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Abstract

A major open question, affecting the policy makers decisions, is the
estimation of the true size of COVID-19 infections. Most of them are un-
detected, because of a large number of asymptomatic cases. We provide
an efficient, easy to compute and robust lower bound estimator for the
number of undetected cases. A “modified” version of the Chao estimator
is proposed, based on the cumulative time-series distribution of cases and
deaths. Heterogeneity has been accounted for by assuming a geometrical
distribution underlying the data generation process. An (approximated)
analytical variance formula has been properly derived to compute reliable
confidence intervals at 95%. An application to Austrian situation is pro-
vided and results from other European Countries are mentioned in the
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1 Introduction
Currently, health systems across the globe are challenged by the ongoing Covid-
19 pandemic. It is not a simple task to assess the efficiency of current health
systems in detecting, treating, and preventing onward transmission of Covid-19,
as the number of undetected infections is by definition unknown. Understanding
the diffusion and assessing the number of real infections of Covid-19 is crucial
for implementing effective public and health policies in tackling the virus. Un-
fortunately, official reporting and statistics significantly underestimate the true
number since there exists a vast proportion of asymptomatic infected patients
including those with mild symptoms among all infected individuals who are not
detected. Indeed, the infected individuals with low-mild symptoms are likely
not going to get in contact with the health care system and will also not be
recorded in official statistics.

For example, reports estimate the number of infected in Italy to be around
3.5 times higher than reported [Tuite et al.(2020)]. Slightly lower estimates
have been given for Germany [Ranjan(2020)]. Another study discusses that
Italy mostly focuses on testing in hospitals with symptoms; hence, the roughly
50% asymptomatic are not covered by this approach [Onder et al.(2020)]. The
same percentage of asymptomatic is also reported in Iceland [Shahan(2020)].
The asymptomatic individuals in fact can be a direct transmitter of the virus
and their unawareness can indirectly strengthen and increase the transmission
of Covid-19. Indeed, it seems fair to say that the undetected cases are the major
dirver in spreading the disease as detected cases are and will be systematically
contained.

Most of the existing analyses performed a secondary data analysis from
several sources of data already in the public domain [Menkir et al.(2020)]. Be-
cause published estimates of the distribution of Covid-19 vary widely, with
estimates of the basic reproduction number, R0, alone ranging from subcritical
(i.e., < 1) to > 3 [Li et al.(2020), Zhao et al.(2020), Zhou et al.(2020)], math-
ematical models of infectious diseases, such as Susceptible-Infected-Recovered
models, computing the theoretical number of people infected with a contagious
illness in a closed population over time, needs to be evaluated on a range/grid
of simulated values, each based on different assumptions and adjusted based on
data from different geographic areas [Chen et al.(2020)]. Other much simpler
[Nishiura et al.(2020)] or sophisticated [Flaxman et al.(2020)] approaches are
also used to estimate the number of undetected cases, but with large, almost
unacceptable, uncertainty on the obtained estimates.

The purpose of this contribution is to propose a lower bound estimator for
the number of people affected by Covid-19 but not detected for various rea-
sons, the major one being that they are asymptomatic. In other words, the
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aim is to estimate the size of an elusive, i.e. partially unobserved, population.
Capture-Recapture (CR) methods are designed to achieve this goal. Our pro-
posal is developed using the cumulative distribution of the observed cases and
deaths. The use of CR methods is not straightforward as we are dealing with
an open population, subject to deaths, and heterogeneity in the probability of
being detected. A data-modified version of Chao’s estimator under a geometric
distribution is introduced. It accounts for heterogeneity in a simple way and can
be easily computed starting from data collected by all government sources. In
this way, the policy makers can have benchmark, statistically valid, estimates
of the lower bound for the total number of cases and, accordingly, adjust their
interventions.

This short note is organized as follows. In section 2 we introduce the basic
notation and how we are going to work with the cumulative distribution of
observed cases and deaths. Section 3 provides all the necessary details to obtain
the estimates. An example to Austrian data is provided. A discussion showing
other interesting insights concludes.

