medRxiv preprint doi: https://doi.org/10.1101/2020.04.19.20071886; this version posted May 14, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Tracking R of COVID-19: A New Real-Time

Estimation Using the Kalman Filter*

Francisco Arroyo-Marioli', Francisco Bullano!, Simas Ku¢inskas?, and

Carlos Rondon-Moreno!

Central Bank of Chile
2Humboldt University of Berlin

First version: April 21,2020  Last updated: May 11, 2020

Abstract

We develop a new method for estimating the effective reproduction number of
an infectious disease (R) and apply it to track the dynamics of COVID-19. The
method is based on the fact that in the SIR model, R is linearly related to the growth
rate of the number of infected individuals. This time-varying growth rate is esti-
mated using the Kalman filter from data on new cases. The method is very easy
to apply in practice, and it performs well even when the number of infected indi-
viduals is imperfectly measured, or the infection does not follow the SIR model.
Our estimates of R for COVID-19 for 124 countries across the world are provided
in an interactive online dashboard, and they are used to assess the effectiveness of

non-pharmaceutical interventions in a sample of 14 European countries.
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1 Introduction

The effective reproduction number (R) plays a central role in the epidemiology of in-
fectious diseases (Chowell and Brauer, 2009; Nishiura and Chowell, 2009; Allen, 2017,
Stock, 2020). R is defined as the average number of people infected by a single infec-
tious individual. In standard models, the number of infected individuals increases as
long as R > 1. Real-time estimates of R are therefore essential for public policy deci-
sions during a pandemic (Atkeson, 2020; Leung, 2020). Such estimates can be used to
study the effectiveness of non-pharmaceutical interventions (NPIs), or assess what frac-
tion of the population needs to be vaccinated to reach herd immunity (Chinazzi et al.,
2020; Kucharski et al., 2020; Wang et al., 2020). Some social scientists have argued
that R < 1 should be viewed as a fundamental constraint on public policy during the
current COVID-19 pandemic (Budish, 2020).

In this paper we develop a new method to estimate R in real time. The method
exploits the fact that in the benchmark SIR model, R is linearly related to the growth
rate of the number of infected individuals (Kermack and McKendrick, 1927). Our es-
timation procedure consists of three steps. First, we use data on new cases to construct
a time series of how many individuals are infected at a given point in time. Then, we
estimate the growth rate of this time series with the Kalman filter. In the final step,
we leverage the theoretical relationship given by the SIR model to obtain R from the
estimated growth rate. We show theoretically that the estimates are not sensitive to po-
tential model misspecification, and they are fairly accurate even when new cases are
imperfectly measured.

We apply our methodology to estimate the R of COVID-19 in real-time. Our esti-
mates for 124 countries across the world are provided in an online dashboard and can
be explored interactively (link to dashboard). In empirical applications, we use these
estimates to calculate the basic reproduction number (R() and evaluate the effects of
NPIs in reducing R for a sample of 14 European countries.

Under our baseline assumption that the serial interval for COVID-19 is seven days,
we estimate the basic reproduction number (R) to be 2.67 (95% CI: 1.96-3.44). Next,
we find that lockdowns, measures of self-isolation, and social distancing all have a
statistically significant effect on reducing R. However, we also demonstrate the im-
portance of accounting for voluntary changes in behavior. In particular, we document
that most of the decline in mobility in our sample happened before the introduction of
lockdowns. Failing to account for voluntary changes in behavior leads to substantially

over-estimated effects of NPIs.
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Related Literature

There are two broad classes of methods that can be used to estimate R in real time
(Chowell and Brauer, 2009; Nishiura and Chowell, 2009). First, one can estimate a
fully-specified epidemiological model and then construct a model-implied time series
for R. Second, one may use approaches that leverage information on the serial interval
of a disease (i.e., time between onset of symptoms in a case and onset of symptoms in
his/her secondary cases). For example, imagine a disease with a fixed serial interval of,
say, three days. In that case, we could estimate R by simply dividing the number of
new cases today by the number of new cases three days ago. Cori et al. (2013) exploit
this idea to develop a Bayesian estimator that accounts for the randomness in the onset
of infections as well as variation in the serial interval; see also Thompson et al. (2019).
This method is implemented in a popular R package EpiEstim.

The method proposed in this paper attempts to strike a balance between the two ap-
proaches mentioned above. Although our estimator is derived from standard epidemi-
ological theory, we use the smallest amount of theoretical structure that is necessary to
obtain our estimator. In particular, the theoretical relationship used to derive our es-
timator is exactly valid not only in the standard SIR model with constant parameters,
but also in the SIS model and a generalized SIR model with time-varying parameters
and stochastic shocks. Relative to the existing literature, our estimator does not need
any statistical tuning parameters, and it does not require parametric assumptions on the
distribution of new cases (such as assuming that new cases are Poisson distributed). For
example, the method of Cori et al. (2013) assumes that R is constant over fixed win-
dows of duration 7; 7 effectively becomes a tuning parameter that needs to be chosen
by the user. Our approach and its mathematical derivation share some similarities with
the estimator proposed by Bettencourt and Ribeiro (2008).

A key advantage of using the Kalman filter for estimating ‘R is that valid confidence
bounds are readily obtained. Explicitly accounting for the dynamics in R is also likely to
produce better-behaved estimates in practice. In addition, the Kalman smoother allows
the researcher to use full-sample information efficiently when estimating R. Finally,
our method can be used with both classical and Bayesian techniques, as we demonstrate

in the empirical application.

2 A Real-Time Estimator

We now derive our estimator for the SIR model (Kermack and McKendrick, 1927).

In the Appendix, we show that we can obtain the same estimator from an SIS model
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(Appendix A.1), and an SIR model with stochastic shocks (Appendix A.2).

2.1 Deriving the Estimator

The standard SIR model in discrete time describes the evolution of susceptible (5;),
infected (/;), and recovered (R;) individuals by the following equations (Allen and Van
Den Driessche, 2008; Stock, 2020):

Sy
Sy =Sio1 — Beli ;Vl
S
Iy =14 + Bily ;Vl — vl (D

Ry =R +vli

The model is stated at a daily frequency. Here, N = S; + I; + R; is the population
size, [3; is the daily transmission rate, and -y is the daily transition rate from infected to
recovered. The recovered group consists of individuals who have either died or fully
recovered. We allow the transmission rate 3; to vary over time. For example, individuals
may choose to to reduce their social interactions voluntarily, or they could be subject to
government policy restrictions.

The basic reproduction number, Rg), is defined as Rg) = [/, and it gives the
average number of individuals infected by a single infected individual when everyone
else is susceptible. Since the transmission rate (3; varies over time, the basic reproduc-
tion number is generally time varying as well. The effective reproduction number, R,
is defined as R, = R(()t) X (S;—1/N), and it equals the average number of individu-
als infected by a single infected individual when a fraction (S;_; /) of individuals is
susceptible.

From Eq. (1) the daily growth rate in the number of infected individuals is

gr(ly) = ——— =Ry — 1). (2

Denoting the estimated growth rate of infected individuals by gr(/;), and given a value

for the transition rate vy, the plug-in estimator for the effective reproduction number is
A 1.

For the estimator to be feasible, we need to (i) calibrate the transition rate from
infectious to recovered, v; and (ii) estimate the growth rate of /;. There are two potential

strategies for choosing . First, we can use external medical evidence given that v~ ! is
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the average infectious period. Second, information on the serial interval of the disease
can be employed, given that the serial interval in the SIR model also equals v~ (Ma,
2020).

To estimate the growth rate of I; empirically, we first construct a time series for /;

from data on new cases. The SIR model in Eq. (1) implies that
I; = (1 — v)1,_1 + new cases;. @)

We initialize I; by Iy = Cy where Cj is the total number of infectious cases at some
initial date, and then construct subsequent values of [; recursively.

Given the time series for /;, we use standard Kalman-filtering tools to smooth the
observed growth rate of /;. In particular, we specify the following state-space model for

the growth rate of /;:

gr(ly) =v(Ry — 1) + &, & ~iid N(0,0?)

