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Abstract

There seems to be widespread pessimism regarding the ability of a nation
to eliminate covid. One factor in this pessimism seems to be concern that
covid might always be able to re-emerge because of the ongoing presence of
unrecognised asymptomatic cases. However, it is shown here that it should
be possible to eliminate covid more easily than anticipated, for a reason
that at first glance seems paradoxical - the presence of superspreaders. If
superspreaders are responsible for most of the spread, then, with the aver-
age number of secondary cases fixed at say Ry = 2.5, we have to conclude
that superspreaders are relatively rare. When towards the end of an elim-
ination program, there are very few infected people, whether symptomatic
or asymptomatic, that small number of people may well not include any
superspreaders. As a result, chance effects may make extinction likely. Nev-
ertheless it is clear an attempt at elimination will require a rather onerous
“lockdown”. In this paper we use a branching processes model to look at
the tradeoff between risk of disease re-emergence and the length of “lock-
down” required after a program of elimination has dropped the number of
symptomatic cases in a region to just one.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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Introduction

The experience of Taiwan, China, Vietnam, New Zealand and perhaps Aus-
tralia indicates that covid-19 can be eliminated. Elimination may require
lowering the reproductive rate of the infection by “lockdown” measures until
there are very few active cases and then perhaps waiting for several incuba-
tion periods without new cases before ending the lockdown.

When numbers are large, each generation of cases will increase by a factor
of & Ry (ignoring saturation effects). However, when numbers are very low,
stochastic effects are important, particularly if superspreaders are prominent.
To take an extreme example, it is clear that if superspreaders were all im-
portant, so that the average Ry of say 2.5 was made up of 1% of infected
people, who each spread the disease to 250 others and 99% who spread the
disease to no-one, then there is at least a 99% chance that any randomly
chosen infected person will not generate ongoing transmission. In general, a
degree of superspreading, seems to be important across a range of infectious
disease.l'> 4l A negative binomial distribution seems to approximate the dis-
tribution of the number of secondary cases generated by a primary case of
an infectious disease.[l: 2/ This distribution depends on the average number
infected Ry and a dispersion parameter r (some authors use k in place of 7).
With R, fixed, if r — o0, there is no superspreading phenomenon and the
number of secondary cases is the total randomness described by a Poisson
distribution. If » — 0, superspreading becomes increasingly important, with
a smaller and smaller proportion of infectious cases spreading the disease to
more and more people. Likewise, as r — 0, if we start with a randomly
chosen infected person, the chance that they are a superspreader becomes
smaller and so the chance that they give rise to ongoing disease transmission
reduces. Correspondingly, with very low numbers of infected people close to
the end of a program of elimination, as » — 0, the probability of elimination
becomes high.

There are various estimates of the dispersion parameter r for the dis-
tribution of secondary covid cases that have occurred from various primary
cases. For the distribution before lockdown there is an estimate that » = 0.1
from observation of the initiation of the epidemic in various countries.l3) A
paper based on data from the early epidemic in China, states that there will
be a probability of < 50% of covid elimination if there are at least 4 cases
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present.[4] It is difficult to find the direct estimate of r in this paper but this
probability of elimination is compatible with an r value of between 0.126 and
0.172. A paper based on data after lockdown in China states that 80% of
cases are caused by 8.9% of infected people.[5] With Ry also specified, it is
not possible to precisely match the two figures 80% and 8.9% by varying the
single parameter r, though r = 0.126 provides a close approximation. (Unfor-
tunately, the paper directly states a negative binomial dispersion parameter
value of 0.58, but this is not compatible with their data.) The parameter r
in the case of SARS is estimated to be 0.16-0.17(2 A million fold variation in
viral load in the secretions of covid patients also suggests a prominent role for
Superspreaders.[G] Given these various estimates of r, it seems that the true
distribution of the number of secondary cases of covid generated by various
primary cases, can be approximated by a negative binomial distribution with
dispersion parameter r in the range 0.10 to 0.17. Accordingly, two negative
binomial distributions, one with » = 0.10 and the other with » = 0.17, are
used in a model of the last stage of a program of regional covid elimination.

