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ABSTRACT 
 
Background: Long-term care facilities (LTCFs) are particularly vulnerable to nosocomial outbreaks of 
coronavirus disease 2019 (COVID-19), with high rates of transmission and mortality. Timely 
epidemiological surveillance is essential to detect and respond to outbreaks, but testing resources 
are highly limited in the current pandemic context. 
 
Methods: We used an individual-based transmission model to simulate COVID-19 spread along inter-
individual contact networks in the LTCF setting. A range of surveillance strategies were evaluated for 
their ability to detect simulated outbreaks, assuming limited availability of standard RT-PCR tests. 
Various epidemiological scenarios were considered, including COVID-19 importation from patient 
transfers or staff members infected in the community. 
 
Findings: We estimated a median delay of 7 (95% uncertainty interval: 2-15) days from importation 
of an asymptomatic COVID-19-infected patient to first presentation of COVID-19 symptoms among 
any patients or staff, at which point an additional 7 (0-25) individuals were infected but did not (yet) 
show symptoms. Across a range of scenarios, the reference surveillance strategy (testing individuals 
with COVID-like symptoms with signs of severity) took a median 11–21 days to detect an outbreak. 
Group testing (pooling specimens from multiple individuals for a single RT-PCR test) patients and 
staff with any COVID-like symptoms was both the most timely and efficient strategy, detecting 
outbreaks up to twice as quickly as the reference, and more quickly than other considered strategies 
while using fewer tests. Maximizing use of available tests via testing cascades was more effective 
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than group testing only when substantial testing resources were available (on the order of 1 test/20 
beds/day). Including not merely those with symptoms but also newly admitted patients in group 
tests and testing cascades reduced delays in outbreak detection for LTCFs actively admitting patients 
potentially already infected with COVID-19.  
 
Interpretation: Improving COVID-19 surveillance can alert healthcare institutions to emerging 
outbreaks before they escalate, informing a need for urgent public health intervention in settings 
with ongoing nosocomial transmission.  
 

Keywords: SARS-CoV-2, surveillance, healthcare-associated infection, mathematical modelling, 
individual-based model, contact networks, group testing 
 
 
RESEARCH IN CONTEXT 
  
Evidence before this study 
On April 18 2020 we searched PubMed and MedRXiv for articles published since January 1 2020 and containing the terms 
(“COVID” OR “coronavirus” OR “nCoV” OR “SARS-CoV-2) AND (“long-term care” OR “LTCF”). We identified 16 articles 
published in academic journals, mostly outbreak reports and editorials describing a need for improved testing and control 
measures. Very few of the 179 identified preprints were studies of COVID-19 in long-term care. A separate search for the 
same COVID terms AND (“transmission model” OR “mathematical model” OR “dynamic model”) returned 29 published 
articles, including an evaluation of surveillance strategies in airports, and a range of transmission models at the country or 
community levels, but none specifically tailored to healthcare settings, whether hospitals, LTCFs or otherwise. Among 776 
preprints, we identified a large number of studies assessing and projecting COVID-19 burden in hospital systems, but only 
two transmission models specific to healthcare settings, neither of which addressed long-term care settings nor options for 
epidemiological surveillance. Together, this suggests a lack of research on the unique transmission dynamics and 
surveillance considerations for COVID-19 in healthcare settings. This gap is further highlighted by extensive study of 
nosocomial outbreaks of other zoonotic coronaviruses (SARS-CoV, MERS-CoV). 
  
Added value of this study 
Our study is among the first to model nosocomial transmission of COVID-19, and highlights an important role for 
asymptomatic and pre-symptomatic transmission, as well as unique challenges for epidemiological surveillance that result 
from lags between infection and symptom onset. Our study is also among the first to evaluate different surveillance 
strategies for COVID-19 in the healthcare setting, in the context of optimizing highly limited testing resources. We include 
group testing, which has recently been proposed as a cost-effective strategy for COVID-19 surveillance, but which has been 
little implemented in practice. Our findings provide an evidence base for how to tailor surveillance to COVID-19's unique 
epidemiological characteristics, and ultimately how to improve allocation of limited tests in healthcare settings. We 
conclude with tangible recommendations for decision-makers. 
  
Implications of all the available evidence 
LTCFs are uniquely vulnerable to COVID-19 outbreaks, owing to frail and elderly patient populations and limited resources 
for testing and outbreak response. We show that differences in allocation of limited tests can have important public health 
consequences. Improving outbreak detection (e.g. by group testing and/or expanding testing criteria) allows outbreaks to 
be detected sooner, facilitating timely interventions such as patient isolation, enhanced infection prevention measures and 
contact tracing. Delaying these responses by a matter of days could make the difference between isolated cases and full-
blown nosocomial outbreaks. As the COVID-19 pandemic continues to unfold, improving outbreak detection with the 
limited resources available remains a central priority for healthcare institutions worldwide. 
 