)
Rt = ,R,t_1 + M, N ~ 1.1.d. N(O, O'g)

We estimate R, by the Kalman smoother (see Durbin and Koopman, 2012, Chapter 2).
The Kalman smoother provides optimal estimates of R; (in the sense of minimizing
mean-squared error) given the full-sample information on gr(/;), provided that the data
are generated by the model in Eq. (5).

To estimate the unknown parameters o2 and ag in Eq. (5), both classical and Bayesian
methods can be used. However, sample sizes are usually limited in practice, espe-
cially early on in the epidemic. Hence, incorporating prior knowledge generally leads
to better-behaved estimates. The state-space model above—also known as the local-
level model—can also be thought as a model-based version of exponentially-weighted
moving-average smoothing (Muth, 1960).

The state-space model in Eq. (5) can be viewed as a reduced-form time-series spec-
ification. As is well known, the local-level model is sufficiently flexible to capture rich
dynamic patterns in the data. In addition, in Appendix A.3, we provide a theoretical
rationale for the local-level specification. In particular, Eq. (5) arises naturally in the
SIR model (in the early stages of an epidemic) when the transmission rate 3; follows a
random walk.

From Eq. (4), the growth rate gr(/;) is bounded below by (—). Hence, for any es-
timator of gr(/;) that is some weighted average of the observed growth rates, the point
estimate of R; is automatically non-negative. To ensure that lower confidence bounds
are positive as well, we estimate the ¢-th quantile of R; by max{0, 1 + v~'g,}, where
g 1s an estimate of the ¢-th quantile of gr(/;). In addition (see Appendix A.4), our em-
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pirical estimates remain similar when we use a modified version of the Carter and Kohn
(1994) algorithm which discards random draws violating the non-negativity constraint.
Alternatively, it is possible to avoid this type of truncation by using non-linear filtering
methods (Creal, 2012).

2.2 Sensitivity to Model Misspecification and Data Problems

Tracking the evolution of R, is notoriously difficult. Human-contact dynamics, testing,
and changes in case definitions affect the flow and quality of the available information.
In this section, we test the sensitivity of our estimator to two notable issues: (i) model
misspecification; and (i1) data problems (such as reporting delays or imperfect detection
of infectious individuals).

For the first issue, model misspecification, a natural concern is whether the true dy-
namics of the disease are well captured by the benchmark SIR model. We address this
issue in two ways. First, we show that our estimator remains exactly valid in the SIS
model in which individuals do not obtain immunity (Appendix A.1) and a generalized
SIR model with stochastic shocks (Appendix A.2). In addition, provided that the aver-
age duration of infectiousness is correctly specified, we find that our estimator yields
accurate results even when the true model is SEIR rather than SIR (Appendix A.5). Sec-
ond, we note that the error term ¢, in the state-space model described by Eq. (5) can be
interpreted as model error. Therefore, our estimates as well as their confidence intervals
explicitly account for (some amount of) potential misspecification.

The second issue relates to data reliability. For COVID-19, testing constraints and
high asymptomatic prevalence (Arons et al., 2020; Nishiura et al., 2020a; Streeck et al.,
2020), in particular, make it challenging to identify all infectious individuals. The sim-
plicity of our estimator allows us to analytically characterize the effects of potential
measurement error (see Appendix A.6). Furthermore, we use these results to investi-
gate the quantitative performance of the estimator in a number of empirically relevant
underdetection scenarios using Monte Carlo simulations. Overall, we conclude that our

method provides accurate estimates in all cases that we analyze.

3 Estimates for COVID-19

We now use data from the John Hopkins CSSE repository to obtain real-time estimates of
R for COVID-19 (Dong et al., 2020). For each country, we use data after the cumulative
number of COVID-19 cases reaches 100. Appendix A.7 describes the details of the

estimation procedure.
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Figure 1
R; of COVID-19: Global Estimates

65% Credible Interval
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Notes: Estimates of the effective reproduction rate (R;) of COVID-19 for the world as whole. The sample
consists of all dates after the total number of reported cases worldwide has reached 100. 65% and 95%
credible bounds shown by the shaded areas.

For the baseline estimates, we assume that people are infectious for v~ = 7 days
on average, similarly to Maier and Brockmann (2020) and Prem et al. (2020). This
assumption is consistent with the evidence on the serial interval of COVID-19. For
example, Flaxman et al. (2020) use an average serial interval of 6.5 days. Recent studies
find that estimates of the serial interval for COVID-19 generally range between 4 and
9 days (Nishiura et al., 2020b; Park et al., 2020; Sanche et al., 2020). In addition, we
document that v~ = 7 leads to estimates of the basic reproduction number (R,) that
are in line with the recent estimates in the literature (Liu et al., 2020). However, we also
investigate the effects of different choices for v on our results.

In Appendix A.8, we perform two empirical validation exercises of our estimates.
First, we document that our estimates of R, are predictive of future deaths. Given that
deaths are arguably more accurately measured, this finding alleviates concerns regarding
potential data reliability issues that could contaminate our estimates. Second, we find
that past mobility data is predictive of future values of R,. Jointly, these two exercises

suggest that the estimates contain valuable information on the dynamics of COVID-19.
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Figure 2
R; of COVID-19: Selected Countries
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Notes: Estimates of the effective reproduction rate (R;) of COVID-19 for selected countries. The sample
consists of all dates after the total number of reported cases in the country has reached 100. 65% credible
bounds shown by the shaded areas.

3.1 Estimated Effective Reproduction Numbers

Our estimates of R; for COVID-19 for the world as a whole are provided in Figure 1.
The graph highlights two distinct phases of the pandemic, first in China and later in
Europe and the US. At the beginning of the sample in late January, the estimates of R,
are above 3; the estimates fall below one by February 19, consistent with a containment
of the epidemic in China. Note that there is a moderate upwards jump in the estimated
R around the second week of February. This jump was caused by a temporary change in
COVID-19 case definitions in the Hubei province in China; the new definition included
clinically-diagnosed COVID-19 cases (Tsang et al., 2020). The estimates of R, start
increasing around February 19, coinciding with the spread of the pandemic to Europe
and the US. Our estimates indicate that R; has been trending down since mid-March
globally. However, the rate of decline is substantially lower than what was observed
in late January and early February. The current point estimate of R, for the world as a
whole (as of May 6, 2020) is very close to one.

Figure 2 plots the estimated R; for China, Italy, and the US. In the Appendix (Fig-
ure A.7), we also provide a graph of the raw data that is used for estimating R,. For

all three countries, the estimated R; is initially above 3. For China, the estimated R
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falls below one around the third week of February. However, the estimated R; in China
drifted up towards one during late March and early April, potentially caused by a wave
of imported cases; the current point estimate for China is substantially below one. In
Italy, the estimated R; has been steadily falling since March but at a slower rate than
previously observed in China, with the point estimate for Italy falling below one in early
April. In the US, a striking difference is that the point estimates of R, are, in fact, in-
creasing in the first two weeks of the epidemic, rising from around 2.9 to almost 3.6.
A likely explanation is that the fraction of non-detected cases went down substantially
in this period, inflating the estimates of R; upward (see Appendix A.6). In particular,
the number of tests conducted in the U.S went up substantially during this period (Our
World in Data, 2020). The confidence bounds, however, are consistent with R, in the
US being stable over the first two weeks of the epidemic. The current point estimate of
R; in the US is somewhat below one.

In the Appendix (Figure A.8), we illustrate the difference between estimates of R;
for China obtained by the Kalman smoother—as in our baseline estimation—and the
Kalman filter. Intuitively, the Kalman smoother uses information from the full sample
when estimating R;, while the Kalman filter only uses information up to and includ-
ing time ¢ (Durbin and Koopman, 2012). As seen in the graph, while the two sets of
estimates are fairly similar, the filtered estimates are substantially more volatile. In ad-
dition, the filtered estimates generally have wider credible bounds. As should be the
case, the filtered and smoothed estimates are identical at the endpoint of the sample.
From the perspective of epidemiological theory, the Kalman filter essentially produces
what Fraser (2007) refers to as the instantaneous reproduction number, while the Kalman
smoother yields the case reproduction number. The estimator proposed in the present
paper therefore allows researchers to estimate the two types of reproduction numbers in
a single unified framework.

