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ABSTRACT: The aim of our study was to predict the epidemic curves (daily new cases) of 

COVID-19 pandemic using Artificial Intelligence (AI)-based Recurrent Neural Networks 

(RNNs), then to compare and validate the predicted models with the observed data. We used the 

publicly available datasets from the World Health Organization and Johns Hopkins University to 

create a training dataset, then we used RNNs with gated recurring units (Long Short-Term 

Memory) to create two prediction models. Information collected in the first t time-steps were 

aggregated with a fully connected (dense) neural network layer and a consequent regression 

output layer to determine the next predicted value. We also used Root Mean Squared 

Logarithmic Errors (RMSLE) to compare the predicted models with the observed data. The 

result of our study underscores that the COVID-19 pandemic is a propagated source epidemic, 

therefore repeated peaks on the epidemic curve are to be anticipated. Besides, the errors between 

the predicted and validated data and trends seems to be low. The influence of this pandemic is 

significant worldwide and has already impacted our daily life. Decision makers must be aware, 

that even if strict public health measures are executed and sustained, future peaks of infections 

are possible.  

Keywords: COVID-19; SARS-CoV-2; Artificial Intelligence; Epidemic Curve; Prediction; 

Recurrent Neural Networks.   
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1.INTRODUCTION 

1.1 Coronavirus 

High and low pathogenic species may be distinguished within the coronavirus family, with the 

former including 4 viruses that are responsible for 10-30% of mild upper respiratory diseases 

(e.g. common cold), and the latter known to cause a more severe form of acute lung injury: 

SARS-CoV (Severe Acute Respiratory Syndrome) and MERS-CoV (Middle East Respiratory 

Syndrome) [1]. SARS-CoV originated in Guangdong Province, China, and started to spread in 

2002, causing over 8,000 cases in 29  countries around the world, with a crude fatality rate of 

10% [2–4]. The virus has spread to Hong Kong in 2003 causing an outbreak of severe acute 

respiratory syndrome (SARS). A novel coronavirus was isolated and was suggested to be the 

primary cause of the infections [5]. A few years later, in 2007 Cheng et. al issued a warning that 

“the presence of a large reservoir of SARS-CoV-like viruses in horseshoe bats, together with the 

culture of eating exotic mammals in southern China, is a time bomb” [4]. MERS-CoV began 

spreading in Saudi Arabia in 2012 and, to the time of writing this, has led to a total of 2519 

laboratory-confirmed cases in several countries around the world [6,7]. Its case-fatality rate 

reached 37.1% over the course of the past 8 years [7]. 

 

1.2 Coronavirus Disease – 2019 (COVID-19) 

The current form of the Severe Acute Respiratory Syndrome noted as COVID-19, is 

caused by a new variant of formerly known highly pathogenic Coronaviridae. The infection 

allegedly began to spread from a market in Wuhan, the capital of Hubei province, China, at the 

end of 2019 [8,9]. Early genome sequencing has found that the new virus, which was named 

SARS-CoV-2 by the International Committee on Taxonomy of Viruses, showed a 79.6% 

homology with SARS-CoV, and has 96% sequence identity with bat coronavirus suggesting a 

common origin from SARSr-CoV (severe acute respiratory syndrome-related coronavirus). Also, 

the suspected host was thought to be a bat species, Rhinolophus affinis (a horseshoe bat), but the 

SARS-COV-2 probably needs an intermediate host [9,10].  
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Symptoms associated with the COVID-19 include fever (83%), cough (82%), shortness of breath 

(31%), muscle aches (11%), confusion (9%), headache (8%), sore throat (5%), runny nose, chest 

pain, diarrhea, nausea and vomiting [11].  According to a meta-analysis that compiled data from 

more than 50 000 patients, the incidence of fever (0.891, 95% confidence interval (CI): [0.818; 

0.945]) and cough (incidence of 0.722, 95% CI: [0.657; 0.782]) were the highest, respectively, 

followed by muscle soreness and fatigue [12]. The incubation period of the virus was estimated 

to be between 1-14 days (5 days on average) [13]. There is no definite data concerning the 

transmissibility of the virus. However, several transmission routes have been identified including 

respiratory droplets/aerosols, direct contact with virally-contaminated objects, and possibly 

fecal-oral transmission [14].  

