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ABSTRACT

Huang et al.1 used their EpiRank algorithm, which emphasizes forward-and-backward commuter flow between homes and
workplaces, to analyze the distribution patterns of two infectious diseases in Taiwan: the 2009-H1N1 influenza virus and
the widespread emergence of the 2000-2008 type 71 enterovirus (EV). As this article was being prepared, the spreading
mechanism of the novel coronavirus disease now designated as COVID-19 had yet to be identified, but according to the
American Centers for Disease Control, its spreading mechanism and patterns are likely more similar to influenza than to
other coronaviruses such as Severe Acute Respiratory Syndrome (SARS-CoV-1) or Middle East Respiratory Syndrome
(MERS-CoV). To consider potential COVID-19 spatial patterns, we applied EpiRank to the 2003 SARS outbreak in north
Taiwan for comparison with H1N1 and EV. SARS was found to be less contagious than H1N1 or EV, but with a significantly
higher fatality rate. The characteristics of these diseases determined their specific spatial spreading patterns, as reflected in
the different effects of forward and backward commuting movement. Our motivation is to highlight these differences and to
illustrate EpiRank spatial patterns for the 2003 SARS outbreak for comparison with EpiRank-determined distributions for the
H1N1 and EV outbreaks. Our results indicate that the daytime parameter (i.e., forward movement effect) range was slightly
higher (0.5-0.55) for the SARS outbreak than for either the influenza (0.4-0.5) or EV (0.3-0.5) outbreaks, suggesting that the
forward-and-backward movements of individuals between residential and core urban areas with concentrated populations
were equally important regarding the spread of SARS. While COVID-19 might resemble either SARS or H1N1 in terms of
spatial spreading, its daytime parameter is likely somewhere in-between, with backward movement being dominant (similar to
H1N1) or with forward and backward movement being equally important (similar to SARS). Building on Huang et al.’s paper, we
present an estimated risk distribution pattern for the Taipei Metropolitan Area for a daytime parameter of 0.55.

Introduction
The virological characteristics of Coronavirus Disease 2019 (COVID-19) have high degrees of similarity with the 2003
Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-1, 79% identity) and 2012 Middle East Respiratory Syndrome
Coronavirus (MERS-CoV, approximately 50% identity)2. However, in mid-February 2020 the COVID-19 spreading mechanism
and spatial epidemiology were both believed to be more similar to influenza and other respiratory infections in terms of
primary transmission method—respiratory droplets3. Infected patients can be asymptomatic or express a broad range (mild to
severe) of COVID-19 symptoms4. Similar to influenza, COVID-19 carriers can transmit the disease whether or not they show
symptoms—a characteristic of special concern to epidemiologists, public health specialists, and government officials5, 6. The
worst-case scenario is that this asymptomatic transmission characteristic can result in an international COVID-19 pandemic that
would be as difficult to control as the 2003 SARS outbreak and prior influenza pandemics7.

Huang et al.1 created the EpiRank algorithm to investigate the spreading of diseases via inter-city commuting networks.
EpiRank integrates the effects of transmission via the forward and backward movements of commuters. Its primary assumption
is that initial carriers move the virus from homes to workplaces (forward), infect other commuters using public transportation as
well as coworkers and susceptible individuals during their daily activities, and then infect others during the return commute and
family members in their homes. EpiRank calculations use a “daytime parameter” to capture the effect of forward and backward
movement, and a “damping factor” to capture diffusion proportions according to commuting network characteristics rather
than random transmission. Their study focused on the 2009 H1N1 (Influenza A) outbreak and the spatial distribution of the
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2000-2008 type 71 enterovirus (EV), both in Taiwan. Their results revealed optimum daytime values between 0.3 (Pearson’s R)
and 0.5 (Spearman’s rho) for flu cases and between 0.4 (Pearson’s R) and 0.5 (Spearman’s rho) for EV cases. Daytime values
below 0.5 were viewed as evidence of a stronger backward movement effect on the spreading of flu and EV cases.

Our motivation for this paper is to expand Huang et al.’s EpiRank analysis1 to the 2003 SARS outbreak in Taipei in order to
offer a reference for other SARS-like diseases. COVID-19 is similar to SARS in terms of virology, and although it may be
more similar to influenza in terms of its spatial spreading mechanism, we believe that providing EpiRank results for SARS, in
addition to the flu and EV cases covered in Huang et al.’s original paper, can support future COVID-19 intervention decisions.

