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Abstract 

The high R-naught factor of SARS-CoV-2 has created a race against time for mankind and 
it necessitates rapid containment actions to control the spread. In such scenario short term 

accurate spatiotemporal predictions can help understanding the dynamics of the spread in 

a geographic region and identify hotspots. We propose an ensemble of convolutional 
LSTM based spatiotemporal model to forecast spread of the epidemic with high resolution 

and accuracy in a large geographic region. A data preparation method is proposed to 

convert spatial causal features into set of 2D images with or without temporal component. 
The model has been trained with available data for USA and Italy. It achieved 5.57% and 

0.3% mean absolute percent error for total number of predicted infection cases in a 5day 

prediction period for USA and Italy respectively. 
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1. Introduction 

Wuhan city in China initially observed an outbreak of Covid-19 disease caused by SARS-

CoV-2. Eventually it became a pandemic and more than 200 countries are fighting hard to 

contain the infection [1]. This has become a unique challenge for mankind as the 

competition has turned out to be against time due to exponential rate of infection spread. 

One of the best ways to contain the infection is rapid identification of positive cases and 

isolation. However due to limited resources random and widespread testing may not be 

feasible in populous countries. Forecasting regional spread can help identify future 

hotspots and distribution of infection which would eventually help to take containment 

measures.   

A spatiotemporal epidemic spread model can accommodate both spatial and temporal 

correlations in data. However, most of the models either require disease specific domain 

knowledge [11] or are too spatially coarse [18]. Deep learning models can learn the 

dynamics of epidemic spread with high spatial resolution and high degree of accuracy with 

minimal initial bias due to its capability of highly nonlinear representation. Deep neural 

network based spatiotemporal models [4] have already been applied to predict epidemic 

spread. However, this model is experimented on a small localized region and influence of 

external factors are ignored. Deep learning models also tend to overfit to noise due to its 
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high representational capability. Thus, modelling an epidemic spread in a wide region with 

high spatial and temporal resolution is challenging.  

To address the problem of spatiotemporal prediction of Covid-19 spread in a large 

geographical region with high resolution, we propose an ensemble of Convolutional LSTM 

[5] based model to be trained with multilayer temporal geospatial data, transformed as 

sequence of images. Each layer of the geospatial data corresponds to a causal factor that 

might influence the spread of the epidemic. We experimented with data of US and Italy 

and achieved country level mean absolute percent error (MAPE) of 5.57% and 0.3% 

respectively on forecasting of total infection cases in 5 days period.        

The paper is organized as following. In section 2 we conducted a literature review. A brief 

discussion on modelling the epidemic spread and data preparation method is presented in 

section 3. In section 4 we explained the ensemble of Convolutional LSTM model and 

performance measurement metrics. Section 5 is about experimental results. The following 

section concludes the paper.  

2. Related Work 

Hu et. al. developed a modified stacked autoencoder model of the epidemic spread in China 

and they claimed to achieve high level of forecasting accuracy [2]. On observing a 

universality in the epidemic spread in each country, Fanelli and Piazza [3] applied mean-

field kinetics of Susceptible-Infected-Recovered/Dead epidemic model to forecast the 

spread and provided an estimation of peak infections in Italy. Zhan et. al. [8] integrated the 

intercity migration data in China with Susceptible-Exposed-Infected-Removed model to 

forecast an estimation of epidemic spread in China. Xi et. al. [4] used deep residual 

networks to model spatiotemporal characteristics of the spread of influenza and 

experimented with real dataset of Shenzen city in China. Shi et. al. [5] proposed 

convolutional LSTM network for spatiotemporal modelling of localized rainfall over a 

short period of time and used it for rainfall nowcasting. Yuan et. al. [6] used an ensemble 

of ConvLSTM models to predict road accidents by using heterogeneous multi-layered 

spatiotemporal data.  

3. Modelling Covid-19 spread 

Disease spread is a complex dynamical system and numerous factors contribute to the 

dynamics of spread making it non-stationary. Covid19 is no different. Geographical 

location, weather conditions [7], human mobility [8], population statistics might be some 

of the impacting factors changing the dynamics of the spread. Epidemic spread is correlated 

in time as well as spatial dimensions. There is high chance of spreading the infection in 

spatially co-located geographical regions specially during community spread. Thus, a 

spatiotemporal model can more accurately capture the dynamics of the spread. However, 

it may be spatially autocorrelated in a small localized region but not across wide regions. 

