
From Community Acquired Pneumonia to COVID-19: A Deep
Learning Based Method for Quantitative Analysis of COVID-19 on
thick-section CT Scans

Zhang Li1, Zheng Zhong2, Yang Li1, Tianyu Zhang3a,3b, Liangxin Gao4, Dakai Jin5, Yue Sun6,
Xianghua Ye7, Li Yu8, Zheyu Hu9 Jing Xiao4 Lingyun Huang 4, Yuling Tang10,*

1. College of Aerospace Science and Engineering, National University of Defense Technology,
Changsha, China
2. Department of Radiology, The First Hospital of Changsha City, Changsha, China
3a. GROW School for Oncology and Development Biology, Maastricht University, P. O. Box 616,
6200 MD, Maastricht, The Netherlands
3b. Department of Radiology, Netherlands Cancer Institute (NKI), Plesmanlaan 121, 1066 CX,
Amsterdam, The Netherlands
4. PingAn Technology, Shenzhen, China
5. PAII Inc., Bethesda, MD, USA
6. Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven,
The Netherlands
7. Department of Radiotherapy, The First Affiliated Hospital, Zhejiang University, Hangzhou,
Zhejiang, China
8. Hunan LanXi Biotechnology Ltd., Changsha, China
9. Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya Medical School, Central South
University, Changsha, China
10. Department of Respiratory Medicine, The First Hospital of Changsha City, Changsha, China

Z. L. and Z. Z. contributed equally to this manuscript

Address correspondence to

Yuling Tang, Department of Respiratory Medicine, The First Hospital of Changsha City, Changsha,
China (tyl71523@qq.com);

1/16

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.17.20070219doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.04.17.20070219
http://creativecommons.org/licenses/by-nc-nd/4.0/


Article Type: Original Research; Thoracic Imaging

Abbreviations:
AUC = area under the receiver operating characteristic curve
CI = confidence interval
COVID-19 = coronavirus disease 2019
POI = portion of infection
iHU = average infection Hounsfield unit

Key Results:
A deep learning based AI system was able to accurately segment the infected lung regions by
COVID-19 using the thick-section CT scans (Dice coefficient ≥ 0.74).

The computed imaging bio-markers were able to distinguish between the non-severe and severe
COVID-19 stages (area under the receiver operating characteristic curve 0.968).

The infection volume changes computed by the AI system was able to assess the COVID-19
progression (Cohen’s kappa 0.8220).

Summary Statement: A deep learning based AI system built on the thick-section CT imaging
can accurately quantify the COVID-19 infected lung regions, assess patients disease severity and
their disease progressions.
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Abstract

Background: Thick-section CT scanners are more affordable for the developing countries.
Considering the widely spread COVID-19, it is of great benefit to develop an automated and
accurate system for quantification of COVID-19 associated lung abnormalities using thick-section
chest CT images.

Purpose: To develop a fully automated AI system to quantitatively assess the disease severity and
disease progression using thick-section chest CT images.

Materials and Methods: In this retrospective study, a deep learning based system was developed
to automatically segment and quantify the COVID-19 infected lung regions on thick-section chest
CT images. 531 thick-section CT scans from 204 patients diagnosed with COVID-19 were collected
from one appointed COVID-19 hospital from 23 January 2020 to 12 February 2020. The lung
abnormalities were first segmented by a deep learning model. To assess the disease severity
(non-severe or severe) and the progression, two imaging bio-markers were automatically computed,
i.e., the portion of infection (POI) and the average infection HU (iHU). The performance of lung
abnormality segmentation was examined using Dice coefficient, while the assessment of disease
severity and the disease progression were evaluated using the area under the receiver operating
characteristic curve (AUC) and the Cohen’s kappa statistic, respectively.

Results: Dice coefficient between the segmentation of the AI system and the manual delineations of
two experienced radiologists for the COVID-19 infected lung abnormalities were 0.74±0.28 and
0.76±0.29, respectively, which were close to the inter-observer agreement, i.e., 0.79±0.25. The
computed two imaging bio-markers can distinguish between the severe and non-severe stages with an
AUC of 0.9680 (p-value< 0.001). Very good agreement (κ = 0.8220) between the AI system and the
radiologists were achieved on evaluating the changes of infection volumes.

