease models
based on differential equations often characterize
disease dynamics using a single parameter R0, the
average number of new infections from an infected
individual. However, the dynamics produced by
such models seems to differ significantly from the
universal COVID-19 dynamics that we observe.

• Projections about future outbreaks based on
exponential growth may be inaccurate. One
consistent trend observed in our data is that the ex-
ponential growth phase quickly gives rise to power
law growth. This seems to be true even for coun-
tries like Sweden whose social distancing efforts,
though put into place early in the epidemic progres-
sion, were relatively mild (canceling public events
and carrying out a public information campaign).
If this trend holds true during future outbreaks
after social distancing policies are weakened (e.g.
relaxed to those of Sweden), then extrapolations
based on measuring R0 and assuming exponential
growth are likely to severely overestimate the num-
ber of deaths/infections.

MATERIALS AND METHODS

Data acquisition and preprocessing

We obtained global and US timeseries of fatalities
and confirmed cases from the Johns Hopkins CSSE
COVID-19 Github repository, https://github.com/

CSSEGISandData/COVID-19. For each region (coun-
try/province or US state), we estimated the initial times
t0 of the fatality and confirmed cases curves to be the
first day the cumulative number (deaths or cases, respec-
tively), exceeds 5. The time t0 is only used for construct-
ing the time axis of the log-log plots and for estimating
the time interval th − t0 in Figure 5.

For fitting, prediction and uncertainty estimation, we
discarded fatality data for times before 50 cumulative fa-
talities were reached, and confirmed cases data for times
before 500 cumulative cases. This allowed us to focus
on the universal behavior at later times, without the in-
fluence of the stochastic effects that dominate the very
early phase of the infection. We obtained fits and confi-
dence intervals for regions with at least six data points
remaining after this truncation.

IHME predictions were downloaded from http://

www.healthdata.org/covid/data-downloads on April
16, 2020. Data from Oxford COVID-19 Government
Response Tracker index was downloaded from https:

//www.bsg.ox.ac.uk/research/research-projects/

coronavirus-government-response-tracker [16].

Model fitting and uncertainty estimation

As stated in the main text, we took the predicted cu-
mulative number N̂(t) of fatalities (and cases for the sup-
plementary figures) to follow the functional form

N̂(t) = Nmax

[
1

2
+ erf

(
t− th√

2σ

)]
= NmaxΦ

(
t− th
σ

)
(3)

where

erf(t) =
1√
π

∫ t

0

e−x
2

dx (4)

(5)

is the Gaussian error function and

Φ(t) =
1√
2π

∫ t

−∞
e−x

2/2 dx (6)

is the cumulative normal distribution. This model has
three fit parameters: the half-max time th, the width σ,
and the final cumulative total Nmax. We performed sepa-
rate fits for each geographical region in the JH database,
allowing all three parameters to vary independently from
region to region.
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Error model and maximum likelihood estimation

To obtain a maximum-likelihood estimate for these
three parameters and corresponding confidence intervals,
we used a simple multiplicative noise model

N(t) = N̂(t)eξ(t) (7)

where ξ(t) is Gaussian white noise with standard devia-
tion σξ. The probability of observing a set of cumulative
counts Ni = N(ti) at times ti (i = 1, 2 . . .M), given a
parameter set θ = (th, Nmax, σ) under this model is

p(Ni|θ) ∝ exp

(
− 1

2σ2
ξ

M∑
i=1

[logNi − log N̂i(θ)]
2

)
(8)

where N̂i(θ) is the prediction at time ti using the param-
eter set θ. Now by Bayes’ rule, the probability that θ is
the true set of parameters, given the observed data, is

p(θ|Ni) ∝ p(Ni|θ)p(θ) (9)

where p(θ) represents our prior expectations for the pa-
rameter values. In this analysis, we used a uniform prior,
so p(θ) is a constant. The “best-fit” parameter set θ̂ is
defined as the one that maximizes the posterior proba-
bility p(θ|Ni) for the given data Ni. For uniform priors,
this is the same as Maximum Likelihood.

We calculated θ̂ by minimizing the cost function

C(θ) =
1

2

M∑
i=1

[logNi − log N̂i(θ)]
2 (10)

over θ = (th, logNmax, σ) using the Nelder-Mead method
as implemented in the Python package SciPy [30], where
N̂i = N̂(ti) is given by equation (3) above.

Initial conditions for optimization

Due to the highly nonlinear nature of this fit, it impor-
tant to supply the optimizer with good initial conditions.
We obtain an initial estimate for th and σ using the math-
ematical relationship between the mean and variance of a
truncated normal distribution with the full distribution.

First, we compute the daily number of new fatal-
ities/cases n(t) = dN/dt. If the cumulative num-
ber N is a cumulative normal, the distribution n(t) of
death/infection times is normal. If the epidemic has not
yet concluded, however, the distribution is truncated at
the latest observation time tf . One can show that the
mean 〈t〉 and variance var(t) of the death/infection times
before tf are related to the mean th and variance σ2 of

FIG. 9: Uncertainty estimation. Left: Contours of the
Gaussian approximation to p(θ|Ni), after marginalizing over
th. The values of σ and Nmax are highly correlated, such
that the fit is effectively one-dimensional. Contour lines are
inverse powers of 10 (10−1, 10−2, . . . , 10−9) times the height

of the peak p(θ̂|Ni). Right: Probability p(σ|Ni) obtained by
sweeping σ and obtaining the best-fit values of th and Nmax at
each value of σ. Shaded area contains 95% of the probability,
and is bounded by the upper and lower confidence bounds
on σ. Both panels are generated using Italy fatality data,
including only data up to 15 days before estimated peak (i.e,
up to March 12, first column in Fig. 4), so that uncertainty
is still large.