Thus, we divided a large geographic region into relatively smaller grids and trained our 

model with samples drawn from local distribution of infection cases.        

The goal of the model is to forecast new cases of infection on daily basis in different regions 

across a country which can be added up to calculate total cases of infection. The model can 

be trained with historical time series data of new cases of infection in different regions 

along with some external spatial and/or spatiotemporal features. During prediction, the 
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model is fed with temporal sequence of distribution of new infection cases in a region along 

with other external spatiotemporal features and the model in turn forecasts the distribution 

of new infection cases in that region.  

3.1. Data Preparation 

All the observations in the dataset is mapped to a spatial region bounded by predefined 

latitude and longitude. The spatial region may represent a section of a single country or 

multiple countries. The region is geospatially divided in M x N grids of equal sizes bounded 

by calculated latitudes and longitudes. It is assumed that disease spread in locations within 

a grid is spatially autocorrelated due to its smaller size compared to the whole region. Fig. 

1a illustrates a grid bounded by latitudes and longitudes. The box represented by the dotted 

line is called as frame. The frames have overlapping areas in all 4 direction. The overlap 

allows flow of spatial influence from neighbouring grids. Each frame is in turn divided into 

L x L pixels which includes the overlapping area. Each pixel represents a bounded area in 

geospatial region. The values in each pixel is mapped to certain feature in the bounded 

geospatial region. Separate frame matrices are constructed for each feature and 

concatenated through channels. For example, new infection count and population are two 

features and they represent two separate L x L matrices in a frame concatenated across a 

third axis. Each pixel in the infection count matrix contains the count of new infections 

(∆I) in the pixel area in a day. Infection count is distributed both in spatial and temporal 

dimensions. To reduce the variance, the infection count in a pixel is log transformed and 

normalized in 0-1 scale. Considering R0 factor of Covid-19 between 2 and 3 it is calculated 

that 60% of the population (P) in an area needs to get infected to attain herd immunity and 

reduce further spreading [20]. Similar to the SIR model [14], the total population P is 

compartmentalized into susceptible (S) and infected/recovered/deceased (I) group. 

Susceptible population at any day is calculated as 0.6P − I. In a single day new infection 

count cannot exceed number of susceptible populations. Thus, a pixel value is calculated 

as ln(∆I + 1) /ln(S + 2). Total population is distributed spatially in similar fashion and it 

is assumed time invariant within a short interval. Pixel value of population matrix is 

calculated as ln(0.6P + 1) /ln(max(0.6P)). Each frame is represented as tensor of 

dimension T x L x L x C, where T is the total time span and C is number of channels or 

features. As shown in Fig. 1b each training sample in a frame is generated by sliding a time 

window size of W+1 by 1, leaving behind a test case sample of time window size of W′ in 

the most recent period. Number of training samples in a frame can be calculated as T −
W′ −W− 1. Thus, total number of training samples 𝑆𝑡𝑟𝑎𝑖𝑛  for all frames can be calculated 

as Strain = (T −W′ −W− 1) ∗ M ∗ N.  

The forecasting problem is framed as supervised learning problem. Given a sequence of 

observed matrices of spatial data as images 𝑋1, 𝑋2…𝑋𝑡 the objective of the model is to 

predict the next image 𝑋𝑡+1. The training samples are divided into input sequences each of 

length W and output image. The model predicts the normalized log transformed new 

infections count in each pixel in a image. Thus, the output image consists of only 1 channel. 

The input training dataset (Xtrain)can be represented as a tensor of size 

StrainxWxLxLxC and the output dataset (Ytrain) as Strainx1xLxLx1. For training, 

the input sequences are selected from all frames having non-zero total infection count. Fig. 