 
 
INTRODUCTION 
 
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by novel human coronavirus 

SARS-CoV-2, is a public health emergency of international concern. COVID-19 is highly transmissible 

with a wide clinical spectrum, ranging from asymptomatic respiratory tract infection to progressive 
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pneumonia and death.1 Older patients and those with comorbidities are at greatest risk of severe 

outcomes,2 making healthcare settings such as long-term care facilities (LTCFs) particularly 

vulnerable to COVID-19.3 From rehabilitation hospitals to nursing homes, a growing number of LTCFs 

worldwide are reporting catastrophic outbreaks, with high rates of infection and mortality among 

patients and healthcare workers (HCWs) alike.3–5 

 

Timely detection of nosocomial COVID-19 outbreaks is essential to protect patients and HCWs and to 

slow contagion. Yet COVID-19 surveillance is limited by available testing resources. The current 

standard RT-PCR (reverse transcriptase polymerase chain reaction) test is laborious and expensive, 

and is in some settings subject to specific guidelines. For instance, in LTCFs in countries such as 

France, the Netherlands, the UK and the USA, tests have been limited only to individuals presenting 

with characteristic COVID-19 symptoms or signs of severity.3,6–8 Yet symptomatic cases represent just 

the tip of the iceberg: infectious individuals with no, mild, or as-yet undeveloped symptoms are 

common in COVID-19 outbreaks, and can easily go undetected by syndromic surveillance systems 

while nonetheless seeding chains of transmission.9–11 Recent studies have indicated that surveillance 

strategies such as group testing may represent effective and resource-efficient alternatives to 

standard syndromic surveillance, 12–15 but few settings have adopted such practices.  

 

In order to mitigate and prevent further nosocomial outbreaks, there is an urgent need to improve 

COVID-19 surveillance, taking into account both limited testing resources and the unique 

transmission dynamics and clinical characteristics of COVID-19. Here, we investigated the efficacy 

and timeliness of a range of COVID-19 surveillance strategies using simulations from a dynamic 

COVID-19 transmission model among patients and HCWs in the LTCF setting.  

 
 
METHODS 
 
Surveillance strategies for COVID-19 in long-term care 

 

We used simulated epidemics (described below) to evaluate a range of surveillance strategies for 

detecting introductions of COVID-19 into the LTCF setting (Table 1). Surveillance strategies varied 

according to who received conventional RT-PCR tests and with what priority, assuming limited 

testing resources fixed at a maximum of 1, 2, 4 or 8 tests per day (for the 170-bed LTCF simulated in 

the main analysis, this corresponds to roughly one test per day per 170, 85, 43 or 21 beds). We 

assumed a one-day lag between a test and its result, a low test sensitivity upon initial infection, and 

subsequently a high sensitivity upon symptom onset (see all parameter values in Table S1). 
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Individuals were selected for testing according to three clinical indications: presentation of COVID-

like symptoms (mild or severe), hospital admission, or belonging to a particular demographic (e.g., 

patients, HCWs). Symptom-based tests were administered on the first day that symptoms appeared. 

COVID-19 may clinically resemble other acute respiratory infections,1 so individuals with COVID-like 

or actual COVID-19 symptoms were both indicated for symptom-based testing. Average daily 

incidence of influenza-like illness among older adults in French emergency departments (50-99 years, 

2008-2017) was used as a proxy attack rate for patients and staff presenting with COVID-like 

symptoms of other aetiologies, 20% of whom were assumed to develop signs of severity.  

 

The reference strategy in the current resource-limited pandemic context was taken as testing upon 

presentation of COVID-like symptoms with signs of severity. Three groups of alternative strategies 

were also evaluated: (i) testing for other indications (any COVID-like symptoms, hospital admission), 

(ii) maximizing daily testing capacity via testing cascades, or (iii) group testing. To reach daily testing 

capacity, cascades of priority apportioned tests first to those with severe symptoms and then other 

indications (e.g. mild symptoms, admission) until all tests were used. For group testing, clinical 

specimens from multiple individuals were pooled and tested as one (up to, but not necessarily 

reaching a maximum of 2, 4, 8 or 16 specimens per test). Although such a group testing procedure 

can not reveal which individual(s) is (are) potentially infected, it can save cost and time and is widely 

used in screening for rare diseases, quality control in manufacturing, and computational biology. 

COVID-19 group testing also comes at the cost of reduced test sensitivity,13 which was assumed to 

decrease linearly with each additional true negative sample as 

 

𝑠" = 𝑠$ − (𝑟 ×
𝑆
𝑃) 

 

where sg and si are group- and individual-level test sensitivities, r is the discounting rate for each 

additional negative sample, S is the number of specimens, and P is the number of true positive 

specimens. As with standard RT-PCR testing, group testing for COVID-19 is very highly specific,15 so 

perfect specificity was assumed. For all group testing strategies, we assumed that tests were first 

reserved for individuals presenting with severe symptoms, and that a group test was then conducted 

only if any tests remained. 
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Table 1. Surveillance strategies considered for detection of COVID-19 outbreaks. Symptoms refer specifically to 
COVID-like symptoms among anyone in the hospital (patients or staff). Admission refers to patients newly 
admitted to the LTCF that same day. Arrows (à) indicate order of priority for testing cascades. 