For both distributions, the case of a policy of release of lockdown once
there is just a single newly diagnosed symptomatic case, is examined. Re-
sults are obtained by analytical methods. The effect of two further policies
are obtained by simulation. These policies are waiting one incubation period
after this time before lifting restrictions and waiting two incubation periods
before lifting restrictions.

This paper assumes that an attempt has been made to eliminate covid-19
from a region/province/nation. It assumes no appreciable herd immunity. Tt
also assumes that there is no quarantine free cross border human travel into
the region considered and this restriction will be maintained. We make the
conservative assumption that the moment lockdown is lifted, transmission
immediately goes back to its pattern at the beginning of the epidemic, which
for both distributions is assumed to have Ry = 2.5.

It is known that a proportion of cases are asymptomatic. Here this pro-
portion p,, is taken to be 50%. It is further assumed that the symptomatic
cases up to their time of isolation and the asymptomatic cases, both have
the same distribution for the number of secondary infections they generate.
This too seems likely to be a conservative assumption.
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Methods

It is known from the theory of branching processes in discrete time, that the
probability of extinction of a branching process is given by the (smallest)
solution to the equation ¢(u) = u where ¢(x) is the probability generating
function for the number of secondary cases of a single index case.l”) This
equation can be solved by Newton’s method. If the distribution of secondary
cases is negative binomial with Ry = 2.5 and » = 0.10, the probability of
extinction of a single branching process is 0.861. With the same R, and
r = 0.17 the probability of extinction is 0.784. We denote these probabilities
of extinction of a line from a single case as p..

However, once a closed region is down to a single newly diagnosed symp-
tomatic case, we are assuming that there will be on average one unnoticed
asymptomatic infectious person (p, = 50%). It is assumed, as an uninforma-
tive Bayesian prior, that the actual number of asymptomatic cases will follow
a geometric distribution. Nevertheless, as described above, there may be no
ongoing transmission from any one case and so it is possible that there will
be no ongoing transmission from however many infectious people there are
left. We make two conservative assumptions here. First, that the last symp-
tomatic case has already definitely seeded one other case before diagnosis and
isolation. Second, that with lockdown lifted as soon as the number of newly
diagnosed symptomatic cases is down to 1, Ry for all infectious people still
present, immediately goes back to 2.5. It is shown in Attachment 1 that the
probability of epidemic re-emergence will then be %. We denote this
probability as pro where “T” denotes Total disease elimination and the “0”
stands for release of lockdown zero incubation periods after the the number
of newly diagnosed symptomatic cases has dropped to one.

There are two further policy scenarios considered - continuing restrictions
for 1 incubation period after the last symptomatic person has been isolated,
and continuing retrictions for 2 incubation periods. During this period of
ongoing lockdown it is assumed that a negative binomial distribution of sec-
ondary cases will still apply but with Ry = 0.8. However, the dispersion
parameter r is assumed to be unchanged. The probability that the disease
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will truly have been eliminated if no further symptomatic case emerges during
this extended lockdown is calculated by simulation. The probability of total
elimination of the disease after 1 and after 2 incubation periods is denoted
pr1 and pro respectively. Each simulation employs 10 million runs. A fortran
program corresponding to these simulations is given as an attachment.

Results

Table : Results with p. and pro calculated analytically and ppq & prso calcu-
lated by simulation. The analytic calculation assumes that the last diagnosed
case has already seeded exactly one other case before isolation and then Ry
immediately returns to 2.5. The simulations assume that during isolation,
all infected people seed cases according to a distribution with Ry = 0.8, but
afterwards Ry returns immediately to 2.5
r Pe Pro P11 P12
0.10 0.861 0.755 0.974 0.9978
0.17 0.784 0.645 0.961 0.9966

Unfortunately, in implementing policies whose outcomes are denoted ppy
and pro, there will be occasions where relief from “lockdown” will be fur-
ther delayed by re-emergence of symptomatic cases before the one or two
incubation periods are completed. In the case of both the distributions, this
happens about 31% and 34% of the time with a policy of a 1 or 2 incubation
wait respectively.