Conclusions: A deep learning based AI system built on the thick-section CT imaging can
accurately quantify the COVID-19 associated lung abnormalities, assess the disease severity and its
progressions.
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1 Introduction 1

Coronavirus Disease 2019 (COVID-19) has rapidly spread all over the world since the end of 2019, 2

and 1, 436, 198 cases have been confirmed as COVID-19 to date (9 April 2020) [1]. 3

Reverse-transcription polymerase chain reaction (RT-PCR) is used as the standard diagnostic 4

method. However, it suffers from low sensitivities as report in [2, 3]. Computed tomography (CT) 5

imaging is often adopted to confirm the COVID-19 in China and some European countries, e.g., 6

Netherlands. CT plays a key role in the diagnosis and treatment assessment of COVID-19 due to its 7

high sensitivity [2, 4]. 8

The explosive growing number of COVID-19 patients requires the automated AI-based computer 9

aided diagnosis (CAD) systems that can accurately and objectively detect the disease infected lung 10

regions, assess the severity and the progressions. Recently, several deep learning based AI systems 11

were developed to differentiate the COVID-19 and community acquired pneumonia (CAP) [5] or 12

other viral pneumonia [6, 7], and to quantify the infection regions[8, 9, 10, 11]. However, all these 13

previous AI systems built upon the high resolution thin-section CT images, which have high 14

radiation doses and require higher costs. In contrast, the thick-section CT images from affordable 15

CT scanners has relatively low radiation doses and are popularly used in hospitals worldwide, 16

especially in primary care. Hence, it is worthwhile to develop an AI-based CAD system using the 17

thick-section CT images. 18

In this study, we developed a fully automated AI system to quantify COVID-19 associated lung 19

abnormalities, assess the disease severity and the disease progressions using thick-section chest CT 20

images. Specifically, the lung and infection regions were first segmented by a deep learning based 21

model, where the labels came from another multi-center annotated CAP CT dataset knowing that 22

COVID-19 shares similar abnormal lung patterns with other pneumonia such as ground glass opacity 23

(GGO), consolidation, bilateral infiltration, etc. Using the lung and infection segmentation masks, 24

we computed the portion of infection (POI) and the average infection HU (iHU) as two imaging 25

bio-markers, which were applied to distinguish the COVID-19 severity. Moreover, the changes of 26

POI and iHU in patient’s longitudinal CT scans were calculated to evaluate the COVID-19 27

progression. For evaluation, the AI based lung abnormalities segmentation was compared to two 28

experienced radiologists manually delineations, while the AI based assessment of disease severity and 29

progression was compared to patients diagnosis status extracted from clinical and radiology reports. 30

To the best of our knowledge, this is the first AI-based study to quantitatively assess the COVID-19 31

severity and disease progression using the thick-section CT images. 32

2 Materials and Methods 33

2.1 Patients 34

This study was approved by the Ethics of Committees of the First Hospital of Changsha, Hunan, 35

China. Informed consent for this retrospective study was waived. 548 CT scans from 204 patients 36

diagnosed with COVID-19 (RT-PCR test positive) were retrospectively reviewed for the period from 37

23 January 2020 to 12 February 2020 in the First Hospital of Changsha, which is the only appointed 38

hospital healing COVID-19 patients in Changsha city, Hunan province, China. Eight patients under 39

18 years old were excluded for this study. The characteristics of the rest 196 adult patients were 40

summarized in Table 1. According to the guideline of 2019-nCoV (trial version 7) issued by the 41

China National Health Commission[12], the severity of COVID-19 includes mild, common, severe 42

and critical types. Since there were few mild and critical cases, we categorized all the CT scans into 43

severe group (including severe and critical) and non-severe group (mild and common). In total, we 44

had 79 severe CT scans from 32 patients, and 452 general CT scans from 164 patients. It should be 45

noticed that some patients were in non-severe phase when they entered the hospital, but may 46

develop into severe phase during treatment. All the COVID-19 patients were used to test the AI 47

system performance. 48
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To train the lung abnormalities segmentation deep learning model, another multi-center 49

pnumonia dataset was collected consisting of 558 CT scans with manual annotations. The informed 50

consent waiver of the training data were approved by the Ethics of Committees of multiple institutes. 51

2.2 CT Protocol 52

All COVID-19 patients underwent the CT scanning using the GE Brivo CT325 scanner (General 53

Electric, Illinois, the United States). The scanning protocol was as follows: 120 kV; adaptive tube 54

current (30mAs-70mAs); pitch= 0.99-1.22 mm; slice thickness= 10 mm; field of view: 350 mm2; 55

matrix, 512×512; and breath hold at full inspiration. CT images were reconstructed with 5mm slice 56

thickness and the soft reconstruction kernel. Note that the radiation dose (3.43mGy) from the 57

thick-section CT imaging are reasonably lower than the conventional high resolution chest CT 58

imaging (6.03mGy, Siemens SOMATOM go.Top). 59

For the multi-center pneumonia dataset, the 558 CT scans were from Siemens, Hitachi, GE, 60