2003 SARS outbreak in Taipei
In our earlier study we used data for the Taipei Metropolitan Area (TMA) to test the sensitivity of the EpiRank daytime
parameter and damping factor when assessing risk distribution associated with commuting flow. Our intention in this paper is
to provide additional insights into spatial pattern differences among the 2003 SARS outbreak, 2009 H1N1 outbreak, and EV
cases recorded between 2000 and 2008.

A total of 347 SARS cases were confirmed in Taiwan in 2003, with 81% (282) occurring in three urban centers in the
northern part of the country: Taipei, New Taipei City, and Keelung8. For the present analysis we focused on the 48 townships
located within or surrounding those three centers. In this section we will describe our sensitivity analysis involving the daytime
parameter and damping factor for investigating the effects of morning and evening commutes on the spread of SARS, and then
discuss the effects of spreading via commuting networks as opposed to random infectivity. We will then draw and explain two
SARS/EpiRank distribution maps reflecting optimized parameters.

The sensitivity analysis results shown in Figs. 1a and b respectively present Pearson’s and Spearman correlation data for
the actual distribution of SARS cases and EpiRank-predicted distributions based on different ranges of values for damping
factors (X-axis) and daytime parameters (Y-axis). They reveal significant correlations between the two when the daytime
parameter was set to 0.5 or 0.55 and the damping factor set to 1. As in Huang et al.’s experiments1, we only considered a
uniform probability distribution for the external factor—that is, all nodes had the same probability of coming into contact
with a contagious individual. Accordingly, a damping factor of 1 means that disease transmission was more dependent on
network structure than a uniform distribution. A daytime parameter approaching 0.55 indicates that the effects of both forward
and backward movements were essentially equal in terms of disease diffusion, with forward movement only slightly more
important.

Figure 1. Sensitivity data for daytime (forward and backward movement) and damping factor values (effect of network
topology compared to external factors). (a) Pearson’s R, (b) Spearman’s rho.

The structure of the SARS sensitivity pattern shown in Fig. 1 is the same used by Huang et al.1 for the flu and EV daytime
parameters in Fig. 2—that is, optimized daytime parameters for flu of 0.4-0.5 and for EV of 0.3-0.5. All of these values are at
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or below 0.5, indicating a stronger backward movement effect. Possible explanations for the higher SARS daytime parameter
(>0.5) that we observed in the present study include a higher fatality rate, smaller number of patients, effects of public health
policies, and a slightly lower basic reproduction number (R0). In Taiwan, SARS had a much higher fatality rate than flu (13%9

versus 0.001%10), and therefore attracted greater media and research attention over a shorter time period. The fatality rate
triggered a rapid government response in the form of several policy decisions involving large amounts of resources aimed at
controlling the disease. These policies resulted in a much lower overall number of SARS patients compared to flu patients.

Figure 2. Sensitivity data for daytime (forward and backward movement) and damping factor values (effect of network
topology compared to external factors) with the flu and EV cases. This figure was replicated from Huang et al.1. (a) Pearson’s
R correlation with flu, (b) Spearman’s rho correlation with flu. (c) Pearson’s R correlation with EV, (b) Spearman’s rho
correlation with EV.

R0, defined as the expected number of cases caused by a single infected patient, is used to describe the spreading capabilities
of diseases. The R0 values associated with the H1N1 virus in Taiwan were 1.16 during the first phase and 1.87 during the
second11; the SARS R0 was measured as 1.5412—in other words, the 2009 H1N1 influenza strain was more contagious than
SARS. Patients infected with H1N1 could carry disease pathogens with few or no discernable symptoms, increasing the
potential to infect susceptible individuals—especially coworkers and family members. However, when they showed signs of the
disease, they were more likely to stay at home and treat themselves. During the SARS outbreak, individuals who exhibited
even the faintest symptoms were immediately sent to hospitals for treatment, which mitigated the spreading potential. This
difference explains, at least in part, why the backward movement was more important for influenza than for SARS.

2003-SARS spatial distribution identified by EpiRank

We used head/tail-breaks13 to separate the 48 northern Taiwan townships into four core-levels: I, II, III and non-core. Core
levels associated with the actual SARS and EpiRank-predicted spatial distributions are shown in Fig. 3. SARS cases were
mostly concentrated in 1 core-I township and 5 core-II townships near or just outside of southwest Taipei (Fig 3a). The core-I
township (Wanhua district) had 44 cases (15.6% of all cases in the TMA), and each of the five core-II townships (2 in Taipei,
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3 in New Taipei City) had between 21 and 26 cases (7.4%-9.2%). We then fed distribution data into an optimized EpiRank
with the daytime parameter set to 0.55 and damping factor to 1.0 (Fig. 3b). The EpiRank results identified 5 core-I townships
(5.2%-6.9% of total EpiRank score), 4 core-II townships, and 1 core-III township later identified as the Wanhua district (2.8%).