Discussion

A policy of elimination requires a more intense “lockdown” than a policy of
“flattening the curve” so that the epidemic peak is within the capacity of a
region’s ICU beds. However, a study by the Imperial College,[& shows that
there are two rather fine lines between flattening the curve sufficiently and on
the one hand, elimination, or on the other hand, an insufficiently flattened
epidemic and a huge death rate. Even if “optimal” curve flattening can be
achieved there will still be many deaths. In addition, whilst slightly less in-
tense lockdown is required for curve flattening rather than elimination, the
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period of “lockdown” for curve flattening, will have to be continued for far
longer. An advantage of the curve flattening approach is that curve flatten-
ing could lead to herd immunity and thus allow less restricted international
travel to parts of the world that have not achieved elimination, though this
prospect is uncertain. On the other hand, international travel without quar-
antine will not be possible between a country that has achieved elimination
and a country which has not, at least until a vaccine is available. For this
author, the arguments in favour of a policy of elimination are ovewhelming,
for nations/regions which have the resources to implement it and who have
secure borders. New Zealand is following a policy of elimination and there
seems to be emerging realisation that this is a real option for Australia. Since
the intensity of “lockdown” required for elimination will be quite onerous, it
is important that the length of “lockdown” required is balanced against the
probability that this lockdown period will be successful in eliminating the
virus.

The calculations show that there is better than 99.7% chance of elimi-
nation if two incubation periods pass without re-emergence of symptomatic
cases. It would seem that, when numbers of symptomatic cases have been
reduced to rather low levels, lockdown periods, could be decreased further by
subdividing a region. A region implementing an elimination strategy could
be subdivided into subregions which could be temporarily disconnected from
each other in terms of human travel, such that each subregion has only one
case. Relief from severe restrictions could then commence quite quickly.

There are some clear limitations to this study. No sensitivity analysis has
been done beyond calculations for the two specific distributions described.
In particular, there is no sensitivity analysis for likely different values for the
proportion asymptomatic p,. However, the fortran programs below could
facilitate such a sensitivity analysis if there was more knowledge about the
range of plausible values.

The calculations and simulations also assume discrete time steps and a
different analysis will be required to account for a more realistic model in
continuous time.! However, one might reasonably hope that more realistic
simulations in continuous time will yield fairly similar results to these simpler
simulations - but this would need to be checked.
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There are some assumptions that are too pessimistic. Some assumptions
that are likely too conservative have been mentioned above, but there are
others. For example, many asymptomatic cases may be detected by contact
tracing. There is also implicitly some assumptions that may be too opti-
mistic. For example, it is assumed that there are not cases of prolonged
infectious periods or human carrier states or animal reservoirs of the virus in
the region. Nevertheless this study gives cause for optimism about the length
of lockdown required for any region attempting to eliminate this disease.
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Attachment 1

It is assumed that the number of asymptomatic cases is given by a geometric
distribution, so that the probability that there are k asymptomatic cases is
(1—pa)p®, k=0,1,2,.. ..

The probability prg, that none of these cases gives rise to ongoing transmis-
sion is found by summing the probability over all possible values of k that
there are k such cases and that transmission from all such cases goes extinct

with probability p*

this gives pro = > peo(1 — pa)pkph = (1—pa)

1—pape
If we include the conservative assumption that before diagnosis, the last case

diagnosed had definitely seeded a single case, we have the result pro = %
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Attachment 2

Fortran program using Newton’s method to calculate the probability of ex-
tinction of the branching process for various probability distributions

! prog to estimate r for prob extinction for various neg binom distributions with R0=2.35,
! (a value used in one of the references) using Newton’s method

! initialise newton iteration to find zero of f(u)=phi(u)-u
x=0.86068 !may need adjustment for convergence
1 continue
print *,’type in r’
read (*,*)r
p=2.35/(r+2.35)
Do i=1,10
xnum=((1.-p)/ (1-p*x) ) **r-x
xden=r*p* ((1.-p)/ (1-p*x))**(r-1.)-1.
xnew=x-xnum/xden
print *,’x,xnum,xden xnew’,X,Xnum,xden,xnew
X=xnew
end do
print *,’pe= ’,xnew
goto 1
stop
end