Philips and United Imaging scanners. Slice thickness ranged from 1.0 - 5.0 mm. Details of the CT 61

imaging protocols for this multi-center pneumonia dataset is presented in the Table of the 62

supplemental material. 63

2.3 Deep Learning Model for Lung Abnormality Segmentation 64

We developed a 2.5D based deep learning model to segment the pneumonia infection regions using 65

the UNet [13] structure equipped with the Resnet 34 backbone [14]. It is able to integrate the high 66

resolution information in the axial view with the coarse continuity information along the vertical 67

view. We also trained a standard 2D UNet to segment the lung fields in thick-section CT scans. 68

Details of deep learning model learning is presented in the supplemental material. 69

2.4 Imaging Bio-markers Computation 70

Based on the lung field and infection region segmentation masks, we computed the quantitative 71

imaging bio-markers for COVID-19, i.e., the portion of infection (POI) and the average infection HU 72

(iHU). Specifically, we computed the POI as the infection volume divided by the total lung volume 73

in physical unit, and the iHU as the average HU values in the infection regions. 74

The computed POI and iHU are consistent with latest version (the seventh) of COVID-19 75

diagnostic guideline released by the National Health Commission of China [12]. The guideline states 76

that the POI is one of the principles to differentiate the severe and non-severe patients. It also 77

reports that lung findings in chest CT may start from small subpleural GGO to crazy paving pattern 78

and consolidation when patients conditions getting worse, which correspond to the increase in iHU 79

changes. 80

2.5 Statistical Analysis and Evaluation Metrics 81

Statistical analysis was performed by SAS (version 9.4) and Matlab (version 2018b). Sensitivity and 82

specificity were calculated using specific cutoffs by using the Youden index generated from the 83

receiver operating characteristic curve (ROC). Cohen’s kappa statistic was used to measure of 84

agreement between the disease progress assessment from AI and radiologists. χ2 test was used to 85

compare differences among different groups. A two-sided p value less than 0.05 was considered to be 86

statistically significant. The Dice coefficient was computed to evaluate agreement between the 87

automatic infection region segmentation and the manual infection delineations by radiologists. 88
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3 Results 89

3.1 Segmentation of Lung Infection Region 90

Examples of the infection region segmentation for severe and non-severe patients in CT were shown 91

in Figure 1 and Figure2. To quantitatively evaluate the accuracy of segmentation, two radiologists 92

with 20 and 15 years experiences (Z.Z and X.Y), who were blind to each other, manually delineated 93

the infection regions of interests (ROIs) to serve as the reference standard. We randomly selected 30 94

CT scans of 30 patients (3 severe and 27 non-severe) and quantitatively evaluated the accuracy of 95

the infection region segmentation on this subset. The average Dice coefficient between our method 96

and two radiologists were 0.74±0.28 (median=0.79) and 0.76±0.29 (median=0.84), respectively. The 97

inter-observer variability between the two radiologists was also assessed using Dice coefficient, which 98

is 0.79±0.25(media=0.85). 99

3.2 Assessment of Severe and Non-severe COVID-19 100

Based on the clinical diagnosis reports, 79 CT scans had been identified to belong to the severe 101

group, while 452 scans were in the non-severe group. Figure 3 shows the box-plot of the computed 102

POI and iHU for severe and non-severe groups. Note that both the POI and iHU show significant 103

difference between severe and non-severe groups with p-value < 0.001. 104

Predictive probabilities were generated using the logistic regression model. Comparisons of 105

different imaging bio-markers for assessment of severe and non-severe exams are shown in Table 2. 106

Using the POI as input, the sensitivity and specificity for identifying the severe group are 92.4% 107

90.5%, respectively. Using the iHU as input, the sensitivity and specificity for identifying the severe 108

group are 91.1% and 41.6%, respectively. When combining the POI with iHU, the sensitivity and 109

specificity for identifying the severe group are 93.7% and 88.1%, respectively. The ROC curves are 110

shown in Figure 4. The corresponding AUC values for using the iHU, POI and POI+iHU are 0.687, 111

0.968 and 0.968, respectively. The odds of severity at 1sd increase of POI was 18.762 [95% CI, 112

10.056, 35.000] (p<0.001) times higher than the baseline POI; the odds of severity at 1sd increase of 113

iHU was 1.824 [95% CI, 1.430, 2.326] (p<0.001) times higher than the odds of severity at baseline 114

iHU. The Akaike information criterion (AIC) for POI, iHU and POI+iHU are 174.877, 426.160 and 115