Figure 3. (a) Actual core-I, core-II, core-III and non-core township locations for the 2003 SARS outbreak. (b) Core-I, core-II,
core-III and non-core townships identified by EpiRank.

Wanhua, the epicenter of the 2003 SARS outbreak in Taiwan14, had approximately 1.5 times more cases than the second
highest township. Looking at the north Taiwan commuting network, neither human activity nor population density levels
in Wanhua were as high as in surrounding EpiRank-identified core-II townships, namely the Daan district of Taipei and the
Banqiao, Sanchong, Zhonghe and Xinzhuang districts of New Taipei City. These five townships are major TMA residential
centers with large numbers of daily commuters to the Taipei core. Accordingly, they were identified as having the highest
SARS infection risks based on results from a commuting network analysis.

Summary
EpiRank was designed to serve as a useful tool for analyzing commuting flows—that is, the daily forward and backward
movements of individuals within regions. Since the COVID-19 spreading mechanism and spatial diffusion process have yet to
be firmly identified, we returned to our earlier analysis of three events involving infective diseases in Taiwan: the 2003 SARS
outbreak, the 2009 H1N1 influenza outbreak, and the large number of type 71 enterovirus (EV) cases between 2000-2008. H1N1
and EV were part of Huang et al.’s original EpiRank research1. Our results indicate daytime parameter values (i.e., measures of
the home-to-work movement effect on disease spreading) of between 0.5 and 0.55 for the SARS outbreak, higher than those
observed for the flu and EV scenarios (both <0.5). Even though SARS and influenza are both respiratory illnesses, they are
distinctly different in terms of fatality rates and contagiousness, with the second factor affecting the variation we observed
in disease spreading patterns. Since the COVID-19 epidemic is still emerging (with rapidly evolving information regarding
mortality and contagiousness), it is not possible to accurately determine the effect of commuting on disease spread—that is,
whether it is similar to SARS or flu. For this project we applied EpiRank to the SARS case for comparison with Huang et al.’s
earlier work with influenza1.

Some of the earliest analyses of COVID-19 suggest that it is more similar to seasonal influenza than SARS in terms of
its spatial spreading mechanism. If true, the backward movement of individuals living in and close to the epicenter of the
COVID-19 outbreak will likely exert more effects than their forward movement, with greater likelihood of COVID-19 spreading
from workplaces and other city center locations to residential neighborhoods. In the present study we observed equal effects
of forward and backward movement (daytime parameter = 0.55) on the spatial distribution of estimated disease risk, which
resembles the situation for the 2003 SARS outbreak in Taiwan. In our original study we discussed an estimated risk distribution
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with the largest possible backward movement effect (daytime parameter = 0.0).
Since EpiRank uses commuting network flow data, it may be useful for identifying disease spreading patterns and high

at-risk communities even when data are lacking for other epidemiological factors or important variables. As more data become
available for commuting flows in China in general and Wuhan in particular, EpiRank may have utility for analyzing actual and
potential disease diffusion, as well as for creating estimated risk distribution maps for early response and control purposes.
EpiRank might also be applied to other population flow networks for analyzing risk distribution involving routine patterns (e.g.,
global flight networks). Since it was written using Python 3, EpiRank can easily be applied to other scenarios and locations
where commuting network flow data are available.

In our role as researchers specializing in network-based epidemiologic modelling and simulations, we encourage the public
to fully support all government-sponsored responses to and preventive measures against COVID-19. As of this writing the
outbreak has not yet resulted in any infection clusters in Taiwan, therefore now is the time to organize and prioritize disease
prevention and medical treatment resources for frontline medical personnel. EpiRank can serve as a reference tool for allocating
limited resources to potential areas of infection in case a COVID-19 outbreak does occur—that is, EpiRank can be used to
determine where resources should be concentrated based on epidemiologic and economic priorities. The guiding goal is to fully
contain a COVID-19 outbreak in Taiwan at the earliest possible stage.

Data Availability Statement
All processed data and algorithm codes are available at https://github.com/wcchin/EpiRank.
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