In Figure A.8 in the Appendix, we also demonstrate the difference between our
Bayesian estimates of R; and classical estimates obtained via maximum likelihood. For
China, the two sets of estimates are virtually indistinguishable, indicating that the cho-
sen priors have a small effect on the estimates. Of course, for other some countries in
our sample, the data are less informative, and hence the priors have a more pronounced
effect.

3.2 Basic Reproduction Number

We now use our estimates of R; to measure the basic reproduction number (Ry), i.e.,

the average number of individuals infected by a single infectious individual when the
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Table 1
Estimates of the Basic Reproduction Number (R)

Number of Days Infectious: 5 6 7 8 9 10

~

Ro 2.08 235 2.67 298 3.28 3.8
CI Lower Bound (95%) 1,50 1.72 1.96 2.19 2.42 2.66
CI Upper Bound (95%) 271 3.06 344 381 4.18 455

Notes: Estimates of the basic reproduction number (R ) for a sample of 14 European countries. The coun-
tries included in the sample are Austria, Belgium, Denmark, France, Germany, Greece, Italy, Netherlands,
Norway, Portugal, Spain, Sweden, Switzerland, and United Kingdom. The basic reproduction number
is calculated by averaging our estimates of the effective reproduction number in the first 7 days of the
epidemic, where the start of the epidemic is defined as the day when the cumulative number of cases
reaches 100.

population is fully susceptible. We estimate R by the average value of R, in the first
week of the epidemic.

Table 1 shows the results for a sample of 14 European countries (Austria, Belgium,
Denmark, France, Germany, Greece, Italy, Netherlands, Norway, Portugal, Spain, Swe-
den, Switzerland, and United Kingdom), as in Flaxman et al. (2020). Under our baseline
assumption that the individuals are infectious for 7 days on average (7 = 1/7), we obtain
an estimate of Ry = 2.67 (95% CI: 1.96-3.44). For COVID-19, a recent meta-study
has estimated a median R of 2.79 (Liu et al., 2020), suggesting that our results are
consistent with the current consensus estimates.

Table 1 also provides the estimated R under different assumptions on the duration
of infectiousness (or, equivalently in the SIR model, the average serial interval). As
expected, the median estimate is sensitive to the choice of v; we find an additional day

of infectiousness increases Ry by around 0.3.

3.3 Assessing Non-Pharmaceutical Interventions

Finally, we use our estimates to assess the effects of non-pharmaceutical interventions
(NPIs) in the same sample of 14 European countries as in Section 3.2. We study a total of
five NPIs: (i) lockdowns; (ii) bans of public events; (iii) school closures; (iv) mandated
self-isolation when exhibiting symptoms; and (e) social distancing measures. We adopt
the definitions of NPIs and their introduction dates provided by Flaxman et al. (2020).
We first perform an event-study analysis. Figure 3a plots the estimated values of
R around the introduction of a lockdown. R; declines substantially after a lockdown

is introduced, going from around 2.18 on the day of the intervention to around 1.31

10
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Figure 3
Event Study: R and Mobility Around Lockdowns

(a) Effective Reproduction Number

65% Confidence Interval
307 95% Confidence Interval
g N = 13 countries
5 2.5
e
g
=
Z
5 2.0
9
~
)
2
S 1.5
=
88|
1.0 A
-5 0 5 10 15 20
Days Since Intervention
(b) Mobility Index
60 A
65% Confidence Interval
40 95% Confidence Interval
20 A

N = 13 countries

Mobility Index
=

Days Since Intervention

Notes: Top panel: estimated effective reproduction number (R;) one week before and three weeks after
a lockdown is introduced in a country. Bottom panel: mobility index (constructed from “COVID-19
Community Mobility Reports” of Google (2020)) one week before and three weeks after a lockdown is
introduced in a country. See Appendix A.8 for details on the construction of the mobility index. The
original sample consists of 14 European countries studied by Flaxman et al. (2020). Heteroskedasticity-
robust confidence bounds are shown by the shaded areas.
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two weeks later. However, R; is decreasing before the lockdown as well. In particu-
lar, there is no visually detectible break in the slope of R, after the lockdown (i.e., no
“kink”). In the Appendix, we show that other NPIs follow a similar pattern. In par-
ticular, we document the behavior of R; around the introduction of public-event bans
(Figure A.10), case-based measures (such as self-isolation whenever feeling ill and ex-
periencing fever; Figure A.11), school closures (Figure A.12), and social-distancing
measures (Figure A.13). Except for school closures and public-event bans, there is no
visually apparent break in the trend of R; around the date of the policy intervention.

To investigate why R, appears to be unaffected by lockdowns, we use mobility data
from Google’s “COVID-19 Community Mobility Reports” (Google, 2020). Figure 3b
shows that most of the decline in mobility occurs before the imposition of the lockdown,
and remains low thereafter. This finding shows a clear change in people’s behavior
in the early days of the pandemic. Shifting habits before the introduction of NPIs is
consistent with the existence of private motives that can induce a reduction in mobility
as people avoid becoming infected (Farboodi et al., 2020; Guerrieri et al., 2020; Kriiger
et al., 2020). Our results are also consistent with empirical evidence for the U.S and
anecdotal reports from Sweden (Farboodi et al., 2020; The New York Times, 2020).
The documented relationship between R; and mobility does not necessarily constitute
evidence against the effectiveness of lockdowns. On the contrary, it is possible that
lockdowns reinforce attitudes towards disease-awareness and self-isolation, helping to
ensure lower values of R; in the long run.

A potential concern with the evidence in Figure 3a is that our estimates of R; use in-
formation from the full sample. Hence, estimates of R; before the lockdown implicitly
depend on the estimates of R; after the lockdown. This feature of the estimation pro-
cedure may result in low statistical power to detect any effects of NPIs. To investigate
this possibility, we conduct a power analysis (Appendix A.9). Given our empirical esti-
mates of signal-to-noise ratios, we find that the statistical procedure appears sufficiently
powerful to detect moderate changes in R;.

To assess the effects of NPIs more formally, we employ the following fixed-effect
regressions (Table 2). Specifically, we regress R, on a set of indicator variables captur-

ing interventions and different types of fixed effects:

5
log(R; ;) = (fixed effects) + Z &NPIE? + Uiy

j=1

Here, NPIZ(»Vjt) is an indicator variable that equals 1 after the j-th NPI is introduced, and
zero before its introduction. The index ¢ denotes countries, and ¢ stands for the number
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Table 2
Effective Reproduction Number After Introduction of NPIs

(1) (2) (3) 4)

Lockdown 0.63**  -0.09*  -0.06  -0.04
(0.05)  (0.05)  (0.05)  (0.06)

Public Events 0.09%  0.21%* 024 .38
0.04)  (0.04)  (0.04)  (0.07)

School Closure 001  -0.17*** -0.15"  -0.09
(0.06)  (0.05)  (0.05)  (0.08)

Self Isolation 0.14*  -0.11*  -006  -0.01
0.06)  (0.05)  (0.04)  (0.07)

Social Distancing -0.18** -0.1% -0.11** -0.13*
(0.06) (0.06) (0.06) (0.07)

N 840 840 768 445
R? 0.54 0.88 0.88 0.91
Country FE v v v v
Days-Since-Outbreak FE v v v
Mobility Controls v v
Testing Controls v

*p <0.1; *p <0.05; ***p <0.01

Notes: Results of panel-data regressions of the (log of) effective reproduction number (R;) on indicator
variables that are equal to 1 after the introduction of a non-pharmaceutical intervention (NPI) and 0 be-
fore the introduction. The sample consists of 14 European countries studied by Flaxman et al. (2020).
Regressions always include country fixed effects; regressions in columns (2)—(4) also include days-since-
outbreak fixed effects. Outbreak is defined as the date on which 100 cases of COVID-19 are reached.
The regression with mobility controls in (3) includes the one- and two-week lags of the mobility index,
constructed from Google (2020); see Appendix A.8 for details. The regression with testing controls in (4)
controls for the change in the number of daily tests per capita conducted in the country. To allow for rea-
sonably precise estimation of days-since-outbreak fixed effects, we only consider days after the outbreak
for which we have data for at least 5 countries. Heteroskedasticity-robust standard errors in parentheses.

of days since the outbreak of the epidemic.

