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ABSTRACT 

 

Hospital enterprises are currently faced with anticipating the spread of COVID-19 and 

the effects it will have on visits, admissions, bed needs, and crucial supplies. While many studies 

have focused on understanding the basic epidemiology of the disease, few open source tools 

have been made available to aid hospitals in their planning. We developed a web-based 

application (available at: http://covid19forecast.rush.edu/) for US states and territories that 

allows users to choose from a suite of models already employed in characterizing the spread of 

COVID-19. Users can obtain forecasts for hospital visits and admissions as well as anticipated 

needs for ICU and non-ICU beds, ventilators, and personal protective equipment supplies. Users 

can also customize a large set of inputs, view the variability in forecasts over time, and download 

forecast data. We describe our web application and its models in detail and provide 

recommendations and caveats for its use. Our application is primarily designed for hospital 

leaders, healthcare workers, and government official who may lack specialized knowledge in 

epidemiology and modeling. However, specialists can also use our open source code as a 

platform for modification and deeper study. As the dynamics of COVID-19 change, our 

application will also change to meet emerging needs of the healthcare community. 

 
 
 
 
 
 
 
 

 
 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.20073031doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.20.20073031
http://creativecommons.org/licenses/by/4.0/


INTRODUCTION 
 

Coronavirus disease 2019 (COVID-19) was declared a global pandemic by the World 

Health Organization on March 11th 2020. By then, confirmed COVID-19 cases were reported 

among 109 countries and exceeded 128,000 worldwide (data source: Johns Hopkins University 

Center for Systems Science and Engineering). That number increased more than 10-fold in less 

than one month. As COVID-19 spreads within and among nations, healthcare enterprises grapple 

with the challenges of preparing for the growing number of COVID-19 patients and with 

appropriating the resources needed to treat patients while protecting healthcare professionals. In 

the United States (US), policy makers and hospital leaders prognosticate on how to best allocate 

resources in the face of an anticipated surge in demand that may last for several months to come 

(Bukhari and Jameel, 2020). However, even as COVID-19 threatens to overwhelm healthcare 

systems, the predictive analytics tools that would otherwise allow hospitals to make informed 

decisions are lagging behind the increasing number of studies aimed at characterizing the basic 

epidemiology of COVID-19. 

To meet the pressing needs of hospital enterprises we developed an interactive, open-

source web-based application to provide state- and hospital-specific forecasts of COVID-19 

patients and related supplies. Our application is available on the http://covid19forecast.rush.edu/ 

website and allows users to employ a suite of models already used in the prediction of COVID-

19 cases. It then couples these models to granular customizable inputs to produce hospital-level 

forecasts for COVID-19 visits and admits, ICU and non-ICU beds, ventilators, and various 

personal protective equipment (PPE) supply needs. Our efforts are aimed at addressing 

immediate and anticipated healthcare demands, and to allow informed decision-making by 

government officials and healthcare professionals who may lack specialized expertise in 

epidemiology, modeling, and data science. By making our aggregated data and source code 

freely available, and by offering additional source code outside the application itself, 

epidemiologists, modelers, and data scientists may also find our application useful as is, or as a 

modifiable resource for deeper analysis. 

In this paper, we describe our application in detail, focusing on the data and models it 

uses, the inputs it allows users to enter, and the graphs, tables, and downloadable data it 

provides. We also provide guidance on the use of this application, the interpretation of its 
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outputs, and the caveats of our approach. Finally, we discuss the value of our application to 

meeting the needs of the healthcare community, its potential as a tool for generating novel 

insights, and modifications to come. In addition to our aim of empowering administrators, 

physicians, and governmental agencies to make informed decisions, we sought to enable other 

predictive healthcare analytics teams and researchers. Specifically, the modification and 

deployment of our application’s source code requires a minimal set of widely popular open 

source software (e.g., python language, Jupyter notebook) and little-to-no experience in web 

development. 