173.767, respectively. 116

3.3 Assessment of Disease Progression 117

Figure 5 showed a qualitative example of the automatically segmented infection regions of a severe 118

patient’s longitudinal CT scans. We calculated the changes of the POI and iHU for each consecutive 119

CT scan pair of the patients. The key phrases extracted from patients radiology reports were used as 120

ground-truth reference. The correspondence of the computed bio-markers changes with radiologists 121

assessment was described in Table 3. 122

To measure the agreement between the AI computed imaging bio-markers changes and the 123

radiologists assessment, we first binarize the bio-markers changes. The value 1 (or 0) represented the 124

increasing (or decreasing) of bio-markers and its corresponded phrases of radiology reports. Cohen’s 125

Kappa was then used to measure the agreement, and the results were shown in Table 4.The very 126

good and moderate agreement were achieved between two AI imaging bio-markers and radiologists 127

assessment if we only consider the changes on whole lung level (ignoring the cases with phrase of 128

’partially changes’). The change of POI showed overall better agreement (very good and good) with 129

radiologists assessment than iHU (moderate and fair). 130

4 Discussion 131

In this study, we developed and evaluated an AI system for quantitative analysis of coronavirus 132

disease 2019 (COVID-19) from thick-section chest CT scans. Our findings can be summarized as 133
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follows: 1) The deep learning model that trained on a multi-center CAP CT dataset could be 134

directly applied for segmenting the lung abnormalities in COVID-19 patients; 2) the portion of 135

infection (POI) and the average infection HU (iHU), with the area under the receiver operating 136

characteristic curve (AUC) of 0.968 [95% CI: 0.951, 0.981] and 0.687 [95% CI: 0.633, 0.737], showed 137

significant difference (p-value<0.001) in severe and non-severe COVID-19 states; 3) POI showed 138

Very good agreement (κ = 0.8220) with the radiologist reports on evaluating the changes of infection 139

volumes on the whole lung level. 140

Though high resolution CT is shown to have high sensitivity in detection of COVID-19, both cost 141

and radiation doses are relatively high. In contrast, our study for the first time shows that an AI 142

system can efficiently segment and quantify the COVID-19 lung infections in thick-section CT 143

images (with relatively low radiation doses). This would benefit the developing or low-income 144

countries, where the quantification of COVID-19 severity and the triage can be determined 145

effectively using thick-section CT volumes of affordable CT scanners. 146

Our diagnosis system is an multi-stage AI system. The key step is to extract the infection regions. 147

It is interesting that this processing modules are trained using CAP cases while the detection and 148

segmentation accuracy is still closed to radiologist-level. Dice coefficient between the COVID-19 149

infected region segmentation of the AI system and two experienced radiologists were 0.74±0.28 and 150

0.76±0.29, respectively, which were close to the inter-observer agreement, i.e., 0.79±0.25. 151

Among our computed imaging bio-markers, only the POI shows high sensitivity and specificity 152

for differentiating the severe from non-severe COVID-19 groups. This indicates that the POI is an 153

effective imaging bio-marker to assess the severity of COVID-19 patients. Although the iHU value is 154

also able to reflect infection progress, however, it is affected by several other disease irrelevant 155

factors, such as the reconstruction slice thickness and the respiration status[15, 16]. For instance, 156

consolidation on HRCT images might be displayed as GGO on thick-section CT images. 157

The changes of volume and density of the infection region are two key indicators that used by 158

radiologists for COVID-19 progression assessment. However, it is time consuming (or even 159

impractical) for radiologists to produce the quantitative measurements for this longitudinal analysis. 160

Our AI system provides a quantitative and objective measurement, i.e., the POI, which shows strong 161

agreement with radiologist qualitative judgements. More importantly, the AI based longitudinal 162

disease quantification is precise, reproducible and fast, which can reduce the reading time of 163

radiologists for COVID-19 each patient and improve the quality of the disease progression 164

assessment[10]. 165

This study has several limitations. Firstly, we only evaluated changes of imaging bio-markers at 166

the whole lung level in certain phrase. Although our model can compute the bio-markers at the lobe 167

level, the standard phrases from the radiology reports were mostly at the whole lung level. 168

Furthermore, some phrases in the reports like ’lesion absorption’ might respond to either infection 169

region decreasing or HU value reduction. Thus it needs more sophisticated and precise analysis 170

evaluating our model in the future. Secondly, motion artifacts due to respiration and heart motion 171

may cause false positive segmentation in the AI system. We noticed that some false positive 172

segmentation affected the longitudinal infection evaluations6. One possible solution is to identity the 173

motion artifacts before applying the infection segmenting. Finally, our model was only tested the 174