Column (1) of Table 2 provides estimated effects of NPIs when only country fixed ef-
fects are included. We observe a strong negative effect of lockdowns, social distancing,
and measures of self isolation. Taken at face value, the estimates suggest that lockdowns

reduce R; by almost 60%. Bans of public events and school closures are not statistically

13


https://doi.org/10.1101/2020.04.19.20071886
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.04.19.20071886; this version posted May 14, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

significant in this specification. These regressions as well the point estimates are similar
to the statistical analysis performed by Flaxman et al. (2020).

The regression with country fixed effects only, however, is likely misspecified. Im-
plicitly, such a specification assumes that the only reason why R; can fall is because
of introduction of NPIs. However, R; would likely trend downwards even in the ab-
sence of any public policy interventions. First, R, tends to fall during an epidemic as
the number of susceptibles is depleted. Second, people may adjust their behavior even
in the absence of any policy measures. Failing to control for the dynamics of R; in the
absence of NPIs therefore likely leads to an over-estimation of the effects of NPIs.

We acknowledge that obtaining credible counterfactuals in the present empirical
context is extremely challenging. However, we can exploit the panel structure of the
dataset to reduce the potential endogeneity problems in the previous specification. We
do so by including days-since-outbreak fixed effects. Intuitively, with such fixed effects
we are comparing R;’s in two countries (e.g., country A and country B) that are both
five days from the outbreak (say), with a school closure in country A but not in country
B.

The results from the regression with days-since-outbreak fixed effects are shown in
column (2). The coefficient for lockdowns becomes substantially smaller in absolute
value and only marginally statistically significant. The coefficients for self-isolation
and social-distancing measures are also reduced and lose some of their statistical signif-
icance. The coefficient for public events is highly statistically significant but positive
rather than negative. A naive interpretation would suggest that banning public events
has a positive effect on R;. More likely, however, is that the positive coefficient is
due to countries where R; is declining more slowly being faster to ban public events.
In the Appendix (Table A.3), we show that the results remain similar when the NPIs
are included separately, reducing concerns about potential multicollinearity problems
between the different NPI variables.

In column (3), we also include lagged mobility variables as additional controls. With
mobility controls, the coefficient on lockdowns loses statistical significance altogether.
School closures, self isolation, and social-distancing measures are estimated to have
a statistically-significant negative effect on R, with each of these NPIs estimated to
reduce R; by around 10%.

A potential concern is that countries may introduce NPIs and simultaneously in-
crease the number of tests for COVID-19 that they perform. To help alleviate this con-
cern, in column (4) we add the change in the daily number of tests per capita as an addi-
tional explanatory variable. The data on daily tests per capita comes from Our World in
Data (Our World in Data, 2020). While the sample size is reduced significantly as we
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do not have testing data for all countries in the sample, the results are largely unchanged.

We caution readers against over-interpreting the results of this section. Obtaining
unbiased estimates of the true causal impact of NPIs is exceptionally challenging. As a
result, even our best estimates still suffer from important potential endogeneity issues.
In particular, the timing of NPIs is not random. Countries that introduced NPIs earlier
likely did so because they had previously observed a stubbornly high R;. Finally, we
find that people adjusted their mobility patterns before the introduction of lockdowns.
We believe that these findings bolster the importance of taking changes in human be-

havior into account when evaluating the effects of NPIs.

4 Conclusions and Limitations

In this paper we develop a new way to estimate the effective reproduction number of an
infectious disease (R). The new methodology is straightforward to apply in practice,
and according to our simulation checks, it yields accurate estimates. We use the new
method to track R of COVID-19 around the world, and assess the effectiveness of public
policy interventions in a sample of European countries.

The current paper faces several limitations. First, a local-level specification for the
growth rate implicitly assumes that the growth rate of the number of infected individuals
remains forever in flux. However, in the long-run, this growth rate must converge to
zero. Since our model does not capture this feature, it seems likely that our estimated
confidence bounds are overly conservative in the late stages of an epidemic. Second,
when applying the model to cross-country data, one may achieve important gains in
statistical efficiency if the model is estimated jointly for all countries (for example, by
estimating a multivariate local-level model). Finally, for assessing the effects of NPIs
more accurately, it would be desirable to collect data for a larger sample of countries.

In our empirical application, we find that lockdowns, measures of self-isolation, and
social distancing all have statistically significant effects on reducing R. Self-isolation,
in particular, appears to have a strong effect across all statistical specifications that we
consider. However, we also demonstrate the importance of accounting for voluntary
changes in behavior. In particular, most of the decline in mobility in our sample took
place before lockdowns were introduced. This finding suggests that people respond to
the risk of contracting the virus by changing their mobility patterns and reducing social
interactions. Failing to account for such voluntary changes in behavior yields estimated
effects of NPIs that are arguably too large.

Given that even our best estimates still suffer from potential endogeneity problems,

it is important to interpret these results cautiously. However, from an economic perspec-
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tive, these findings point to large private incentives to avoid infection. These incentives
can induce a contraction in economic activity as people voluntarily choose to self-isolate
(Farboodi et al., 2020; Guerrieri et al., 2020; Kriiger et al., 2020). As a result, even if
countries lift the NPIs that are currently in place, it is not clear whether people would vol-
untarily return to their pre-pandemic mobility and consumption patterns. Our real-time
estimator may be used to track the dynamics of COVID-19 as the current restrictions

are relaxed.
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Appendix A Supplementary Methods and Materials

A.1 SIS Model

We now show that the estimator in Eq. (3) also obtains when the dynamics of the disease

follow the SIS model. The SIS model, again in discrete time, is given by

Sy
Sy = Si—1 — Bl ;Vl + L

St
N

L =11+ B — 1

The only difference from the SIR model in Eq. (1) is that formerly infected individuals
do not obtain immunity after recovery and instead again join the pool of susceptibles.
As is well known, the basic reproduction number in the SIS model is the same as in the
SIR model (e.g., Chowell and Brauer, 2009) and given by Rét) = (;/. Since the law
of motion for [; in the SIS model is the same as in the SIR model, we can repeat the

same steps as in the benchmark analysis to arrive at Eq. (3).

A.2 Generalized SIR Model

In this section, we show that the estimator in Eq. (3) also obtains in a generalized ver-

sion of the SIR model with stochastic shocks. Specifically, we consider the following

generalized SIR model:
S
Sy =511 — ﬁtft—1 ;Vl — U1t
S
I =1 + By jvl — L1+ v — vay

Ry = Ry +vl—1 +vay

Differently from the baseline model, we introduce random shocks v;; and v9;. The
shocks are i.i.d., and the time-varying support of vy ; is [0, S;—; — B¢I;—1/N], while the
support of vy, is [0, [;_1 + Si;—15:—1/N|. We also assume that E;_;[vy; — voy] = 0,
so that the conditional expectation E;_;[/;] coincides with the value for I; given by the
noiseless SIR model. With these modifications, the model can capture rich patterns
of infectious disease dynamics. For example, “super spreader events” can be modeled
either as vy, shocks or as a spike in 3;. The model can also capture richer forms of
population structures than the baseline SIR model. For example, if individuals who are
more infectious (e.g., those with more connections in a network model) are more likely

to become infected first, that can be captured by assuming that 3; becomes lower over
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time.
Defining the time-varying basic reproduction number as Rét) = Bi/7, and R, =
R((f)St,l /N, we obtain that

gr(ly) =v(Ry — 1) + vy,

where v; = (vy; — vo,)/I;—1. Taking expectations on both sides of the equation, we
arrive at .
ER =1+ 5 Elgr(Zy)]-

Hence, the generalized SIR model of the present section leads to the same estimator as
the baseline SIR model in Eq. (1).