1b illustrates the sequence of images in a frame. The image t-6 to t-3 represents an input 

training sequence (Xtrain) of length W. The output image (Ytrain) for this training sample 
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is t-2. Other training samples are generated by sliding the window W backwards in time by 

1. The most recent images t-0 and t-1 represents the test output images (Ytest) and 

immediate sequence of images t-5 to t-2 is the test input sample (Xtest). The test set Xtest 
is represented by a tensor of size (M ∗ N)xWxLxLxC and Ytest by (M ∗
N)xW′xLxLx1. 

 
Fig. 1 a) Illustration of overlapping frames obtained by spatially dividing a geographical region. The bold lines represent 
latitudes and longitudes which separates the grids. The box with dotted line represents the overlapping frame which 
represented as an image for training the model. Each grid is divided in certain number of pixels. The margin refers to number 

of pixels of overlapping region. b) Illustration of sequence of images in a frame. t-0 is the most recent image. Xtrain, Ytrain are 
the training samples and Xtest, Ytest are testing samples. 

4. Ensemble of Convolutional LSTM models 

Recurrent neural networks (RNN) are a class of artificial neural networks with nodes 

having feedback connections thereby allowing it to learn patterns in variable length 

temporal sequences. However, it becomes difficult to learn long term dependencies for 

traditional RNN due to vanishing gradient problem [9]. LSTMs [10] solve the problem of 

learning long term dependencies by introducing a specialized memory cells as recurrent 

unit. The cells can selectively remember and forget long term information in its cell state 

through some control gates. In convolutional LSTM [5] a convolution operator is added in 

state to state and input to state transition. All inputs, outputs and hidden states are 

represented by 3D tensors having 2 spatial dimensions and 1 temporal dimension. This 

allows the model to capture spatial correlation along with the temporal one. In our model 

we configured multichannel input such that distinct features can be passed through 

different channels. Multiple convolutional LSTM layers are stacked sequentially to form a 

network with high representational capability. The network terminates with a 3D 

convolutional layer having one filter. This layer constructs a single channel output image 

as the next frame prediction. 

 A single model may be prone to overfitting on training dataset and loose stability in terms 

of prediction made. Creating an ensemble of diverse models intended to solve the same 

task and combining the predictions made by them typically improves test accuracy and 

stability [12]. We used bagging or bootstrap aggregation [13] to create an ensemble of 

models. 60% random samples are drawn with replacement from the original training 

dataset and an ensemble of five models are trained individually. During prediction the 

output of each of the models are weighted as per following equation.   
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𝑜 = ∑ 𝜎 (ln (
∑𝐼𝑡𝑟𝑎𝑖𝑛

𝜉

𝑀𝑆𝐸𝜉
+ 1))

𝜉

∗∀𝜉𝜖𝐸 𝑜𝜉, where 𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑖𝐾
𝑗=1

          (1) 

𝑜 is output of the ensemble, 𝑜𝜉  is output of the model 𝜉, 𝐸 is set of all models in the 

ensemble, 𝐼𝑡𝑟𝑎𝑖𝑛
𝜉

is number of infected patients in the training samples of model 𝜉, 𝑀𝑆𝐸𝜉  is 

mean squared error of model 𝜉 on validation dataset and 𝜎 is softmax function. The weights 

are proportional to the amount of positive cases used for training the model and inversely 

proportional to the validation error. 

During testing the model is given a sequence of most recent frames as input and the next 

frame is predicted. The predicted frame is temporally appended to the input sequence of 

frames and fed to the model again to obtain the next predicted frame. This continues until 

required number of future frames are predicted. The accuracy of a model is tested with the 

metric “mean absolute percent error” (MAPE) and Kullback-Liebler (KL) divergence [17]. 

The pixel values are transformed to ∆I and summed up cumulatively to calculate total 

infection cases I, up till a specific day. MAPE is calculated at pixel level for total infection 

cases at the end of prediction period and averaged. The pixels with 0 susceptible population 

count are ignored while calculating MAPE. Pixel MAPE is calculated as per equation 2, 

where 𝐺𝑝 is set of all unique pixels in all grids such that the frame for each corresponding 

grid have non zero total infection count, 𝑊′ is prediction time period, 𝑊′′ = 𝑇 −𝑊′ is 

total time period in training set, 𝑝 is a pixel from a set of unique pixels in the total region 

having non zero actual susceptible population, 𝑝𝑖 is predicted pixel value on 𝑖th day, 𝑆𝑝
𝑖 is 

susceptible population at pixel 𝑝 on 𝑖th day calculated from 𝑝𝑖 and 𝑆𝑝
𝑖−1, ∆𝐼𝑝

𝑖  is actual new 

infection count at pixel 𝑝 on 𝑖th day and 𝑁𝑝 is total number of pixels 𝑝 in the region. 𝐼𝑝 and 

𝐼𝑝 are total predicted and actual infection cases respectively.  