Surveillance 
strategy Description Indications evaluated 

Daily testing 
capacity 
always 

reached? 

Baseline 
indication-based 
testing 

Administer RT-PCR tests to 
any individuals indicated for 
testing, up to the daily 
testing capacity 

Symptoms (severe) [reference strategy] No 

Symptoms (any) No 

Admission No 

Random (patients) Yes 

Random (healthcare workers) Yes 

Random (all) Yes 

Testing cascades Administer RT-PCR tests to 
individuals according to 
cascades of priority, until 
daily testing capacity is 
reached. First priority is 
always given to individuals 
presenting with severe 
COVID-like symptoms. 

Symptoms (severe) à Symptoms (mild) à Random 
(patients) 

Yes 

Symptoms (severe) à Symptoms (mild) à Admission à 
Random (patients) 
 

Yes 

Symptoms (severe) à Admission à Random (patients) 
 

Yes 

Symptoms (severe) à Admission à Symptoms (mild) à 
Random (patients) 

Yes 

Group testing First administer individual 
RT-PCR tests to anyone 
presenting with severe 
COVID-like symptoms. 
Subsequently, if any tests 
remain, pool clinical 
specimens together up to a 
maximum of 2, 4, 8 or 16 
specimens, and run one RT-
PCR test across all 
specimens 

Symptoms (any) No 

Admission 
 

No 

Random (patients) (always maximizes number of specimens 
per group test) 

No 

 

Surveillance strategies were evaluated based on their ability to detect nosocomial outbreaks using 

three measures of timeliness and efficacy: (i) detection probability, the probability of detecting an 

outbreak t days from the index case at t=1; (ii) detection lag, the number of days from the index case 

to outbreak detection (first positive test result); and (iii) outbreak size upon detection, the 

cumulative number of undetected COVID-19 cases among patients and staff in the hospital upon first 

positive test result. Testing strategies were only evaluated for simulations in which the initial index 

case resulted in an outbreak (defined as simulations with ³1 nosocomial transmission event), and we 

defined a maximum outbreak detection lag of 21 days, after which all outbreaks were assumed to be 

detected, regardless of the surveillance strategy used.  
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Simulating nosocomial COVID-19 spread 

 

COVID-19 epidemics were simulated using a dynamic, stochastic, individual-based transmission 

model, describing dynamic inter-individual contacts among and between hospital patients and 

personnel in a five-ward, 170-bed LTCF.16 There were on average 154 patients and 239 members of 

staff present in the hospital per day, the latter partitioned across 13 distinct categories (e.g. nursing, 

administrative or operations staff). Both patients and staff could potentially become infected with 

COVID-19 and/or experience COVID-like symptoms. Hospital structure, demographics, and dynamic 

contact networks were estimated from close-proximity interaction data, measured via sensors worn 

by all patients and personnel over a 12-week period in a five-ward rehabilitation hospital in northern 

France (described elsewhere)17.  Distinct contact patterns among and between individuals reflect 

both inherent differences in behaviour as well as different amounts of time spent in the hospital 

(e.g., patients are admitted and discharged but typically spend 24 hours per day in the hospital, 

whereas staff are present according to their standard working hours). 

 

Clinical progression of COVID-19 was characterized by: (i) a non-infectious incubation period of 2-5 

days, (ii) an infectious pre-symptomatic period of 1-3 days, (iii) an on-average 7-day symptomatic 

period, and (iv) eventual recovery with full immunity. For (iii), we estimated that 70% of COVID-19 

patients develop clinical symptoms,18,19 and that 20% of symptomatic patients develop severe 

(including critical) symptoms.20 To reflect rapid pulmonary deterioration characteristic of severe 

COVID-19, we assumed no difference in average time to symptom onset across cases. As surveillance 

strategies were evaluated only for detection of outbreaks, death and potential long-term clinical 

outcomes were not explicitly simulated. All clinical and epidemiological parameters are presented in 

supplementary table S1.  