Finally, we note that if y varies deterministically over time, the equation above re-
mains essentially unchanged, the only difference being that «y is replaced by ~;. If v,
follows a non-degenerate stochastic process, then the estimator for E[R;] would need to

correct for the covariance between 7, and ‘R;.

A.3 Foundation for the Local-Level Model

When estimating R, we use a local-level specification for the growth rate of the num-
ber of infected individuals. In this section, we show that the local-level model arises
naturally in the SIR model in the early stages of an epidemic when the transmission rate
follows a random walk.

Specifically, consider the generalized SIR model in Appendix A.2. We now special-

ize the process for the transmission rate f3; to be a random walk:
Br = Br—1 + e, me ~ iid. N(O, 072;)7

with a given initial value 5, > 0. We calculate that

S,
gr(l;) = ( ]tvl>ﬁt—7+vt%5t—7+vt

in the early stages of the epidemic when S; ~ N. Defining the effective reproduction
number early on in the epidemic as R; = [3;/~, we therefore have directly that the
growth rate of /; follows a local-level model with

gr(ly) =v(R¢ — 1) + vy
Ry =Ry + 1
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where 7, = 1, /~y. Provided that the distribution of v; can be approximated with a normal
distribution, we directly obtain the specification in Eq. (5). Alternatively, to obtain an
exact normal local-level model, we could assume that v;; = vy; = 0 (no shocks in
the original model, just as in Eq. (1)) but that instead of observing the true growth rate
gr(1;), we only observe gr(1l;) + ; where ¢; is i.i.d. normally distributed mean-zero

measurement error.

A.4 Gibbs-Sampling Algorithm

In this section we discuss how the parameters of the state-space model in Eq. (5) can
be estimated with a Gibbs-sampling algorithm a /a Carter and Kohn (1994). Besides
being a natural robustness check to our methodology, this algorithm uses a somewhat
different approach to ensure the non-negativity of R;.

To use the Kalman filter, we need to estimate o7 and 0. For the Gibbs sampler, we
break the model down into conditional densities from which we can sample iteratively.

The algorithm is the following:

1. Conditional on 052 and 02, use the Kalman filter to infer the state vector R;;

2. Conditional on the sequence of R; computed in the previous step, take samples
of 02 and o from their prior distributions;

3. Conditional on the new draws of o2 and o7, estimate R;

4. Verify that each element of R; is positive. If yes, store the draws of o and 0727. If
not, discard the draws and repeat step 2;

5. Compute the Kalman smoother;

6. Iterate forward for as many replications as needed.

Finally, we contrast the estimates of R, obtained with the Gibbs sampler to our
baseline estimates. We obtain a correlation of 0.85 between the two sets of estimates.
Credible intervals are highly correlated as well. Overall, we conclude that our estimates

are similar across different statistical estimation approaches.

A.5 SEIR Model: Monte Carlo Simulation

Our estimation method uses a structural mapping between R, and gr(/;) derived from
the basic SIR model. While we can generalize the baseline SIR model to include stochas-
tic shocks (Appendix A.2), and the estimator remains valid when the disease follows an
SIS model (Appendix A.1), the model is nevertheless restrictive. In particular, it ignores
incubation periods as well as transmission during the incubation period. These features
are likely especially important when modeling COVID-19.
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We now perform a simulation exercise to see how our estimator of R, performs in
a richer model that accounts for these additional features. Specifically, we consider an

SEIR model in which the exposed are infectious:

Si_ Si_
Si = Si-1— Pl ]tvl — BeEy 4 ]tvl
Sy Sy
Ey=FE; 1+ Bl ;Vl + Beby ;Vl — kb (6)

L =5 1+ kB —vl
Ry =Ry 1+l

Here, E, denotes the number of individuals that are exposed at day ¢, « 1s the daily
transition rate from exposed to infected, and € € [0, 1] measures the degree to which the
exposed are less infectious than the infected. If e = 0, the exposed are not infectious at
all, and we obtain the benchmark SEIR model. If ¢ = 1, the exposed are as infectious
as the infected, and the model is isomorphic to the standard SIR model.

We calibrate the parameters following Wang et al. (2020) who apply the benchmark
SEIR model (with € = 0) to study the dynamics of COVID-19 in Wuhan. In particular,
we use k = 1/5.2 and v = 1/18 as in Wang et al. (2020). Then, we set ¢ = 2/3,
following Ferguson et al. (2020) who assume that symptomatic individuals are 50%
more infectious than the asymptomatic (that is, e-! = 1.5). Finally, we choose 3 by
targeting a basic reproduction number of Ry = 2.6, again as in Wang et al. (2020). In
the model above, R is given by Ry = /v + fe/k, implying 5 = Royx/(ve+ k). The
formula yields 3 ~ 0.12. Finally, we set Sy = 11 x 10° (approximating the population
size of Wuhan), £y = Ry = 0, and I, = 1.

The Monte Carlo design is as follows. First, we simulate the deterministic system
in Eq. (6) using the parameters above. Then, we calculate the growth rate in the true
number of infected individuals, i.e., gr(1;) = I;/I;_; — 1. However, instead of knowing
the true growth rate, the statistician is assumed to observe a noisy version of it given by
gr(l;) = gr(1l;) +e;. Here, ¢ is an i.i.d. normal disturbance with mean zero and standard
deviation of 0.10. The standard deviation of the disturbances is roughly equal to the
range of the true growth rates. Hence, the amount of noise used in the simulation is
fairly large. For each realization of the disturbances, we estimate R; using our method.
As in our empirical application, only data after 100 total cases have been reached is
used.

We investigate two values for 7.y that are used when estimating R via Eq. (3). First,
we consider a situation in which the statistician uses the correct time that individuals are

infected, given by Ve, = (77! + £71)~! where v and k are the true parameter values
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Figure A.1
Monte Carlo Simulation: Effects of Misspecification
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Notes: Estimates of the effective reproduction rate (R+) when the true dynamics of the disease follow an
SEIR model. We investigate two values for 7.y, the transition rate from infected to recovered, that are
used when estimating R;. First, we use the correct value of Ve, = (v~ + £71)~! ~ 0.043. Second,
we use a misspecified values of .5, = 1/10. Average values from 10,000 Monte Carlo replications are
shown. See text for more details.

of the SEIR model. Second, we investigate a case in which the statistician incorrectly
thinks that individuals are infectious only for ten days (7esr. = 1/10). We repeat the
process for 10,000 Monte Carlo replications.

The results of the Monte Carlo simulation are shown in Figure A.1. When the statis-
tician uses the correct number of days that an individual is infectious (that is, taking into
account the incubation time), the estimates of R; from our method are very close to their
true theoretical values. That is in spite of the fact that our estimator for R, is derived
assuming that the dynamics of the disease are described by an SIR model. However,
we also show that if the statistician misspecifies the number of days than an individual
is infectious (assuming 10 days instead of the true number of 23.2 days), the estimates
of R; are substantially biased, especially in the early stages of the epidemic. As is to be
expected from Eq. (3), underestimating the number of days that an individual is infec-
tious leads to a downwards bias in the estimates of R, early on in the epidemic (when

R; > 1), and upwards bias when the true R, falls below one. Overall, the results imply
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that the new method performs well when estimating R; even when the true dynamics
of the disease do not follow the SIR model, provided that the duration of infectiousness

used in the estimation is sufficiently accurate.

A.6 Effects of Potential Data Issues

We now discuss the effects of various data issues on the performance of our estimator.