 

𝑀𝐴𝑃𝐸𝑝𝑖𝑥𝑒𝑙 =
1

𝑁𝑝
∑ 

|𝐼𝑝−𝐼𝑝|

𝐼𝑝
∀𝑝 |𝑝 ∈ 𝐺𝑝  , where             (2) 

𝐼𝑝 = ∑ 𝑒𝑝𝑖∗ln(𝑆𝑝
𝑖−1+2) − 1𝑖∈𝑊′ +∑ ∆𝐼𝑝

𝑖
𝑖∈𝑊′′   

𝐼𝑝 = ∑ ∆𝐼𝑝
𝑖

∀𝑖∈𝑊′ +∑ ∆𝐼𝑝
𝑖

𝑖∈𝑊′′                 

 

KL divergence at pixel level is calculated for total infection cases at the end of prediction 

period to measure the dissimilarity of distribution of predicted infection cases with respect 

to actual. 𝜎 is softmax function applied after scaling a series in 0 to 1 scale and 𝑃(𝑋) is 

probability distribution of 𝑋. Softmax is applied to convert total infection cases as 

probability distribution across pixels. 

𝐷𝐾𝐿
𝑝𝑖𝑥𝑒𝑙

= ∑ 𝑃(𝜎(𝐼)𝑝) log (
𝑃(𝜎(𝐼)𝑝)

𝑃(𝜎(𝐼)𝑝)
)𝑝               (3) 

  

MAPE is also calculated at country level with respect to total predicted infection cases 

across the region during the prediction period. 

 

𝑀𝐴𝑃𝐸𝑐𝑜𝑢𝑛𝑡𝑟𝑦 =
1

𝑁𝑊′
∑ (

∑ 𝐼𝑝
𝑘

𝑝 −∑ 𝐼𝑝
𝑘

𝑝

∑ 𝐼𝑝
𝑘

𝑝 +∑ ∑ ∆𝐼𝑝
𝑖

𝑖∈𝑊′′𝑝
)∀𝑘∈𝑊′ , where           (4) 
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𝐼𝑝
𝑘 = ∑ 𝑒𝑝𝑖∗ln(𝑆𝑝

𝑖−1+2) − 1𝑖∈𝑊′ ⋀ 𝑖≤𝑘   

𝐼𝑝
𝑘 = ∑ ∆𝐼𝑝

𝑖
∀𝑖∈𝑊′                         

5. Experimental Results 

Experiments have been carried out to predict the future new infection cases in Italy for a 

period of 5 days and 10 days and in USA for a period of 5 days and 8 days. Data has been 

collected from Harvard dataverse [15,16] and [19]. For USA the data collection period is 

‘2020-03-09’ to ‘2020-04-08’ and for Italy it is ‘2020-02-05‘ to ‘2020-04-10’. Test data 

period for Italy data is ‘2020-04-01’ to ‘2020-04-10’ and for USA it is ‘2020-04-01’ to 

‘2020-04-08’. Fig. 2a shows the region of USA which has been divided into 18x30 grids. 

The length W of each training input sequence is taken as 10 days. As shown in Fig. 2b, the 

region of Italy is divided in 7x6 grids. For both the countries the frames containing at least 

a single Covid-19 infection case will be considered for training and testing the model. The 

Covid-19 cases are marked in red bubbles in the map. Each frame in turn is divided in 

16x16 pixels with an overlap Margin of 4 pixel. Training sequences containing at least one 

positive case are only selected.  

 

Fig. 2a. A region of USA divided in 18x30 grids. The red bubbles denote cumulative number of Covid-19 cases. b) A 
region of Italy divided in 8x7 grids with cumulative Covid-19 cases denoted by red bubbles.   