 

All simulations began with an asymptomatic index case of COVID-19 imported into the LTCF on day 

one (t1), but five distinct epidemiological scenarios were considered to account for variable outbreak 

onset: (i) one infected patient admitted at t1, (ii) one infected patient admitted at t1 and 

subsequently once weekly , (iii) one staff member infected in the community at t1, (iv) one staff 

member infected in the community at t1 and subsequently once weekly, and (v) either one infected 

patient or one staff member introduced at t1 and subsequently once weekly (assuming 50% 

probability of patient or staff). Index cases, whether at t1 or later, had equal probabilities of being in 

the incubating, pre-symptomatic or asymptomatic stages of infection. Visitors were excluded from 

the model to represent common practices in the current context of pandemic COVID-19, though no 

additional COVID-specific interventions were implemented. For each outbreak simulation (100 per 
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importation scenario), the stochastic surveillance algorithm was run 100 times (=10,000 simulations 

´ 5 scenarios) for each surveillance strategy. Resulting simulation uncertainty in model outcomes is 

expressed as 95% uncertainty intervals (UI). 

 

 

The per-contact transmission rate of COVID-19 was estimated assuming a basic reproduction number 

of R0 = 3. We assumed that  

 

𝑅- = 𝑝 × 𝑛 × 𝑑 × 𝜏 

 

where p is the per-minute probability of transmission between susceptible and infectious individuals 

in contact with one another; n is the average number of daily contacts per individual; d is the average 

duration of these contacts; and 𝜏 is the duration of the infectious period. Based on data from a 

contact survey in the French general community (n = 8 contacts/days, d = 30 minutes) and assuming 

an infectious period of 𝜏 = 9 days,21,22 we calculated a transmission probability of p = 0.14% per 

minute spent in contact. We further set a saturation threshold at one hour of contact, such that the 

per-contact transmission probability was at most 8.3% per contact between any two individuals. 

 

Sensitivity analyses were conducted to account for model and parameter uncertainty. First, we 

simulated a smaller, single-ward, 30-bed geriatric LTCF, with on average 26 patients and 80 staff per 

week, and fewer and longer contacts (but a similar total duration of contact) between patients. 

Second, outbreaks were simulated assuming alternative transmission rates (p=0.07%/min of contact, 

p=0.28%/min of contact; derived from R0 = 1.5, R0 = 6).  

 

 

RESULTS 
 
COVID-19 spreads quickly, but symptoms lag 

 

In our simulations, COVID-19 spread quickly but with a great degree of stochasticity upon its 

introduction to the LTCF and in the absence of surveillance or control measures (Figure 1). Transfer 

of a single asymptomatic infected patient always resulted in an outbreak (100% of simulations). 

Outbreaks were characterized by a median time lag of 7 (2-15) days between the index case entering 

the facility and the first appearance of any COVID-19 symptoms among any infected patients or staff 

(Figure 1). By this time, 7 (0-25) additional patients and/or staff had acquired COVID-19 but did not 
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(yet) show symptoms. The lag until first onset of severe COVID-19 symptoms was greater (12 days 

from index case, 4-21) and coincided with a greater number of undetected infections (23, 2-73). 

 

When COVID-19 was introduced by an asymptomatic infected staff member, outbreaks were less 

likely to occur than when patients introduced the virus (64% of simulations). Outbreaks caused by 

staff were further characterized by fewer transmission events on average and a greater lag between 

the index case and symptom onset among anyone infected, but similar mixes of patients and staff 

became infected regardless of who initiated the outbreak (Figure S1). 

 

The reference strategy is never the best one, whatever the number of tests 

 

Across five scenarios of COVID-19 importation into the LTCF (Figure 2A), surveillance strategies 

varied greatly in their ability to detect COVID-19 outbreaks (Figure 2B). We first examined indication-

based testing strategies individually, prior to testing cascades or group tests. Across scenarios and 

testing capacities, the reference strategy (severe symptoms) was always outperformed, with lags in 

onset of severe symptoms entailing lags in outbreak detection. When COVID-19 was imported by 

patient transfer, testing patients upon hospital admission facilitated rapid outbreak detection, but at 

the cost of failing to detect ongoing outbreaks already underway in the facility. Conversely, testing 

patients and staff with any COVID-like symptoms was the strategy most likely to detect ongoing 

outbreaks, but like the reference strategy was hindered by lags between outbreak onset and the 

appearance of symptoms.  

 

Increase testing capacity to improve outbreak detection 

 

Increasing testing capacity generally led to more rapid outbreak detection, but some strategies 

benefited more from increased capacity than others (Figure S2). The reference strategy benefited the 

least: owing to a low average daily incidence of severe COVID-like symptoms (1·0, 0·6–1·8 for 

scenario five), increasing capacity above 2 tests/day rarely resulted in more tests being used and had 

a negligible impact on outbreak detection. A similar threshold was observed for testing upon 

admission, owing to a limited number of new patients admitted per day (2·0, 0·0–7·0). Relative 

efficacies of different surveillance strategies thus depended not only on daily testing capacity but on 

the number of individuals indicated for testing, and in turn the number of tests actually used each 

day.  