2 Basic notation
We will denote with N(t) the cumulative count of infections at day t where
t = t0,⋯, tm. Hence ∆N(t) = N(t) − N(t − 1) are the number of new in-
fections at day t where t = t0 + 1,⋯, tm. Also, let D(t) denote the cumula-
tive count of deaths at day t where t = t0,⋯, tm. t0 defines the beginning of
the observational period and tm defines the end. We assume the trivial as-
sumption tm > t0, so that the observational window is not empty. Again,
we denote with ∆D(t) = D(t) − D(t − 1) the count of new deaths at day
t where t = t0 + 1,⋯, tm. To illustrate, we look at these data (taken from
https://www.worldometers.info/coronavirus/country/austria/) for the country
of Austria as provided in Table 1 for the infections and in Table 2 for the deaths:

Table 1: Cumulative counts of infections with Covid19 for Austria starting at
t0 = 15 March 2020 to tm = 7 April 2020

t 15 16 17 18 19 20 21 22
N(t) 860 1018 1332 1646 2179 2649 2922 3582
t 23 24 25 26 27 28 29 30
N(t) 7697 8271 8788 4474 5283 5588 6909 9618
t 31 1 2 3 4 5 6 7
N(t) 10180 10711 11129 11524 11781 12051 12297 12639
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Table 2: Cumulative counts of deaths from Covid19 for Austria starting at t0 =
15 March 2020 to tm = 7 April 2020

t 15 16 17 18 19 20 21 22 23 24 25 26
D(t) 1 2 4 4 6 6 8 16 21 28 31 49
t 27 28 29 30 31 1 2 3 4 5 6 7
D(t) 58 68 86 108 128 146 158 168 186 204 220 243

3 Linking with the capture-recapture methodol-
ogy

The question arises how this can be linked to a capture-recapture approach. For
this purpose we briefly review the capture-recapture model we like to harness
here. Suppose a target population is sampled for units of interest repeatedly.
Let X denote the number of times a unit is identified in this sampling process.
Also, let px denote the probability of identifying a unit x times where x = 0⋯.
In the capture-recapture world the following mixture model is quite common:

px = ∫ θ(1 − θ)xg(θ)dθ. (1)

In (1) occurs the geometric distribution as a suitable count distribution and its
parameter is allowed to experience population heterogeneity (as expressed by
the density f(θ)) to reflect varying identification probabilities across the target
population. Often the Poisson distribution is used in (1) instead of the geo-
metric distribution. However, we prefer to use the latter as we think of the
geometric distribution as a Poisson distribution mixed with an exponential den-
sity, hence able to incorporate already some of the likely present heterogeneity
in the populaiton.

Using the Cauchy-Schwarz inequality for moments, it is possible to show
that for the probability p0 of missing a unit of interest the following inequality
holds:

p0 ≥ p21/p2. (2)

Replacing p1 and p2 on the right-hand side of (2) with the observed frequencies
f1 of those identified exactly once and f2 of those identified exactly twice leads to
the lower bound estimate of Chao [Chao(1987), Chao(1989), Chao and Colwell(2017)]:

f̂0 = f2
1 /f2. (3)

Here f0 is frequency of units that remain unobserved or hidden.
The idea is to apply this estimator (3) day-wise. We take an arbitrary day

t. At this day we have ∆N(t) new infections. This will be viewed as f1, the
infected people identified just once. If we look at ∆N(t − 1), then this is the
count of new infections the day before. But these will still be infected at day t
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unless they decease. So, f2 corresponds to ∆N(t − 1) −∆D(t). We can ignore
the number of recoveries as we are looking at infections which are very recent
(notified at day t or t−1). Hence we are able to give the estimate for the number
of hidden infections at day t as

H(t) = [∆N(t)]2

∆N(t − 1) −∆D(t)
(4)

and global estimate of hidden infections is achieved by summing up over all days
in the observational period:

Ht0 =
tm

∑
t=t0+1

[∆N(t)]2

∆N(t − 1) −∆D(t)
. (5)

We will use a bias-corrected form of (4) suggested by [Chao(1989)] and given as

Ht0 =
tm

∑
t=t0+1

∆N(t)[∆N(t) − 1]
1 +∆N(t − 1) −∆D(t)

. (6)

We define the understanding that ∆N(t − 1) −∆D(t) is set to 0 if it becomes
negative, in other words we use max{0,∆N(t−1)−∆D(t)}. The final estimate
of the total size of infection is then given as what has been observed at the end
of the observational window tm and the estimate of the hidden numbers:

total size of infections = N(tm) +Ht0 (7)

We need to address the uncertainty involved in the estimator (6). A variance
estimate of (4) has been provided in [Niwitpong et al.(2013)] and is given here
as

V̂ar H(t) = [∆N(t)]4

[1 +∆N(t − 1) −∆D(t)]3
+ 4[∆N(t)]3

[1 +∆N(t − 1) −∆D(t)]2

+ [∆N(t)]2

[1 +∆N(t − 1) −∆D(t)]
, (8)

so that the final variance estimate of Ht0 is given as

tm

∑
t=t0+1

V̂ar H(t). (9)