 

 

FUNCTIONALITY AND USE 

 

Overview – Our open-source application allows users 1) to aggregate data from a popular open-

source repository of COVID-19 data, 2) to track and forecast the progression of COVID-19 cases 

across US states using a suite of well-known models, 3) customize a large set of input parameters 

to provide state- and hospital-specific forecasts for numbers of hospital visits, admitted patients, 

ICU needs, and personal protective equipment (PPE) supply needs. The application also allows 

users to adjust the length of forecasts, to adjust expected time lags in patient visits, to adjust the 

average length of stay (LOS) for ICU and non-ICU patients, to examine forecasts from previous 

days, and to download forecast data for deeper analysis. 

 

Data – Our application accesses COVID-19 data from the Johns Hopkins University Center for 

Systems Science and Engineering (JHU CSSE) (2). Specifically, our application downloads, 

aggregates, and stores daily reports from the JHU CSSE public GitHub repository 

(https://github.com/CSSEGISandData/COVID-19). These daily reports contain numbers of 

confirmed cases, and numbers of reported deaths and recoveries for counties, states, provinces, 

and nations reported since January 22nd, 2020. For select models, our application uses population 

sizes for US states and territories based on data from the US Census Bureau (2010 – 2019). 

Additionally, our application uses dates of COVID-19 arrival in US states and territories based 

on data available from state and territory governmental agencies (e.g., Departments of Health).  
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Modeling COVID-19 cases – Our application allows users to choose from five simplistic models 

of growth that have been used in characterizing the spread of COVID-19 as well as one popular 

epidemiological model that has been frequently used in the study of COVID-19 (Fig 1). 

Altogether, the following suite of models allows users the ability to compare and contrast 

forecasts resulting from different forms of growth and varying complexity of disease dynamics 

and social response (e.g., testing lags, social distancing). 

 

Exponential growth – Initial stages of growth often appear limited only by the inherent growth 

rate (r) of the population or disease. In this way, exponential growth proceeds multiplicatively 

according to a simple functional form, Nt = N0ert, where N0 is the initial infected population size, 

t is the amount of passed, and Nt is the infected population size at t. The exponential model has 

been widely used to characterize the spread of COVID-19 the during initial weeks of infection 

(e.g., Graselli, Presenti, and Cecconi 2020, Lui et al. 2020, Remuzzi and Remuzzi, 2020; Fig 2). 

Because it assumes that r is constant, the exponential model has a simple log-linear 

transformation, log(Nt) = log(N0) + t · r, that allows log-transformed numbers of cases to be 

regressed on t (Sit, Poulin-Costello, and Bergerud 1994). Our application uses this exponential 

regression to obtain predictions for the expected number of confirmed COVID-19 cases (N). This 

model has explained upwards of 99% of variation in the initial days or weeks of COVID-19 

spread within states; however, it quickly begins to fail because it only allows for continued rapid 

growth (Fig 2). 

 

Quadratic growth – Initial stages of growth may be more rapid than that expected from the 

exponential model while the latter monotonic increase in N can proceed less rapidly than 

predicted by the exponential. In these cases, growth may be quadratic, i.e., characterized by a 

constant change in growth rate. Early COVID-19 studies have implicated quadratic growth in 

spread of COVID-19 (e.g., Brandenburg 2020; Fang, Ne, and Penny 2020) and the quadratic 

model, to date, has continued to perform well (Fig 2). The quadratic function, f(x) = x2 + x + c, is 

a 2nd order polynomial that can be applied to population growth as Nt = β1t2 + β2t + N0. Our 

application uses numerical optimization of the fitted parameters, β1 and β2, to find the best fit 

quadratic function for a given time series and hence, to predict values for (N). This model has, 

thus far, improved as COVID-19 spreads and has explained upwards of 99% of variation in 
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COVID-19 cases among states (Fig 2). However, like the exponential model, the quadratic 

model only allows for continued growth, i.e., no saturation and decline. Consequently, the 

quadratic model must eventually fail as COVID-19 cases saturate. 