The fortran program below calculates by simulation, the probability of
elimination when there are two incubation periods in which, under “lock-
down” conditions, number of secondary cases are determined by a negative
binomial distribution, with Ry reduced from 2.5 to 0.8, but with » unchanged
unchanged. Since this negative binomial is used repeatedly in the simulation,
it is useful to calculate its cumulative distribution using a separate program.
A few other very short, almost trivial, programs are also used in this project.
They are not copied here but are available on request to the author.

program to simulate stopping rule for anti-covid measures
simulates probability of no re-emergence if stopping after two incubation periods with no symptomatic found
Dimension cumprob(0:170)

Open file relating a random number between O and 1 to number of outcomes of the neg binom distribution
Open(20,file="cumnegbinom.dat") ! cum neg binom modified so RO at 0.8
Do i=0,170
read (20, *) cumprob (i)
end do
pa=0.5 ! prob of someone infected being asymptomatic
pe=0.784 10.86068 ! prob of extinction of line from a single case with neg binomial distribution with parameters p=25/26, r=0.1.
! ie when normal R0=2.5 is resumed

Initialise counters
isum=0

Counter for number of cases where there are symptomatic offspring after 1 incubation period in lockdown
isum2=0 Counter for number of cases where there are symptomatic offspring after 2 incubation periods in lockdown
isumsuxs=0 Counter for number of cases where at least one offspring is infected and gives lines that don’t go extinct

! after two incubation periods
nnn=10000000 ! number of runs regardless of whether they generate a pattern that satisfies stopping rule

Start big loop iterating through nnn cases with random numbers determining undetected cases

bigloop:Do n=1,nnn

find probability that there are m asymptomatics as well as the last index symptomatic
m= igeomran(idum)
mpl=m+1
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Count offspring of index case plus offspring of all asymptomatics
call totoffcalc(mpl,cumprob,ioffspring) !ioffspring is a counter for total number of offspring from m+1 neg binom distributions

! print *,’mpl ioffspring’,mpl,ioffspring

Now need to find probability that all offspring are asymptomatic and if so the probability that all lines of descent from these asymptomatics
end in extinction.
Go back to beginning without counting stopping rule as a failure if still >=1 symptomatics present

w=ran3(idum)

if (w>pax*ioffspring)then !This gives a probability 1- pa“ioffspring so it is the probability there are ioffspring
! and some are symptomatic.
isum=isum+1 !Need to count such cases so that we can deduct them from our nnn simulations
cycle bigloop 'as they do not meet the stopping rule protocol
else

call totoffcalc(ioffspring,cumprob,ioffsprng2)

w=ran3 (idum)

if (w>pa**ioffsprng2)then !This gives a probability 1- pa”ioffsprng2 so it is the probability there are ioffsprng2
isum=isum+1 ! with some symptomatic. Need to count such cases so that we can deduct them from our nnn simulations
cycle bigloop !as they do not meet the stopping rule protocol

end if

w=ran3 (idum)
if (w<pe**ioffsprng2)then ! we have met the stopping rule protocol and all remaining lines go extinct
isumsuxs=isumsuxs+1
end if
end if

" print *,’ptotextinct,w,is,isuxs ’,ptotextinct,w,isum,isumsuxs
end do bigloop
probsuccess=real (isumsuxs) /real (nnn-isum)
print *,’isumsuxs,isum,probsuccess’,isumsuxs,isum,probsuccess

stop
end

subroutine totoffcalc(mpl,cumprob,ioffspring)
Dimension cumprob(0:170)
ioffspring=0
Do j=1,mpl
v=ran3 (idum)
" print *,’v=’,v

Do i=0,170
if (v<cumprob(i))then
! print *,’i,v,cump(0),cump(i)’,i,v,cumprob(0),cumprob(i)
exit
end if
end do
k=i

! print *,’i,k=’,i,k
ioffspring=ioffspring +k
end do
return
end
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