 

Cascades and group tests detect outbreaks sooner 
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Testing cascades and group testing detected outbreaks more quickly than traditional indication-

based testing, but for different reasons. For cascades, increasing testing capacity always resulted in 

more individuals being tested and hence a greater probability of outbreak detection. The relative 

efficacies of different cascades depended on the order of priority given to different indications 

(Figure S3). As with individual-based tests, prioritizing admissions was advantageous for outbreaks 

only caused by patient transfer, whereas prioritizing symptoms was advantageous for outbreaks only 

caused by staff (Figure 3). 

 

Group testing strategies detected outbreaks more quickly than cascades when testing capacity was 

limited (Figure 3). By pooling multiple specimens per test, group testing resulted in a greater 

probability of testing an infected patient or member of staff and ultimately of detecting the presence 

of COVID-19 in the facility, despite reduced test sensitivity. Outbreak detection was improved by 

increasing the maximum allowable number of specimens per group test, up to a threshold set by the 

number of individuals potentially indicated for inclusion, e.g. in our simulations a daily average 

incidence of 5·4 (3·9–7·6) individuals presenting with any COVID-like symptoms over the first three 

weeks of the outbreak (Figure S4). Again, group testing of admitted patients was preferable when 

outbreaks were only caused by patient transfers, and of individuals presenting with any COVID-like 

symptoms when only caused by staff (Figure 3). Group testing strategies required on average just 

two tests per day, explaining minimal benefit to further increased capacity.  

 

Group testing is the most resource-efficient strategy  

 

Group testing was more efficient than other surveillance strategies, requiring fewer tests (Figure 4) 

and, in some instances, fewer specimens than other strategies (Figure S5) to detect outbreaks on 

average up to twice as quickly as the reference strategy. In particular, group testing patients and staff 

with any COVID-like symptoms was the most effective and efficient strategy under limited testing 

capacity for outbreaks potentially caused by either patients or staff (scenario five). In this scenario, 

cascades required a high daily testing capacity and on average up to three times as many tests to 

outperform group testing. The number of specimens per group test was ultimately limited by the 

number of individuals indicated for inclusion, explaining variability in the number of specimens 

collected across different group testing strategies. 

 

Detection lags entail larger outbreaks 
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The longer outbreaks went undetected, the more undocumented infections accumulated. Due to the 

exponential nature of emerging outbreaks, delays of only one or two days sometimes resulted in 

tens more infections. By detecting outbreaks more quickly, group testing and testing cascades 

coincided with fewer infections upon outbreak detection than simple indication-based strategies, 

across a range of testing capacities (Figure S6).  

 

Sensitivity analyses 

 

When assuming lower or higher transmission rates, the sizes and durations of outbreaks varied, 

entailing overall longer and shorter lags until outbreak detection, respectively. However, across 

transmission rates, group testing patients and staff with any COVID-like symptoms remained the 

fastest and most efficient means of detecting an outbreak when testing capacity was limited (Figures 

S7, S8).  

 

In a smaller LTCF with only one ward and 30 beds, COVID-19 introductions were less likely to result in 

outbreaks (96% vs 100% of simulations when introduced by a newly admitted patient, and 24% vs 

64% when introduced by a member of staff). For similar per-bed testing capacities, efficacies of 

surveillance strategies were similar to the larger LTCF, with group testing strategies proving both the 

most effective and most efficient under limited testing resources (Fig S9). However, unlike in the 

larger LTCF, group testing random patients generally led to more rapid outbreak detection than 

symptomatic individuals due to the small ward size.  
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Figure 1. Epidemic curves resulting from stochastic simulations of COVID-19 transmission in a five-ward LTCF 
over the potential outbreak detection period of 21 days. Relative to all infections, symptomatic cases represent 
just the ‘tip of the iceberg’. Here, all simulations began with transfer of a single asymptomatic infected patient 
to the facility on day one (t1). A) Four examples of epidemic simulations, displaying variation in outbreak 
velocity and lags until first appearance of any individuals with mild (orange) or severe (red) COVID-19 
symptoms. B) Median epidemic curve across all epidemic simulations. 
 

 
Figure 2. Outbreak trajectories and detection efficacies of indication-based surveillance strategies. A) 
Cumulative case counts for simulations resulting from five distinct scenarios of COVID-19 importation into a 
LTCF. Shaded areas represent 95% uncertainty intervals resulting from stochasticity in the transmission model. 
B) Probability of detecting COVID-19 outbreaks using different surveillance strategies over time for each 
importation scenario. Here we assume a maximum of four tests per day. Each colour represents a different 
surveillance strategy, and similar strategies are grouped by point shape. Detection probability was computed 
over 10,000 simulations per scenario. 
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Figure 3: Comparing group tests and testing cascades in different outbreak settings. Here, detection lag is a 
function of daily testing capacity, comparing selected group tests and cascades to the reference strategy across 
three scenarios of COVID-19 importation into a LTCF (panels). For group testing, individual tests were first given 
to anyone presenting with severe COVID-like symptoms, and subsequently to the indicated group if any tests 
remained (here, to a maximum of eight individual specimens per group test). For cascades: SS=severe 
symptoms, MS=mild symptoms, A=admission, R=random (patients). Circles represent median, error bars 
represent 95% uncertainty intervals.  
 