 

Logistic growth – Exponential growth within a population cannot continue ad infinitum. Instead, 

growth must slow as an upper limit is approached or as natural limitations to disease spread (e.g., 

immunity, contact among hosts) are encountered. The logistic model captures this slowing and 

eventual saturation, resulting in a sigmoidal or s-shaped growth curve (Maynard-Smith 1978, 

Bacaër 2011, Fig 1). In addition to exponential and quadratic growth, early COVID-19 studies 

have implicated logistic growth in the spread of the disease (Roosa et al. 2020, Wu et al. 2020). 

Like the quadratic model, the logistic model has also continued to perform well as states have 

progressed in COVID-19 infection (Fig 2). The logistic model takes a relatively simple 

functional form, 𝑁! =
"

#$%!"#
, where α is the upper limit of N and r is the intrinsic rate of 

increase. Our application uses numerical optimization of α and r to find the best fit logistic 

function and hence, predicted values for N. This model has, to date, improved as COVID-19 

spreads and has explained upwards of 99% of variation in COVID-19 cases among states (Fig 2). 

While this model allows for saturation, it does not allow for decrease. 

 

Cubic growth – Despite their usefulness during the early-to-mid stages of COVID-19 spread, 

both the exponential and quadratic models only allow for monotonic and rapid increase (Fig 1). 

In contrast, a cubic function allows growth to accelerate until an inflection is reached, where 

after, the function begins to saturate (Fig 1). The cubic function is a 3rd order polynomial that can 

be applied to population growth as Nt = β1t3 + β2t2 + β3t + N0. Our application uses numerical 

optimization of the fitted coefficients, β1, β2, and β3, to find the best fit cubic function for a given 

time series and hence, to predict values for (N). Depending on the values of the estimated 

coefficients, the cubic function can saturate and then decrease (Fig 1). This model has, thus far, 

explained upwards of 99% of variation in COVID-19 cases among states and continues to 

improve as COVID-19 spreads (Fig 2). 

 

Gaussian growth – The Gaussian (i.e., normal) distribution can provide a relatively simple and 

close approximation to complex epidemiological models (Buckingham-Jeffery et al. 2018): 
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This symmetrical curve has two parameters, mean = μ, standard deviation = σ, and belongs to the 

family of exponential distributions (Fig 1). When used to model spread of disease, Gaussian 

curves are symmetrical around a climax day with the change in the rate of growth determining 

the standard deviation about the curve. Gaussian models have previously been successful in 

approximating the spread of COVID-19 in Germany (Schlickeiser and Schlickeiser 2020). Our 

application uses numerical optimization of μ and σ to find the best fit Gaussian function and 

hence, predicted values for N. This model has, thus far, explained >99% of variation in COVID-

19 cases among states and continues to improve as COVID-19 spreads (Fig 2). 

 

SEIR-SD – To date, COVID-19 studies have used a variety of epidemiological models to 

characterize the spread of the disease within populations. The modeling in several of these 

studies has been based on refinements to the classic SEIR model of Hethcote and Tudor (1980) 

(see Boldog et al. 2020, Peng et al. 2020, Lui et al. 2020, Wang et al. 2020). In this model, a 

contagious disease drives changes in the fraction of susceptible persons (S), the fraction of 

persons exposed but not yet exhibiting infection (E), the fraction of infectious persons (I), and 

the fraction of persons recovered (R), where S + E + I + R = 1. These SEIR subpopulations are 

modeled as compartments in the following set of ordinary differential equations: 

 
𝑑𝑆
𝑑𝑡 = 	𝛽𝑆𝐼	,

𝑑𝐸
𝑑𝑡 = 𝛽𝑆𝐼 − 𝛼𝐸 

 
𝑑𝐼
𝑑𝑡 = 𝛼𝐸 − 𝛾𝐼	,

𝑑𝑅
𝑑𝑡 = 𝛾𝐼 

 

In these equations, α is the inverse of the incubation period, and γ is the inverse of the average 

infectious period, and β is the average number of contacts of infected persons with susceptible 

persons per unit time. Our application imputes the initial value of β from a well-known 
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simplifying relationship between γ and the basic reproductive number (R0), i.e., β = γ R0 

(Ridenhour et al. 2018, Rocklöv et al. 2020, Rãdulescu and Cavanagh 2020, Lin et al. 2020). 