COVID-19 positive patients. A recent study has shown that a deep learning based AI classification 175

model can detect the COVID-19 and distinguish it from the community acquired pneumonia and 176

other non-pneumonic lung diseases using thin-section HRCT [5]. As the next step, it would be 177

interesting to see if our model can also differentiate the pneumonia caused by COVID-19 and other 178

factors using the thick-section CT imaging. 179

In conclusion, a deep learning based AI system is developed to quantify COVID-19 abnormal 180

lung patterns, assess the disease severity and the progression using thick-section chest CT images. 181

The imaging bio-makers computed from the AI system could be used for reproducing several findings 182

of infection change from the reports by radiologists. These results demonstrate that the deep 183

learning based tool has the ability to help radiologists on diagnosing and follow-up treatment for 184

COVID-19 patients based on CT scans. 185
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Table 1. Characteristics of COVID-2019 patients in this study

All patients Severe patients Non-severe
patients

p value

No. 196 32 164 -
Age 47±15 56±14 45±14 <0.001
Male 96(49%) 14(44%) 82(50%) 0.52
Exams 531 79 452 -
Patients with multi-
ple exams

162(83%) 31(97%) 131(80%) -

Note: Values in parentheses are the percentage. Ages are reported as mean ± standard deviation.
COVID-2019 = coronavirus disease 2019.

Table 2. Comparisons of different imaging bio-markers for assessment of severe and non-severe
exams

Sensitivity % Specificity % AUC p value
POI 92.41 (73 of 79)

[84.85, 97.50]
90.49 (409 of 452)
[87.60, 92.79]

0.9680 [0.9505, 0.9805] <0.001

iHU 91.14 (72 of 79)
[82.44, 96.15]

41.59 (188 of 452)
[36.95, 46.26]

0.6873 [0.6328, 0.7368] <0.001

POI+iHU 93.67 (74 of 79)
[86.60, 97.73]

88.05 (398 of 452)
[85.07, 90.81]

0.9677 [0.9437, 0.9794] <0.001

Note: Values in parentheses are the numbers for the percentage calculation. Values in brackets are
95% confidence intervals [95%CI, %]. AUC = area under the receiver operating characteristic curve,

POI = portion of infection, iHU = infection HU.

Table 3. Correspondence between the imaging bio-markers changes and radiology reports

Phrase from radiology reports imaging bio-markers
changes

No.of
phrase occurrences

’infection region has (partially) expanded’ increasing of POI 86
’infection region has (partially) contracted’ decreasing of POI 98
’Density of infection region has (partially)
increased’

increasing of iHU 43

’Density of infection region has (partially)
decreased’

decreasing of iHU 39

Note: Opposite phrases (partially expanded and partially contracted) that exits in six patients were
excluded in this table. POI = portion of infection, iHU = infection HU.
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Table 4. Correspondence between the imaging bio-markers changes and radiology reports

No.of cases Observed
agreement

Cohen’s
kappa

Kappa error Strength of
agreement

Infection region
change

142 0.9155 0.8220 0.0492 very good

Infection region
changes (including
partially changes)

184 0.8533 0.7044 0.0525 good

Intensity changes 54 0.7321 0.4643 0.1184 moderate
Intensity changes
(including partially
changes)

82 0.6829 0.3718 0.1018 fair

Note: Strength of agreement: 0-0.20,poor; 0.21-0.40, fair; 0.41-0.60, moderate; 0.61-0.80, good;
0.81-1.00, very good.

Figure 1. Lesion segmentation for three consecutive axial CTs from a severe patient.First row:
original image; Second row: lesion segmentation image.
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Figure 2. Lesion segmentation for three consecutive axial CTs from a non-severe patient.First row:
original image; Second row: lesion segmentation image.
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Figure 3. Box-plot of (a) POI and (b) iHU for the severe and non-severe patients. POI = portion
of infection, iHU = infection HU.
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Figure 4. Receiver operating characteristic (ROC) curves from the logistic regression model. AUC
= area under the receiver operating characteristic curve, POI = portion of infection, iHU = infection
HU.
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Figure 5. The lesion segmentation of six adjacent CT scans that taken from Jan.27 to Feb.12 for a
severe patient. The red dot corresponds to the time for given the ’severe’ diagnosis and the green
point corresponds to the time for given the ’non-severe’ diagnosis. 15/16
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Figure 6. The false positive segmentation from a exam with motion artifacts.
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