 

 

Figure 4. Efficacy-efficiency plots of competing surveillance strategies. For COVID-19 importation scenario five 
(random importation by both patients and staff), comparison of the efficacy (y-axis) and efficiency (x-axis) of 
selected surveillance strategies across different daily testing capacities (panels). Circles represent medians and 
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error bars represent 95% uncertainty intervals. For group testing strategies, individual tests were first 
apportioned to any individuals presenting with severe COVID-like symptoms. Overlapping circles were shifted 
along the x-axis by up to 5 units (tests conducted) and can be identified by reduced size of error bar 
whiskers. For cascades: SS=severe symptoms, MS=mild symptoms, A=admission, R=random (patients). 
 

DISCUSSION 
 
COVID-19 outbreaks in LTCFs can be catastrophic, with rapid transmission and high rates of mortality 

among particularly frail and elderly patients.3–5 This motivates a need for timely and effective 

surveillance strategies that optimize limited testing resources to detect outbreaks as quickly as 

possible. In the current pandemic context, the standard-of-care in many settings is to only test 

individuals presenting with COVID-19 symptoms with signs of severity.6–8 Yet active syndromic 

surveillance is hampered by reportedly large proportions of mild and asymptomatic infections, and 

by delays between infection and symptom onset.9,10,18,19 We used mathematical modelling to 

compare a range of strategies for how to distribute limited RT-PCR tests to optimize COVID-19 

outbreak detection in a LTCF under a range of epidemiological scenarios. Our work suggests that the 

reference standard-of-care is a comparatively poor strategy. Under limited testing capacity, group 

testing symptomatic patients and staff was both the timeliest and most efficient strategy considered, 

in most scenarios requiring fewer tests and in some cases fewer clinical specimens to detect 

outbreaks more quickly than other strategies. Maximizing use of available tests via testing cascades 

was inefficient, but even more effective than group testing for timely outbreak detection when large 

numbers of tests were available (on the order of 1 test/20 beds/day). In addition to those with 

symptoms, including newly admitted patients in group tests and testing cascades substantially 

reduced delays in outbreak detection, but only for LTCFs actively admitting patients potentially 

already infected with COVID-19.  

 

Our simulations predicted large nosocomial outbreaks of COVID-19 in the absence of specific control 

strategies. This is consistent with large outbreaks recently observed in LTCFs worldwide, including an 

infamous outbreak in King County, Washington that resulted in 167 confirmed infections within three 

weeks of the first reported case.4 We further predicted larger and more rapid outbreaks when 

COVID-19 was introduced through admission of an infected patient, rather than through an infected 

member of staff. This is probably due to the nature of human interactions in LTCFs (patient-patient 

contacts are particularly long and numerous)17 and highlights both (i) a need to screen incoming 

patients potentially exposed to or infected with COVID-19,23 and (ii) the importance of interventions 

to limit contact between patients (e.g. isolation of retirement home residents), as already 

recommended for affected facilities in the current pandemic context.3 
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Our simulations were further characterized by delays between COVID-19 introductions and symptom 

onset, during which time new infections not (yet) showing symptoms accumulated. This is consistent 

with (i) a reportedly substantial proportion of asymptomatic cases, and (ii) an important role for pre-

symptomatic transmission.24 Recent modelling studies estimate that 44% of secondary infections 

among hospital transmission-pairs resulted from pre-symptomatic transmission,22 and that, early on 

in COVID-19 outbreaks, transmission events occur on average two to three days prior to symptom 

onset.11 These findings highlight epidemiological challenges associated with detecting emerging 

outbreaks using symptoms alone. We further found that testing patients and healthcare workers 

with any, and not only severe COVID-like symptoms can substantially improve outbreak detection, 

supporting recent recommendations to expand testing criteria in LTCFs to include individuals with 

atypical signs and symptoms of COVID-19, such as muscle aches, sore throat and chest pain.23  

 

Resource limitations for COVID-19 surveillance can in part be overcome by pooling specimens from 

multiple individuals together in the form of group tests, which in our analysis was the most efficient 

surveillance strategy. Recent mathematical modeling results have also suggested that group testing 

could be highly cost-effective for COVID-19 screening in large populations.12 However, our analysis 

was limited to one-stage group testing, in which infected individuals were not specifically identified. 