We allowed β to decrease in proportion to I. We assumed that people will, on average, 

reduce their contact with others when the populace is aware that an increasing percent of their 

population is infected. This approach allows an inherent degree of social distancing to emerge as 

a frequency-dependent phenomenon. We also simulated an explicit effect of social distancing (λ) 

to capture the overall strength of response to public health policies. These effects were included 

as time-iterative modifications to β: 

𝛽!$# =
𝛽!

𝜆𝐼 + 1 

 

This function allows β to remain unchanged when either I or λ equal 0. When λ equals 1, the 

daily change in β is governed by the implicit frequency-dependent effect of I. Importantly, 

simple algebraic rearrangement shows that the product of social distancing (λ) and the fraction 

infected (I) determines the percent daily change in contact rate (β): 

 

𝜆𝐼 + 1 =
𝛽!
𝛽!$#

 

 

𝜆 ∙ 100 ∙ 𝐼 = 100 ∙
𝛽! − 𝛽!$#
𝛽!$#

 

 

As a result, λ determines the daily proportional change in the contact rate per infected fraction of 

the total population: 

𝜆 =
𝛽! − 𝛽!$#
𝐼𝛽!$#

 

 

We also modified the classic SEIR model to account for initial time lags in COVID-19 

testing. Specifically, and particularly in the US, widespread testing for COVID-19 may have 

artificially dampened the apparent number of positive cases within the first month of the first 

reported infection. We accounted for this effect by modifying the apparent size of I while 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.20073031doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.20.20073031
http://creativecommons.org/licenses/by/4.0/


allowing the actual size of I to grow according to the SEIR-SD dynamic. This time-iterative 

modification took the following logistic functional form: 

 

𝐼!
#

#$%!%#&'
 , 

 

where τ and ε are fitted parameters. This equation models testing as low-to-nonexistent during 

the initial weeks of outbreak, and then accelerates afterwards. 

To date, the SEIR-SD model has generally performed as well as or better than the 

exponential, quadratic, logistic, cubic, and gaussian models (Fig 2). As COVID-19 cases saturate 

and begin to decline, we expect the SEIR-SD model to produce more realistic downward 

trajectories than the other models. Our application performs a pseudo-optimization on the SEIR-

SD model parameters and a likely date of initial infection, as opposed to using the first reported 

occurrence. Our implementation of the SEIR-SD model is based on an unbiased search of 

multivariate parameter space within ranges of parameter values derived from population sizes for 

US states and territories and the increasing corpus of COVID-19 literature (Table 1). Our 

application performs 50,000 iterations and chooses the set of parameters that maximize the 

explained variation in observed data. This implementation avoids the computational challenges 

of applying numerical optimizers to complex simulation models and avoids the problems that 

these optimizers can have in becoming trapped in local minima. 

 

Forecasting COVID-19 cases – Our application allows users to select one of the above-

mentioned models and a location from a list of US states and territories (Fig 3). It then plots the 

reported number of COVID-19 cases along with model predictions (up to present day) and 

forecasts (up to 60 days ahead) (Fig 3). Users can also view how the predictions and forecasts 

have changed over the last 10 days (Fig 3). 