A 95% confidence interval can then be constructed by means of

Ht0 ± 1.96

¿
ÁÁÀ

tm

∑
t=t0+1

V̂ar H(t).
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4 Application to the Austrian situation
We now apply (5) to the Austrian data. The results are provided in Table
3 which includes estimates of the hidden and total (observed + hidden) cases
with 95% confidence intervals. At the 7th of April the number of infections
was 12639 which is the observed number. We have chosen the 15th of March
as beginning of the observational period. However other dates are possible
as well so that we looked at estimates in dependence of the beginning of the
observation period. It can be seen that results change slightly. Of course,
if the window is made too small estimates of hidden numbers will only refer
to observations made in this window. The major question arises if the es-

Table 3: Estimated hidden and total cases of Covid19 for Austria starting and
various sizes of the observational window ranging from t0 = 15 March 2020 to t0 =
18 March 2020; the second part of the table contains the associated proportions
of total population in Austria (8.859 million)

t0 hidden cases total cases 95% CI
15 17264 29560 28412 – 30709
16 16638 28935 27800 – 30069
17 16326 28623 27491 – 29754
18 15420 27716 26602 – 28831
15 0.0019 0.0033 0.0032 – 0.0035
16 0.0019 0.0033 0.0031 – 0.0034
17 0.0018 0.0032 0.0031 – 0.0034
18 0.0017 0.0031 0.0030 – 0.0033

timates of Table 3 are realistic. For Austria we have an independent study
on the size of the Covid19 outbreak (https://www.welt.de/politik/ausland/-
article207187759/Coronavirus-Eisberg-hoeher-als-gedacht-Oesterreich-legt-Dunkelziffer-
-Studie-vor.html). The study was led by Christoph Fas̈smann and is known as
the dark number study. The study was rolled out during the 1 April and 6
April 200 and sampled 1544 persons across Austria covering all ages up to 94
years. According to the study, the proportion of infected people was 0.0033.
If this proportion is applied to the population of Austria, as study in media
release points out, during the study period there were 28500 infected persons
in Austria. The study estimates that we have provided matches very well with
the results of the study, independent where we start the observational window.
The dark number study also reports a 95% confidence interval for the propor-
tion of infected persons which ranges from 0.0012 to 0.0076, corresponding to
10200 and 67400 infected persons, respectively. Clearly, the capture-recapture
estimate is included in this large interval but as we are able to utilize much
larger routinely collected data on infected persons the uncertainty provided by
the capture-reacpture approach is considerably reduced which is reflected in the
relative short confidence intervals.
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Table 4: Estimated hidden and total cases of Covid-19 for several European
countries, at 18/04/2020

Country hidden cases total cases 95% CI total/observed
Italy 211768 384201 381649 – 386762 2.23
Germany 178451 315890 312429 – 319350 2.30
Spain 232057 423783 421112 – 426454 2.21
UK 149150 257842 255482–260202 2.37
Greece 2901 5108 4718–5499 2.31

5 Discussion
The proposed method answers to a fundamental open question: “How many
undetected cases are going around?”. Of course, we provide a lower bound,
but this information may be treated as a starting point whenever interventions
and tools to dampen the spread of the epidemic are rolled out. CR methods
are easy to apply in practice, and this is one of the merits of the method.
Moreover, we simply use time series of cumulated data, readily available from
governments sources. Given that individual data are not publicly available, CR
methods provide a straightforward solution to shed light on undetected cases,
incorporating heterogeneity that may arise in the probability of being detected
simply considering the widely known and used geometric distribution.

The example provided here relies on Austrian data, but many other Coun-
tries can be analyzed even if there are not benchmark survey studies to compare
with. For example, taking data up to 18/04/2020 from https://github.com/open-
covid-19/data on several European countries and considering data from the day
which we record the first death, we obtain the estimates of undetected cases for
Italy, Germany, Spain, UK and Greece (see Table 4). The last column in Table
4 shows the ratio of the total estimated cases to the observed cases. There is a
remarkable stability around the value of 2.3.

All the obtained estimates are surrounded by some uncertainty. Confidence
intervals for the “modified” Chao lower bound have been provided and are seem-
ingly reliable, in particular compared to those presented in other studies. We
emphasize that the estimates provided are conservative, in the sense that they
provide lower bounds on the size of undetected infections. However, we have
provided some evidence such as in the situation of Austria that these lower
bound are not far away from the true size of infection in the target popula-
tion. This needs to be followed up by further comparisons with representative
sampling studies on target population infection.

This is just a first evidence on the use of capture-recapture methods to study
Covid-19 data. Another question is still open: “is there a way of estimating an
upper bound for the number of undetected cases?”. Again capture-recapture
methods could be implemented to provide an answer to this question and help
policy makers to evaluate the Covid-19 epidemic situation locally and at the
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current phase of its development.
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