This strategy is pertinent for outbreak detection but is problematic for subsequent infection control 

(e.g., who to isolate). In two-stage group testing, initially proposed by Dorfman in 1943 for syphilis 

screening among soldiers,25 individual samples are re-tested after a positive group result to 

determine who is infected. Other strategies have also been proposed that involve split samples and 

simultaneous multi-pool samples.26 Such strategies may be considered by facilities conducting group 

tests to facilitate subsequent case identification. Under the assumptions made in our analysis, 

including a one-day delay between identifying individuals for testing and receiving the test result, 

group testing is still likely to be more timely than other strategies when accounting for additional 

delays in obtaining second-stage test results. Decision-makers should consider the trade-off between 

conducting fewer tests and the potential consequences of delays in knowing which patient(s) from 

the group sample are positive. 

 

This work has several limitations. First, substantial uncertainties remain regarding epidemiological 

characteristics of COVID-19, including its transmissibility in particular settings such as LTCFs, and a 

potential role for environmental acquisition,27,28 which was not included in our model. Furthermore, 

many LTCFs have already implemented control measures, such as interruption of social activities and 

provisioning of personal protective equipment, that should act to reduce transmission from baseline. 

We conducted sensitivity analyses to consider unusually high and low transmission rates to reflect 
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these uncertainties. Although outbreaks spread more or less quickly, the relative efficacies of 

surveillance strategies were largely unchanged in these analyses, resulting in identical conclusions for 

optimizing use of limited testing resources, regardless of non-pharmaceutical interventions 

potentially already put in place or a role for environmentally-mediated transmission.  

 

Second, LTCFs represent a diverse range of healthcare institutions, each with unique specializations, 

patient populations and living conditions, and the generalizability of our findings across these 

settings is not clear. Although our main analysis was informed using data from a large, five-ward 

rehabilitation hospital in France, we conducted a scenario analysis for a smaller, single-ward geriatric 

facility, and reached similar conclusions. However, we found that conducting group tests among 

randomly selected individuals may be preferable to symptomatic or newly admitted individuals in 

small facilities. This is because a large proportion of individuals could potentially be included in a 

daily group test that randomly samples among all individuals in the facility, improving the probability 

of including infected individuals in tests without a need for exceedingly large numbers of clinical 

specimens.  

 

Finally, the testing landscape for COVID-19 is due to shift quickly, with increased testing capacity and 

alternative testing technologies, such as rapid diagnostic tests, likely to become available in the 

coming months. However, uptake of new technologies is certain to be heterogeneous, and testing 

resources may remain limited for the foreseeable future. Although we explicitly modelled standard 

RT-PCR testing, our findings may be broadly generalizable to other COVID-19 testing technologies 

with limited capacity. Findings for group testing, however, necessarily assume that pooling samples 

from multiple individuals is both logistically feasible and retains sufficient test sensitivity, as 

demonstrated for RT-PCR.13 Further, even in settings with abundant testing capacity, limiting the 

number of tests necessary to detect an outbreak may remain a priority given health-economic 

concerns. 

 

In conclusion, our results have potentially important implications for COVID-19 surveillance in the 

long-term care setting. With limited resources available to detect and manage burgeoning outbreaks, 

LTCFs may continue to be hardest hit by COVID-19, even as non-pharmaceutical interventions such as 

lockdowns and quarantines come to slow transmission in the community. Broadening testing 

guidelines to include both (i) newly admitted patients, and (ii) patients and staff presenting with any 

COVID-like symptoms could reduce lags in outbreak detection. Furthermore, group testing in 

particular could allow LTCFs to detect outbreaks days, if not weeks earlier than traditional 

surveillance practices, all while preserving precious testing resources.  
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SUPPLEMENTARY MATERIALS 
 

Table S1. Model parameter estimates. 
Parameter Value (distribution) Source 

Parameters for estimation of COVID-19 transmission rate per minute of contact (in the community) 

COVID-19 basic reproduction number (R0) 3 (1.5, 6 in sensitivity analysis) Assumed 

COVID-19 average infectious period (t) 9 days 22 

Average number of contacts per day per individual (n) 8 21 
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Average duration per contact (d) 30 minutes 21 

COVID-19 epidemiological and clinical parameters 

COVID-19 transmission rate per minute of contact 0.00139 (0.00070, 0.00278 in sensitivity 
analysis) 

Estimated  

Duration of incubation period 2-5 days (uniform) 10,29 

Duration of presymptomatic period 1-3 days (uniform) 10,29 

Duration of symptomatic period  
(whether asymptomatic, mild symptomatic or severe symptomatic) 

7 days (log-normal, σ² = 7) 30  

Proportion of COVID-19 infections presenting any symptoms 0.7 18,19  

Proportion of symptomatic COVID-19 infections with severe 
symptoms 

0.2 20 

Testing and surveillance parameters 

Daily incidence of non-COVID, COVID-like symptoms 0.011 Estimated from 
31 

Proportion of non-COVID, COVID-like symptoms with signs of 
severity 

0.2 Assumed 

Delay from test to test result 1 day Assumed 

Test sensitivity (infectious periods) 90% 32  

Test sensitivity (incubation period) 30% Assumed 

Daily testing capacity (tests/day) 1, 2, 4, 8 Assumed 

Maximum number of specimens per group test 2, 4, 8, 16 Assumed 

RT-PCR sensitivity discounting rate per additional true-negative 
specimen 

0.3125% 13 

 
 