The model consists of ensemble of 5 Convolutional LSTM networks. For Italy each 

network contains 4 hidden layers with sigmoid activation. The output layer is a 

Convolutional 3D layer with exponential linear unit as activation. The models are trained 

for 30 epochs with mean squared error as loss function. Each Conv2D layer has kernel of 

size 3x3. The Conv3D layer has kernel size 3x3x3. The input and hidden layers have 32 

filters. The input layer is configured to take images of size 16x16x2. Each frame in the 

input sample have 2 channels for 2 features. The first channel contains the normalized log 

transformed count of new cases per day. The second channel contains the normalized log 

transformed population in each pixel with no temporal variation. The region in USA is 

approximately 13 times than Italy and the distribution of Covid-19 cases in USA is 

geospatially highly skewed. Thus, grids are divided in four equal sections by a latitude and 
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longitude with each section containing 9x15 grids. A set of 4 heterogenous ensembles are 

trained for each of the 4 sections. The configuration of networks is same as that of Italy 

except they contain 2 hidden layers and each network is trained for 20 epochs. The 

implementation has been done on Python and code is available at 

https://github.com/swarna-kpaul/covid19spatiotemporal. 

Table I shows the performance of the models in terms of KL divergence and MAPE. For 

both USA and Italy, low KL divergences states that the predicted geospatial probability 

distribution of total infection cases nearly matches with the actual probability distribution. 

The pixel level MAPE for Italy stays below 30%. For USA in 8-day forecasting period 

MAPE is 44% as there are many pixels in USA with low total patient count. A slight 

deviation in the prediction for these pixels shoots up the MAPE. Country level MAPE is 

low for both Italy and USA. 

 

Fig. 3a and 4a shows predicted vs actual total Covid-19 cases for a period of 8 and 10 days 

in USA and Italy respectively. For Italy the prediction follows closely with the actual 

whereas for USA it is little underestimated. Fig. 3b and 4b shows predicted vs actual daily 

new Covid-19 cases for a period of 8 and 10 days in USA and Italy respectively. Fig. 5a 

and 5b shows the distribution of total predicted vs actual infection cases in each pixel after 

10 day and 8 day in Italy and USA respectively. The predicted distribution closely follows 

with actual with residuals distributed both on negative and positive side. 

6. Conclusion 

An ensemble of Convolutional LSTM based spatiotemporal epidemic spread model has 

been proposed for short term forecasting of Covid-19 spread. Experiments done on data 

obtained for USA and Italy reveals high prediction accuracy with high resolution. Since 

the model has option to fed in any number of external features so we are experimenting 

with multiple external features that might influence the spread. This might help to find 

important causal features that are impacting the spread across multiple locations. We are 

also trying to combine models of multiple countries so that a single ensemble of model can 

be trained through transfer learning and will eventually help predicting cases across the 

globe. 
 

Country 

Pixel KL 

divergence 

Pixel MAPE 

Total cases 

Country MAPE 

Total cases 

Predicted 

Total cases Test span in days 

Italy 5.72x10-5 11.51% 0.3% 129665 2020-04-01 – 2020-04-05 

Italy 0.00010 28.64% 1.4% 151803 2020-04-01 – 2020-04-10 

USA 3.06x10-6 30.4% 5.57% 292032 2020-04-01 – 2020-04-05 

USA 0.0014 44% 9% 368660 2020-04-01 – 2020-04-08 

Table 1. KL divergence at pixel level and mean absolute percent error at pixel and country level for Italy 

and USA 
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Fig. 3. a) Predicted vs Actual total Covid-19 cases for a period of 8 days in a region of USA. b) Predicted vs Actual daily 
new Covid-19 cases for a period of 8 days in a region of USA 

 

 
Fig. 4. a) Predicted vs Actual total Covid-19 cases for a period of 10 days in a region of Italy. b) Predicted vs Actual daily 
new Covid-19 cases for a period of 10 days in a region of Italy 

 

 

 
Fig. 5. a) Log transformed Predicted vs Actual total Covid-19 cases after a period of 10 days in each pixel in Italy. b) Log 

transformed Predicted vs Actual total Covid-19 cases after a period of 8 days in each pixel in USA 
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