Reporting delays. In practice, data may be subject to significant reporting delays.
For example, suppose that due to testing constraints there is a lag of ¢ days between the
date that an individual becomes infected and the date on which the case is registered.
In this case, the estimates of R, would also be subject to delay of ¢ days. If there are
significant reporting delays, one may first obtain, say, one-week-ahead forecasts of new
cases, and then use these forecasts to construct a time series for /;.

Imperfect detection. A natural worry with any estimator of R; is that it may be
substantially biased if not all of infected individuals are detected. Given the simplicity
of our estimator, we can analytically assess the effects of imperfect detection.

Suppose that the true numbers of susceptible, infected, and recovered individuals are
givenby S}, I}, and R, respectively. Their evolution is the same as in Eq. (1). However,
we only observe [, = a1}, where oy = I;/I] is the detection rate. In practice, « is
typically less than one, although the mathematical calculation below does not require
this.

With this notation, we have that

gr(f) = gr(a)[1 + gr(1))] + er(Ly) ~ gray) + gr(17),

since gr(a;) x gr(1}) =~ 0 at a daily frequency; the approximation is exact in continuous
time. Using the approximation above and Eq. (2), we therefore obtain that the bias of

the estimator under imperfect detection is given by

~

1
Rt — Rt ~ ;gr(at).

We now discuss several cases of practical importance:

» Constant detection rate (oy = «). If the detection rate is constant over time,
then our estimator is unbiased, and 7A2t = R;. Hence, for example, even if we
only detect 10% of the infectives (but the fraction detected remains constant over
time), the estimator remains unbiased. Note that if the number of tests increases

over time, that is not inconsistent with o, = « given that the number of infected
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individuals is likely to be growing at the same time.

* Constant growth in the detection rate (gr(ay) = g,). If the growth rate of oy
is constant over time, then our estimate of R, is biased upwards if g, > 0 and
downwards if g, < 0. Note, however, that we are often mostly interested in
the trend of R; over time and whether the trend is affected by various policy
interventions. The trend in R, is estimated accurately even if g, # 0. Intuitively,
constant growth in the detection rate leads to a level bias, but the slope is still
estimated correctly.

* Detection rate converges over time (a; — «). The final case of interest occurs
when the detection rate converges to a constant over time. For example, if every-
one is detected towards the end of the epidemic, we would have o, — 1. Since
our method uses Kalman-filtering techniques to estimate the growth rate of I,
transient fluctuations in «; would have a limited effect on the estimates of R,
later on in the sample. Given that we are often precisely interested in the behav-
ior of R; in the later stages of the epidemic (when the detection rate is likely fairly

constant), our method would still yield reliable estimates.

To provide a quantitative illustration, we perform a small-scale Monte Carlo study.
We choose the parameters of the simulation to match our empirical estimates. First,
we use our estimates of R for the world as a whole (see Figure 1) for the first 50 days
of the sample as the true values of R. From these values of R, we calculate the true
(but unobserved) values of the growth rate of the number of infected individuals as
e = gr(lf) = v(Ry — 1), using v = 1/7. Finally, the observed growth rate—as seen
by the statistician—is generated as gr(l;) = gr(a;)(1 + ps) + ps + . We use the
empirical estimate of o2 to simulate &, shocks (i.i.d. draws from a normal distribution
with mean zero). We then apply our estimator to the generated data on gr(/;), using the
same value of v = 1/7 to back out R.

In the simulation we consider three underdetection scenarios:

» Constant underdetection. Given our analytical results, it is immaterial what per-
centage of cases is detected, as long as that percentage is constant over time.

* Ramp-up in testing. Next, we consider a situation in which—due to an increase
in the number of tests performed—the fraction of detected infected individuals
goes up from oy = 0.10 to a4 = 0.15 (an increase of 50%) over a period of two
weeks. After the two weeks, the detection probability remains constant at 0.15.
Again, the precise values of oy and a4 are irrelevant, and what matters is the
growth rate in the detection rate.

* Stochastic underdetection. Finally, we suppose that the detection rate satisfies
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Figure A.2
Monte Carlo Simulation: Effects of Underdetection

(a) Average Estimates

3.5 1 .
- — True R
\ === Constant Underdetection
—~ 30 A\ .
(03 3.0 \ —-— Testing Ramp-Up
5 AN e Stochastic Underdetection
O
g 2.5 1
=]
Z
=
o 2.0 1
(a2
]
B
g 1.5 1
fam
a5
1.0
0 10 20 30 40 50
Time
(b) Estimation Accuracy
0.55 1 .
< — Constant Underdetection
0.50 - w1 === Testing Ramp-Up
Do Stochastic Underdetection
0.45
—
S
E
K 0.40 -
L
=
Qo
20.35
<
0.30
0.25 1
0 10 20 30 40 50
Time

Notes: Estimates of the effective reproduction rate (R;) when the true number of infected individuals is
measured with error. The true values for R, are given by our empirical estimates of R for the world as a
whole in the first 50 days of the sample, and the standard deviation of the irregular component is chosen
to match our empirical estimates. Constant Underdetection: A constant fraction of infected individuals
is detected. Testing Ramp-Up: The fraction of detected individuals increases by 50% in the first two
weeks of the sample. Stochastic Underdetection: The fraction of detected individuals is stochastic, and
its growth rate follows an AR(1) process. Average values from 1,000 Monte Carlo replications are shown.
Top panel: Average estimates. Bottom panel: average absolute error of the estimates.
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gr(ay) = ¢gr(ay—1) + vy where v, is an i.i.d. normally distributed shock. Intu-
itively, the detection rate is assumed to be unconditionally constant, but its growth
rate 1s stochastic and follows an AR(1) process. We set the persistence parameter
to ¢ = 0.75 in order to allow for fairly long-lasting deviations from the average
detection rate. To ensure that the variance of gr(/;) remains constant across sim-
ulations (to ensure an apples-to-apples comparison), we suppose that 50% of the
noise in the observed growth rate comes from variation in «y, with the other 50%
coming from the ¢, shocks. (Here, by “noise” we refer to the variation in gr(/;)
that is not solely due to the variation in y;, namely, gr(cy)(1 + ;) + £;.) Denot-
ing our estimates of the variance of the growth rate by &3 and the variance of the
irregular component by 62, we therefore set Var[iy] = (1 — ¢*)o2/[2(1 + 2.)]
and Var[e;] = 62/2. We draw the initial value for gr(ag) from its unconditional

distribution.

The results of the Monte Carlo simulation are summarized in Figure A.2. As seen
in the top panel, the estimated average effective reproduction numbers are fairly close
to their theoretical values in all three scenarios. In the Testing Ramp-Up scenario, the
estimates are biased upwards at the beginning of the sample, but the amount of bias is
quantitatively relatively small. In addition, the estimates converge to those in the other
two scenarios quite quickly. In all three scenarios, the estimates are able to pick up the
reversal in the trend of R that happens at around time 30. The bottom panel of the figure
plots the average absolute error of the estimates. As expected, the estimates are least
accurate in the Stochastic Undertesting case, and mostly within 0.25—0.30 of the true R
in the Constant Underdetection and Testing Ramp-Up scenarios.

Finally, in Figure A.3 we provide Monte Carlo estimates of the coverage frequency
of credible intervals obtained by our estimation procedure. As seen in the graph, the
credible intervals in the Constant Undertesting and Testing Ramp-Up scenarios have
good coverage properties, with confidence bounds that are slighly overly conservative.
The credible bounds are somewhat too narrow in the Stochastic Underdetection sce-
nario, resulting in lower than nominal coverage frequency. However, the size distortion
appears not too severe, especially considering the small sample size.

Imported cases. Our estimates may be biased if the fraction of cases that is imported
changes over time (the previous results on imperfect detection apply to misclassification
because of imported cases, too). If the source of infections is known, it is possible to
correct for the issue by simply not including imported cases when constructing the time

series for I;.
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Figure A.3
Monte Carlo Simulation: Coverage Frequency
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Notes: Coverage frequency of 95% credible intervals: Monte Carlo results. We investigate three scenarios
for measurement error. Constant Underdetection: A constant fraction of infected individuals is detected.
Testing Ramp-Up: The fraction of detected individuals increases by 50% in the first two weeks of the
sample. Stochastic Underdetection: The fraction of detected individuals is stochastic, and its growth rate
follows an AR(1) process. Average values from 1,000 Monte Carlo replications are shown. See text and
Figure A.2 for more details.