 

Forecasting hospital visits and admits via time lags – Our application allows users to enter the 

expected percent of state-wide COVID-19 cases that visit their hospital as well as the expected 

percent of those admitted. Going further, we accounted for the tendency of infected persons to 

not seek immediate medical attention. We modeled these time lags as Poisson distributed random 

variables, whereby portions of newly infected patients may wait 1, 2, 3, …, days to visit the 
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hospital. The Poisson distribution has ideal properties for modeling this scenario. Specifically, it 

is a discrete probability distribution (x-values correspond to days) with a simplistic formulation 

(e.g., the mean equals the variance), where the only parameter needed to obtain the probability 

mass function (i.e., mean), directly corresponds to the expected average time lag. Users can view 

the change in the forecasted patient census by adjusting the expected time lag (Fig 4). 

 

Forecasting hospital bed and ICU needs via daily carry-over – Our application allows users to 

forecast the number of hospital beds, ICU beds, and ventilators needed. The user begins by 

entering expected values for the percent of COVID-19 patients admitted to critical care, the 

expected average length of stay (LOS) for ICU and non-ICU patients, as well as the expected 

percent of ICU patients on ventilators. The application then uses these inputs to calculate the 

fraction of newly admitted ICU, non-ICU, and ICU-ventilator patients expected each day. 

Because bed needs must also reflect the numbers of beds needed for new admissions, those 

opened from discharges, and those currently occupied, our application models the daily carry-

over of the patient census using expected LOS and the cumulative distribution function (cdf) of 

the binomial distribution. 

The binomial distribution is a discrete probability distribution that models binary 

outcomes (e.g., patients either leave the hospital or stay for an additional day) and requires only 

two parameters (p, n). We set the value of p to 0.5 and set the value of n to be twice the average 

LOS. Doing so produces a symmetrical probability mass function (pmf), with a mean equal to 

the average LOS. This pmf is then converted to a cdf, which produces a first approximation for 

the fraction of 1-day, 2-day, …, etc., patients that are expected to be discharged on the present 

day. The fraction of patients not expected to be discharged are then carried over to the following 

day, e.g., a 1st-day patient becomes a 2nd-day patient and thereby has a different probability of 

leaving the hospital on the current day. This process is then iterated from the date of the first 

COVID-19 admit to the latest day in the user-requested forecast window (Fig 5). 

 

Forecasting supply needs – Our application allows users to forecast personal protective 

equipment (PPE) needs in accordance with the forecasted census of COVID-19 ICU, non-ICU, 

and ICU on ventilator patients. Users can enter expected per patient per day values for surgical 

gloves, nitrile exam gloves, vinyl exam gloves, anti-fog procedural face masks, fluid resistant 
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procedural face masks, extra-large yellow isolation gowns, anti-fog (with film) surgical face 

masks, anti-fog full face shields, and particulate filter respirators. These values entered are then 

multiplied by the respective patient type across the forecasted patient census to produce 

graphical and tabulated results (Fig 6). 

 

Provisioning of forecasted data – Our application allows users to download forecast data in .csv 

format from each displayed table. This includes a table of forecasted cases, visits, and admits, a 

table of ICU and non-ICU bed needs, and a table of PPE supply needs. These downloadable files 

correspond to the model chosen by the user. Importantly, for layout purposes, the application 

does not display rows of data beyond a 14-day forecast. Instead, the user can view data from 

longer forecasts via the downloadable .csv files. 

 

Provisioning of source code – Source code for our application was built using the Python 

language (v3.7.4), Jupyter notebook, and the python-based Voila software which converts 

Jupyter notebooks to dashboard-like applications. All code and associated data are available 

from the public GitHub SupplyDemand repository, found on the Rush Quality Safety and Value 

analytics GitHub organization (https://github.com/Rush-Quality-Analytics/SupplyDemand). The 

repository provides an informative README.md file and the source code includes extensive 

commenting to assist users in their use and potential modification. 