 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 22, 2020. ; https://doi.org/10.1101/2020.04.19.20071639doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.19.20071639
http://creativecommons.org/licenses/by-nc/4.0/


 
Figure S1. Epidemiological characteristics of COVID-19 epidemics simulated over a 12-week period in the LTCF 
setting, in the absence of any surveillance, control measures or interventions, and comparing different 
importation scenarios in each column. A) The cumulative number of infections among patients and staff in the 
hospital over the 12-week simulation period. Coloured bands represent 95% uncertainty intervals from 
stochastic simulations. B) Histograms of the final epidemic size at 12 weeks (NB: data are naturally censured by 
the 12-week simulation period). C) Distributions of cumulative infection totals at 12 weeks among the fourteen 
different categories of individuals present in the hospital. 
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Figure S2. Probability of detecting COVID-19 over time for each importation scenario, here demonstrating the 
impact of daily testing capacity on detection probability for individual indication-based strategies. Each colour 
and shape represents a different testing capacity. Detection probability was computed over 10,000 simulations 
per scenario. 
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Figure S3. Probability of detecting COVID-19 outbreaks using different surveillance strategies over time for 
each importation scenario, here comparing the reference strategy (red crosses) to selected cascade (triangles) 
and group testing (squares) strategies. Detection probability was computed over 10,000 simulations per 
scenario. 
 

 
Figure S4. Efficacy of group-based testing depends on the targets of group testing (here, newly admitted 
patients, random individuals, individuals with any COVID-like symptoms), daily testing capacity (x-axis), and the 
maximum number of specimens included per group test (colours). Here, estimates are for importation scenario 
five. Circles represent medians and error bars represent 95% uncertainty intervals. 
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Figure S5.  For selected surveillance strategies, comparison of surveillance efficacy (y-axis) and efficiency (x-
axis), here in terms of the number of clinical specimens (swabs) collected until the outbreak was detected, for 
COVID-19 importation scenario five (random importation by both patients and staff). Circles represent medians 
and error bars represent 95% uncertainty intervals. For group tests, individual tests were first apportioned to 
any individuals presenting with severe COVID-like symptoms. Overlapping circles were shifted along the x-axis 
by up to 5 units and can be identified by reduced size of error bar whiskers. For cascades: SS=severe symptoms, 
MS=mild symptoms, A=admission, R=random (patients). 
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Figure S6.  Relationship between detection lag (x-axis) and the number of undetected cases upon outbreak 
detection (y-axis), for selected surveillance strategies (colours), importation scenarios (columns) and testing 
capacities (rows). Circles represent medians and error bars represent 95% credible intervals. Note that some 
circles overlap.  
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Figure S7. For a sensitivity analysis with a low transmission rate (estimated from R0 = 1.5), comparison of 
surveillance efficacy (y-axis) and efficiency (x-axis) for COVID-19 importation scenario five (random importation 
by both patients and staff). Circles represent medians and error bars represent 95% uncertainty intervals. For 
group tests, individual tests were first apportioned to any individuals presenting with severe COVID-like 
symptoms. Overlapping circles were shifted along the x-axis by up to 5 units and can be identified by reduced 
size of error bar whiskers. For cascades: SS=severe symptoms, MS=mild symptoms, A=admission, R=random 
(patients). 
 

 
Figure S8. For a sensitivity analysis with a high transmission rate (estimated from R0 = 6), comparison of 
surveillance efficacy (y-axis) and efficiency (x-axis) for COVID-19 importation scenario five (random importation 
by both patients and staff). Circles represent medians and error bars represent 95% uncertainty intervals. For 
group tests, individual tests were first apportioned to any individuals presenting with severe COVID-like 
symptoms. Overlapping circles were shifted along the x-axis by up to 5 units and can be identified by reduced 
size of error bar whiskers. For cascades: SS=severe symptoms, MS=mild symptoms, A=admission, R=random 
(patients). 
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Figure S9. For a sensitivity analysis in a smaller LTCF (one ward, 30 beds), comparison of surveillance efficacy 
(y-axis) and efficiency (x-axis) for COVID-19 importation scenario five (random importation by both patients 
and staff). Circles represent medians and error bars represent 95% uncertainty intervals. For group tests, 
individual tests were first apportioned to any individuals presenting with severe COVID-like symptoms. 
Overlapping circles were shifted along the x-axis by up to 5 units and can be identified by reduced size of error 
bar whiskers. For cascades: SS=severe symptoms, MS=mild symptoms, A=admission, R=random (patients). 
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