Table A.1
Priors

Parameter Prior

Precision of irregular component (1/02) Gamma(0.15511,0.00094)
Signal-to-noise ratio (¢ = 07 /0?) Gamma(0.01196, 0.05018)
Initial value (1) N(0.35,0.5%)

Notes: Priors used in the Bayesian estimation of R;. See text for description on how the priors for the
precision of the irregular component (1/02) and the signal-to-noise ratio (¢ = 072, /o2) are calibrated based
on cross-country frequentist estimates.

A.7 Estimation Details

To estimate R; of COVID-19, we use Bayesian filtering methods. We employ the fol-
lowing strategy to calibrate the prior distributions. First, we estimate a local-level model

for gr(I;) using a frequentist Kalman filter with diffuse initial conditions. In particular,
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we estimate the following model:

gr(ly) = s + &1, & ~iid. N(O, 052)
.. ) (7
pe = pe—1 + e, e~ iid. N(0,0;)

The model is the same as in Eq. (5), except for a slight simplification in notation.

The procedure yields maximum likelihood estimates of o2 (variance of the irregu-
lar component) and the signal-to-noise ratio ¢ = 0727 /o2 for each country in the sample
(with ag denoting the variance of the level component). We then use the distribution of
62 and ¢ across countries to calibrate the priors for the precision of the irregular com-
ponent (1/0?) and the signal-to-noise ratio (¢). To ensure that the priors are not too
“dogmatic,” we inflate the variance of the estimates by a factor of 3 when calibrating
the prior distributions. We use a gamma prior for both the signal-to-noise ratio and the
precision of the irregular component, and we calibrate the parameters of the gamma dis-
tribution by matching the expected value and variance of the gamma-distributed random
variables to their sample counterparts. Finally, we use a fairly uninformative normal
prior for the initial value of the smoothed growth rate. The resulting priors are given in
Table A.1.

Intuitively, these priors shrink the estimates of the precision and signal-to-noise ratio
for each country towards their grand mean (average across countries). Such Bayesian
shrinkage ensures that the parameter estimates are well behaved even though the sample
size for many countries is fairly small, and the data are often noisy. We use the Stan pro-
gramming language (Gelman, Lee and Guo, 2015) to specify and estimate the Bayesian
model. In particular, we use the pystan interface to call Stan from Python.

A.8 Empirical Validation

In this section, we perform two empirical validation exercises to check the performance
of our estimates in practice.

Since our estimates are based on data on new cases, they may be misleading if new
cases are subject to significant measurement problems. To help assuage this concern, we
now perform the following exercise. We ask whether current values of R, help predict
future growth in deaths. Since deaths are likely to be measured more accurately, this
exercise provides a test of whether our estimates contain meaningful information and
are not contaminated by data problems.

Formally, we consider the following regression:
gr(di1) = o + B(ﬁzt — 1) + uiy,
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Figure A4
R; and Future Deaths
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Notes: Relationship between current estimates of the effective reproduction number (R ;) and the growth
rate of the number of new deaths in one week. The data is aggregated to a weekly frequency. Both
variables are residualized to subtract country fixed effects by performing the within transformation. Only
data after the cumulative number of deaths reaches 50 is included in the scatter plot. We include all
countries in the John Hopkins database for which we have at least 20 observations after the outbreak. We
remove data for the week of 2020-04-13-2020-04-19 in China that contain a large number of deaths that
were previously unrecognized.

where ¢ denotes a particular country, and ¢ indexes calendar weeks. Although our origi-
nal data is daily, we aggregate to a weekly frequency; otherwise, measures of the growth
rate of new deaths are too noisy. In addition, we only include weeks after the cumulative
number of COVID-19 deaths has reached 50. Given that we have panel data, we can
include country fixed effects «; to account for time-invariant unobserved heterogene-
ity (such as differences in average age—a key correlate of COVID-19 mortality (Verity
et al., 2020)—or family structures). The relationship given above is predicted by the
baseline SIR model. Specifically, consider Eq. (2). Letting CFR = d;/I,_, denote the
case fatality rate (assumed to be constant over time), with ¢ standing for the average
time between becoming infected and death, we have that gr(d,) = gr([;_,), yielding the
regression equation above.

The relationship is shown in Figure A.4. In the scatter plot, both variables are resid-
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Figure A.5
R, and Past Mobility

Effective Repr. Number This Week

fll()() f|75 f|50 !25 0 25 50 75 1(|)0
Mobility Index Two Weeks Ago

Notes: Relationship between current estimates of the effective reproduction number (R;) and value of
the movement index two weeks ago (first principal component of the six movement categories in Google
(2020)). The data is aggregated to a weekly frequency. Both variables are residualized to subtract country
fixed effects by performing the within transformation. We include all countries in the John Hopkins
database for which we have at least 20 observations after the outbreak.

ualized to remove country fixed effects. We observe a strong positive relationship be-
tween the value of R, this week and the growth in deaths one week later (corr. = 0.63).
In Supplementary Figure (Figure A.9), we demonstrate that there is also positive cor-
relation (corr. = 0.44) between R; and deaths two weeks later. We note that while the
average medical duration from the onset of symptoms to death for COVID-19 is longer
than two weeks (around 18 days, see Verity et al., 2020), the duration from reported
cases to deaths is likely to substantially shorter because of reporting delays. For exam-
ple, Hortagsu, Liu and Schwieg (2020) assume that new cases of COVID-19 are reported
with a lag of 8 days in their baseline calculations (5 days for symptoms to appear, con-
sistent with the evidence from Lauer et al. (2020) and Park et al. (2020), as people are
unlikely to be tested without exhibiting symptoms, and an additional 3 days to capture
delays in obtaining test results, based on andecdotal reports from the US). Since deaths
are likely reported in a timely manner, if new cases are reported with a lag of 8 days, we

would expect an average duration of around 10 days (=1.43 weeks) between reported
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cases and reported deaths.

As a second validation check, we ask whether our estimates of R; are correlated with
past movement data, as it should be if the estimates are meaningful. For information
on movement, we use aggregated smartphone location data collected by Google and
published in their “COVID-19 Community Mobility Reports” (Google, 2020). Google
provides data on percentage changes in movement for six types of places: (i) groceries
and pharmacies; (ii) parks; (iii) transit stations; (iv) retail and recreation; (v) residential;
and (vi) workplaces. Since the six categories are strongly correlated, we take the first
principal component of the six categories (the first principal component explains a little
less than 85% of the total variance in the data). We refer to the first principal component
as the “Mobility Index.” As shown in Figure A.5, current estimates of R; are strongly
correlated with the value of the mobility index two weeks ago (corr. = 0.61).

For both validation exercises performed in the present section, we include all coun-
tries for which we have at least 20 observations after the onset of the epidemic (100
cumulative cases of COVID-19 reached). If we narrow the sample down to countries
with more and higher-quality data—such as the sample of European countries analyzed
in Section 3.3—the correlations generally become substantially stronger. Hence, we

consider the tests of the present section to be conservative.

A.9 Power Analysis

In this section, we study the statistical power of the empirical analysis in Section 3.3
using a Monte Carlo simulation.

We now describe the design of the power study. Intuitively, we simulate data using a
stochastic process that is calibrated to match the properties of the observed data. We then
simulate a sharp drop in the effective reproduction number—say, because of a lockdown.
We apply our estimator to the simulated data and ask how often this abrupt change is
detected by the estimation procedure.