 

DISCUSSION 
 
Meeting immediate needs – Hospitals and healthcare enterprises are endeavoring to make 

appropriate preparations and acquire adequate supplies to meet the challenges of the COVID-19 

pandemic. While many studies have aimed to characterize the basic epidemiology of the disease, 

and many online tools have been developed to visualize its spread, few tools have been 

developed that empower hospitals to make informed decisions about expected visits and admits, 

ICU beds, ventilator, and PPE needs. To this end, our application is already in use by our home 

institution and several hospitals across the country and is available on the 

http://covid19forecast.rush.edu/ website. Consequently, the present work is intended to 1) make 

our application broadly known to the healthcare and scientific communities 2) give healthcare 

providers an in-depth understanding of our application, and 3) to point specialists, non-
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specialists, and in-house predictive analytics teams to a freely available tool that can also serve 

as modifiable platform of analytical source code and aggregated data.  While some regions in the 

United States have started to experience peaks in cases with plateaus and declines, we anticipate 

that until a vaccine is available, episodes of repeated increased cases will be seen, for which 

forecast models will inform operational responses. 

 

Novel insights for applied and basic research – While our intention was not to provide de novo 

models or to provide refined epidemiological parameter estimates, our tool does allow for novel 

insights. First, our SEIR-SD model incorporates two phenomena of global, national, and local 

concern, i.e., social distancing and lags in COVID-19 testing. To our knowledge few extensions 

of the SEIR model have accounted for social distancing in being driven by an emergent social 

response to increased percent infected and as driven by external forces (e.g., public policy). 

Likewise, few if any SEIR models have accounted for the influence of lags in testing on the 

apparent size of the infected population. Second, we envision that applied and basic research 

studies can be conducted using the downloadable data of our application and the freely available 

source code. Specifically, users can investigate any number of simple-to-complex relationships 

using the downloadable forecast data that results from our suite of models and which is offered 

alongside adjustable forecast windows, time-lags, lengths of stay, as well as other customizable 

parameters and aggregated data (population size, date of first reported infection, numbers of 

confirmed COVID-19 cases). 

 

Pending and potential modifications – We are continually improving the functionality and 

performance of our application to meet the predictive analytic needs of our home institution and 

broader healthcare community. In the near future, we will include models to predict the eventual 

decline of the pandemic and potential resurgence as social distancing guidelines and other 

mitigating policies are relaxed. We also look to provide the functionality to 1) examine regions 

outside the US, 2) examine county-level regions within the US, 3) include a greater array of 

supply needs and forecasts for numbers of providers and staff needed, and 4) allow providers to 

begin planning how and when to increase the number of elective surgeries and ambulatory visits. 

In building our open-source application from a small set of freely available and highly popular 
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software tools, we expect that other researchers and healthcare analytics teams could readily 

pursue these and other improvements. 

 

Caveats and limitations – Our web application is versatile and easy to use. However, users 

should consider the following caveats and limitations of modeling. First, our application draws 

from a widely used COVID-19 dataset that may not reflect the true prevalence of COVID-19 

within each US state and territory. While our application allows users to enter several parameters 

(e.g., % of infected visiting one’s hospital), these may change over time. Additionally, length of 

stay for ICU and non-ICU patients likely fluctuates and may not necessarily be binomially 

distributed. Similarly, time lags in hospital visits may not necessarily be Poisson distributed and 

may also fluctuate across time. PPE usage rates may also fluctuate based on changing hospital 

policies and supply shortages. Finally, our application does not account for differences in 

susceptibility to COVID-19 with respect to age nor the influence of comorbid conditions and 

sociodemographic factors. 
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Table 1. Biological parameters for the SEIR-SD model. Our application attempts to optimize the 

following SEIR-SD parameters within ranges of reported values for the average incubation 

period, the average infectious period, and the basic reproductive number. 

 

Parameter Description Reported 
Range References 

Avg. Incubation period 
(latent period) 

Days during which an infected 
individual cannot infect others. 5 – 6 days 

Anderson et al. 2020 
Pederson and Meneghini 2020 

Wang et al. 2020 
Kucharski et al. 2020 

Cao et al. 2020 

Avg. Infectious period Days over which an infected 
person remains infective. 