the full distribution by [31]:

〈t〉 = −σc
(
− tf − th

σ

)
e−

(tf−th)2

2σ2 + th (11)

var(t) = σ2c

(
− tf − th

σ

){√
π

2

[
1

+
tf − th
|tf − th|

C3

((
tf − th
σ

)2
)]

− c
(
− tf − th

σ

)
e−

(tf−th)2

2σ2

}
(12)

where

c(t) =
1√

2π[1− Φ(t)]
(13)

C3(t) =

∫ ∞
t2

u1/2e−u/2

23/2Γ(3/2)
du (14)
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and Φ(t) is the cumulative distribution of the unit nor-
mal.

For each region, we obtained initial estimates of
th and σ by solving these equations, using the cur-
rent sample mean 〈t〉 and variance var(t) of the fatal-
ity/infection times. We then estimated Nmax as Nmax =
N(tf )/Φ((tf − th)/σ).

These estimates were used as initial conditions for our
non-linear solver.

Estimation of confidence bounds

To obtain confidence bounds, we estimated σξ using
the fact that the average cost 〈C(θ)〉 = M

2 σ
2
ξ under the

noise model given in Eq. (8). We thus approximated

σ2
ξ ≈

2

M
C(θ̂). (15)

A Taylor expansion of p(θ|Ni) about θ̂ yields a Gaussian
distribution

p(θ|Ni) ∝ exp

(
−C(θ)

σ2
ξ

)
(16)

≈ exp

[
− 1

σ2
ξ

(
C(θ̂)

+
1

2

3∑
i=1

3∑
j=1

∂2C

∂θi∂θj
(θi − θ̂i)(θj − θ̂j)

)]
, (17)

with covariance matrix equal to the matrix inverse of the

Hessian ∂2C
∂θi∂θj

. The spectrum of this covariance matrix

exhibits a “sloppy mode” for most of the regions analyzed
when uncertainties are large (in the exponential or power
law regime), with one eigenvector at least an order of
magnitude larger than the other two. This means that
the model uncertainty is effectively one-dimensional, and
we can estimate the uncertainties by varying just one
parameter, while fixing the other two by minimizing the
cost C at each value of the varied parameter. We chose
to vary σ, and thus obtained a univariate probability
distribution

p(σ|Ni) ∝ e−C(σ)/σ2
ξ (18)

where C(σ) is the minimal value of C at the given value
of σ. By evaluating this function over a large range of
σ values, we normalize the distribution and compute the
value C95 for which 95 percent of the probability has
C ≤ C95. The upper and lower confidence bounds for σ
are the boundaries of the region satisfying C(σ) ≤ C95,
and the other two parameters are found by minimizing
C(θ) at each fixed value of σ, as described above.

Simulations of disease spreading on social
interaction with heterogeneous waiting times

We briefly summarize our simulation procedure. We
simulated a generalized SIR model on a social interac-
tion network G with both Markovian and non-Markovian
waiting times for infection. Initially, N0 nodes (usually
5 in our simulation) are designated infected. An infected
node infects a susceptible neighbor node at a time Tg af-
ter being infected, where Tg is an edge-specific random
variable chosen from the distribution governing genera-
tion times for infections.

This procedure is iterated over multiple generations
until no new nodes can be infected (i.e. all the nodes
in the connected components of infected nodes are also
infected). In our simulation, once a node is infected it
cannot be reinfected either because the node joins the
recovered population and is no longer susceptible or be-
cause the node dies. Our simulation makes no distinc-
tion between these possibilities and simply counts cumu-
lative number of infected nodes as a function of time. We
choose Tg to be a Gamma distributed random variable
with mean µG and standard deviation σG. This assures
that Tg > 0. This differs from most simulations where
generation times are assumed to be memoryless and fol-
low an exponential distribution. Memoryless dynamics
can also be implemented in this framework by choosing
σG = µG, since this parameter choice makes the Gamma
distribution identical to the exponential distribution.

To make the plots in the text, we generated single in-
stances of social interaction graphs G with N nodes us-
ing the NetworkX python package [32]. Typically, in our
simulations we chose N = 5, 000. We then ran the infec-
tion simulations as described above. We fit the cumula-
tive number of infected nodes as a function of time using
the same procedure as was used for the data (described
above).

In this paper, we focused primarily on scale-free and
Erdös-Rényi random networks generated using the Net-
workX package. These networks are each characterized
by a single parameter: the exponent γ and the mean
degree 〈k〉, respectively.

All code is available on our Github project page https:
//github.com/Emergent-Behaviors-in-Biology/

covid19.
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FIG. 10: As Fig. 1, but with cumulative case data instead of fatality data.
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FIG. 11: As Fig. 2, but with cumulative case data instead of fatality data.

FIG. 12: As Fig. 3, but with cumulative case data instead of fatality data.
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FIG. 13: As Fig. 5, but with cumulative case data instead of fatality data.

FIG. 14: As Fig. 7, but with cumulative case data instead of fatality data. All countries with more than 5,000 cumulative cases
as of April 15 are shown, with the exception of Japan and Peru. For these two countries, the case data was still compatible
with continued exponential growth on April 15, and no estimate of Nmax could be made. The error bar at the far right of the
plot belongs to Denmark, whose best-fit value of σ = 34 lies outside the axis limits.
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