To simplify the notation, we use the parametrization in Eq. (7). Optimal nowcasts
from the local-level model in the steady state can be written as (Muth, 1960; Shephard,
2015, Section 3.4):

g+ V@ +4q ®
24+ q+ /@ +4q

where we denote y; = gr(Iy), e = Y(Ry — 1), my = B[], ¢ = 07 /02 is the signal-

my = wyr + (1 —w)my_q,w =

to-noise ratio, and w is the steady-state Kalman gain. Hence, nowcast errors, m; — ji,
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Table A.2
Power Analysis: Parameter Values

g q ol w

0.143 0.048 0.020 0.197

Notes: Parameter values used in the power analysis. The parameters values for ¢ (signal-to-noise ratio)
and o2 (variance of the irregular component) are given by the median estimates from the 14 countries
considered in the empirical analysis of Section 3.3. The mean duration of infectiousness is assumed to be
v~! =7, and the Kalman gain w is calculated from Eq. (8).

follow an AR(1) process with
my — py = (1 — w)(me—1 — prr—1) + {wer — (1 — w)me}-

Given that the shocks ¢; and 7, are uncorrelated, the variance of nowcast errors is

w?o? + (1 — w)?qo? )
1-(1-w)?

Var(mt — [I,t) =

The design of the power analysis is as follows:

1. We set v = 1/7, and calibrate the remaining parameters of the data-generating
process (q and 02) using the median values of the empirical estimates from Sec-
tion 3.3. The resulting parameter values are given in Table A.2.

2. We simulate p; = v(R; — 1). We initially set ;4o = 1/7, implying an effective
reproduction number of 2. At time 1, we simulate an abrupt decline in R; by
setting i3 = 1/14, yielding a new effective reproduction number of 1.5, or a
decline of 25%. For 2 < ¢ < 14, we simulate y; as a random walk, as in Eq. (7).

3. We simulate the observed growth rate of the number of infected individuals, i, =
gr(l}), as y; = pu + £, where ¢, is an i.i.d. normal random variable with mean
zero and variance o2,

4. We simulate the nowcasts m;. We draw the initial nowcast m, from a normal
distribution with mean 1/7 and variance given in Eq. (9), and simulate further
values of m; by the recursion in Eq. (8). The estimated value of R, is then given
by the estimator in Eq. (3).

5. We repeat steps 2—4 for 14 times, to simulate data for 14 “countries”, as in the
empirical application, and obtain estimates of the effective reproduction number
by averaging across the 14 “countries”.

6. We repeat steps 2—5 for 10,000 Monte Carlo replications.
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Figure A.6
Power Analysis: Monte Carlo Results

Initial R
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Notes: Power study of the statistical analysis of Section 3.3 (effects of non-pharmaceutical interventions
on R;, the effective reproduction rate). We simulate an abrupt change in R; from 2.0 to 1.5 using a
data-generating process that is calibrated to match our empirical estimates in Section 3.3. We then apply
the estimator of Eq. (3) to the simulated data and ask how often the change is detected by the estimation
procedure. The solid line gives the average estimate of R;, while the shaded lines denote 65% and and
95% of simulations (in particular, the shaded area for 65% of simulations is given by the 17.5 and 82.5
percentiles of the estimated R, across simulations, and the shaded area for 95% of simulations is given
by the 2.5 and 97.5 percentiles of the estimated R;’s). 10,000 Monte Carlo replications used.

The results of the power analysis are shown in Figure A.6. We observe that in 95%
of the simulations, the change in R; is detected as soon as two days after the drop in
R:. Hence, the analysis in Section 3.3 appears sufficiently powerful to detect moderate
changes in R;. The key reason why the analysis has high statistical power, even though
the signal-to-noise ratio is quite low (see Table A.2) is that data from multiple countries
are used to obtain cross-country averages. This feature of the estimation procedure
reduces estimation error substantially. While the signal-to-noise ratio is fairly low, we
also note that the weight placed on data is that are more than one-week old is only
(1-— w)7 ~ 21.5%. Hence, one week after the change in R;, the estimates of R, are
based primarily on data received after the change in R;.

The power analysis in the current section is arguably somewhat conservative. Specif-

ically, we assume that after the abrupt decline, R, follows a random walk rather than
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staying fixed at the new level. As a result, as time goes on, the estimates of R; become

more “spread out” across simulations, as is visible towards the end of Figure A.6.
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Appendix B Supplementary Figures and Tables

Figure A.7
Growth Rate of the Number of Infected Individuals
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Notes: Raw data for the growth rate of the number of infected individuals (solid lines) and our estimate
of its time-varying average (dashed lines) for China, Italy, and the US.
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Figure A.8
Filtered and Smoothed Estimates: China

5 —— Bayesian Smoother
=== Classical Smoother
— Bayesian Filter

------- Classical Filter

Effective Repr. Number (R)
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Notes: Estimated effective reproduction number (R) for China: filtered and smoothed estimates, using
both Bayesian and classical estimation procedures. The Bayesian estimates are given by our baseline es-
timation procedure, as explained in the text. The classical estimates are obtained by maximum likelihood
estimation (with diffuse initial conditions). The smoothed estimates use information from the full sample,
while the filtered estimates at time ¢ only use information up to time ¢. 65% credible bounds shown by

the shaded areas.
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Figure A.9
R: and Deaths in Two Weeks

Corr. =0.44

Growth in Deaths in Two Weeks
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Effective Repr. Number (R — 1) This Week

Notes: Relationship between current estimates of the effective reproduction number (R;) and the growth
rate of the number of new deaths in two weeks. The data is aggregated to a weekly frequency. Both
variables are residualized to subtract country fixed effects by performing the within transformation. See
Figure A.4 for more details.
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Figure A.10
R: and Policy Interventions: Bans of Public Events
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Notes: The graph plots the estimated effective reproduction number (R;) one week before and three
weeks after public events are banned in a country. The original sample consists of 14 European countries
studied by Flaxman et al. (2020). For the event-study graph, we restrict the sample to countries for which
data on R, is available for the whole event window. Heteroskedasticity-robust confidence bounds are

shown by the shaded areas.
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Figure A.11
‘R: and Policy Interventions: Case-Based Measures
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Notes: The graph plots the estimated effective reproduction number (R;) one week before and three
weeks after case-based measures are introduced in a country. The original sample consists of 14 European
countries studied by Flaxman et al. (2020). For the event-study graph, we restrict the sample to countries
for which data on R, is available for the whole event window. Heteroskedasticity-robust confidence
bounds are shown by the shaded areas.
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Figure A.12
‘R: and Policy Interventions: School Closures
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Notes: The graph plots the estimated effective reproduction number (R ;) one week before and three weeks
after school closures are ordered in a country. The original sample consists of 14 European countries
studied by Flaxman et al. (2020). For the event-study graph, we restrict the sample to countries for which
data on R, is available for the whole event window. Heteroskedasticity-robust confidence bounds are
shown by the shaded areas.
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Figure A.13
R; and Policy Interventions: Social Distancing
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Notes: The graph plots the estimated effective reproduction number (R ;) one week before and three weeks
after social distancing is encouraged in a country. The original sample consists of 14 European countries
studied by Flaxman et al. (2020). For the event-study graph, we restrict the sample to countries for which
data on R, is available for the whole event window. Heteroskedasticity-robust confidence bounds are
shown by the shaded areas.
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Table A.3
Effective Reproduction Number and NPIs

(1) (2) ) (4) (5)

Lockdown -0.11%*
(0.04)

Public Events 0.07*

(0.04)
School Closure -0.15%*

(0.05)
Self Isolation 20,17+
(0.05)
Social Distancing -0.14**
(0.06)

N 840 840 840 840 840
R? 0.87 0.87 0.87 0.87 0.87
Country FE v v v v v
Days-Since-Outbreak FE v v v v v
Mobility Controls

Testing Controls

*p <0.1; **p <0.05; **p <0.01

Notes: Results of panel-data regressions of the (log of) effective reproduction number (R;) on indicator
variables that are equal to 1 after the introduction of a non-pharmaceutical intervention (NPI) and 0 before
the introduction. The regressions are similar to those in Table 2 except that the intervention variables are
included separately (one-at-a-time). See Table 2 for more details.
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