1.6 – 13 
days 

You et al. 2020 
Maier and Brockmann 2020 

Wang et al. 2020 
Read et al. 2020 

Basic Reproductive 
Number (R0) 

Average number of secondary 
infections generated by a 
primary infection at the onset of 
outbreak 

2.1 – 6.5 

You et al. 2020 
Pederson and Meneghini 2020 
Maier and Brockmann 2020 

Wang et al. 2020 
Lui et al. 2020 

 

 
  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.20073031doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.20.20073031
http://creativecommons.org/licenses/by/4.0/


Figure 1. Our application allows users to choose from six models that have previously been 

employed in the study of COVID-19, the general forms of which are depicted below. While the 

exponential and quadratic (2nd degree polynomial) models only allow for continued growth, the 

logistic allows growth to saturate. The cubic model (3rd degree polynomial), Gaussian, and 

SEIR-SD models allow growth to saturate and decrease. 
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Figure 2. Confidence interval (CI) hulls for the performance of models across US states and 

territories from March 16th to April 15th. The Johns Hopkins University Center for Systems 

Science and Engineering (JH CSSE) data shows most states beginning to report COVID-19 cases 

by Marth 10th and we allowed the models a week of data before fitting them. The x-axis is in 

days since the first reported case, occurring on or after March 10th. Light blue hulls are 90% CI. 

Medium blue hulls are 50%. Dark blue hulls are 10% CI. Performance is measured via a 

modified r-square of observed versus predicted values where the y-intercept is forced through 0 

(sensu Locey and White 2013). The y-axes are scaled to show the greatest resolution for each 

model and are not scaled similarly across models. These results reveal the accuracy of models 

fitted to data and do not pertain to the accuracy of future forecasts. 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.20073031doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.20.20073031
http://creativecommons.org/licenses/by/4.0/


Figure 3. The top pane of the application features the ability to choose a location and one of four 

models for fitting data (black dots) and for making forecasts. The user then clicks a teal button to 

update the application’s plots of fitted predictions (gray-scale lines) and forecasts (colored lines). 

The application allows the user to extend the forecast window to 30 days and view 

logarithmically transformed data. The current image is the result of fitting a logistic model to 

Illinois COVID-19 data and includes a forecast window of 10 days. Forecasts up to four days old 

are displayed to aid users in determining forecast variability across a 5-day span. Values for 

coefficients of determination (r2) pertain to observed versus predicted values, where the y-

intercept is forced through 0 (sensu Locey and White 2013). 
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Figure 4. The second pane of our application allows users to set values for the percent of 

COVID-19 patients in a given state visiting their hospital, the percent admitted, and the percent 

admitted to critical care. Users can also enter the expected length of stay (LOS) for critical 

patients (ICU), non-critical care patient, the percent of ICU patients expected to be on 

ventilators, values for various PPE supply needs, and an expected time lag between when 

patients first experience symptom and when they visit the hospital. The application then plots the 

forecasted numbers of new visits and new admits, and then tabulates the forecasted total cases, 

new cases, new visits, and new admits. See figures 4 and 5 for plots and tables of patient census 

and PPE needs. The application informs the user that forecasted data beyond 14 days is available 

via csv downloads. 
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Figure 5. The third pane our application plots and tabulates the forecasted patient census. Left: 

A graph of forecasted numbers of critical care and non-critical care patients. Right: A table of 

forecasted bed needs for all COVID-19 patients, non-ICU patients, ICU patients, and ICU 

patients on ventilators. The application informs the user that forecasted data beyond 14 days is 

available via csv downloads. 
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Figure 6. The bottom pane of our application plots and tabulates forecasted PPE needs. Left: 

Forecasted PPE needs are plotted to reveal overall expected trends. PPE supplies with similar 

input values become plotted on top of each other. Right: Forecasted PPE are tabulated with color 

coding that corresponds to the figure on the left, to allow easier visual interpretation. The 

application informs the user that forecasted data beyond 14 days is available via csv downloads. 

Users can click the teal button at the bottom to display or refresh downloadable csv files. 
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