It seems probable that those with a fulminant disease are most infectious, but reports have 

identified asymptomatic and pre-symptomatic virus shedding as well. There is also a lack of 

definite data regarding tertiary and quaternary spreading among humans, but it seems probable 

that the person who has been exposed to the infection has acquired some (at least temporary) 

immunity [15]. According to data from the World Health Organization (WHO), there were 

91,816,091 confirmed cases and 1,986,871 fatalities globally as of January 15, 2021, which 

corresponds to a case-fatality rate of 2.164% [16].  

 R0, the basic reproduction number, denoting the transmissibility of a virus that indicates 

the average number of new infections induced by an infectious person in a susceptible, infection 

naïve population. The transmissibility of the virus was apparently underestimated initially by the 

WHO with R0 suggested to range between 1.4 and 2.5. More recent reports have indicated 

higher R0 values around 3 (with the mean and median R0 for published estimates being 3.28 and 

2.79, respectively) [13,17]. 
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 1.3 The Daily Number of Newly Diagnosed Infections - Epidemic Curves 

The initial epidemic curves of the COVID-19 outbreak from Hubei, China showed a 

mixed pattern, indicating that early cases were likely from a continuous common source e.g., 

from several zoonotic events in Wuhan, followed by secondary and tertiary transmission 

providing a propagated source for the later cases [18].  

The propagated (or progressive source) epidemic curve visualizes the spread of an 

infectious agent that may be transmitted from human to human starting from with a single index 

case, that continues to further infect other individuals. This shows up as a series of peaks on the 

epidemic curve, that starts with the index case, followed by successive waves of the infection set 

apart with respect to the incubation period of the pathogen. The waves continue to follow each 

other, until appropriate mitigation measures, prevention, or treatment are implemented, or the 

pool of the susceptible population becomes infected. This is a theoretic curve, that is generally 

influenced by lots of other factors [18]. 

Several studies investigated the impact of different interventions with respect to 

minimizing contact rates in the population in order to slow the infection spread, minimize 

COVID-19 mortality rates and health care utilization, or to suppress the epidemic per se. 

Flattening the curve by reducing peak incidence may limit overall case fatality rates. 

Nevertheless, most of the forecasts and simulations thus far started out from Bell-shaped curves, 

that fail to account for the progressive nature of the current outbreak given the known secondary, 

tertiary even quaternary transmissibility of the virus. Taking this into account it is suggested that 

the number of cases will rise once again after pandemic control measures are no longer in effect 

[19].  

 

1.4 Prediction 

There are different mathematical models that may demonstrate and predict the dynamics of 

different infectious diseases [20]. These models, used to simulate the dynamics of infectious 

diseases, may be based on statistical, mathematical, empirical, or machine learning methods [21]. 
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The first attempts to use Artificial Intelligence (AI) in medicine were made in the 1970s. 

Initially, AI was used to implement programs to help clinical decision-making, but to date, its 

use is gaining more and more widespread acceptance in biomedical sciences [22]. One class of 

AI, a form of artificial neural networks, the Recurrent Neural Networks (RNNs) with Long Short-

Term Memory (LSTM) were previously used to model and forecast the influenza epidemic, with 

strong competitiveness and reliable results [23–25]. 

 

1.5 Aim of the Study 

The current study aimed to use the publicly available official COVID-19 data as a training 

dataset, to predict the possible outcomes of the COVID-19 pandemic (epidemic curve of new 

cases) using AI-based RNNs, and further, to compare the predictions with the observed data.  

 

 

2. MATERIALS AND METHODS 

 2.1 Data 

We used the publicly available datasets from the WHO and Johns Hopkins University for 

the following countries to create the training dataset: Austria, Belgium, China (Hubei) , Czech 

Republic, France, Germany, Hungary, Iran, Italy, Netherlands, Norway, Portugal, Slovenia, 

Spain, Switzerland, United Kingdom (UK) and the United States of America (USA) [15,26]. 

Given that most infected people in China were from Hubei province, only data from that 

province was included. For each country, the date of the first reported infection was set as Day 1 

for the disease time scale. (Figure 1).  
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Figure 1. The Historical Datasets of Different Countries 
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When determining the date of the first illness, point-source outbreaks were omitted (e.g., 

those cases where single verified cases were isolated, and no further transmission has occurred). 

This was important to avoid distortion of the propagated epidemic curves. In Belgium, for 

example, the first illness occurred on February 02, 2020 and there were no further cases reported 

for up to 26 days. The next illness occurred on March 01, 2020. Inclusion of the early case from 

February would contribute to a false learning rule for the AI, hence corrupting the results. As for 

Hubei Province, the first officially available data is of January 22, 2020. This cannot be 

considered as the first day of the illness, thus the first infection was arbitrarily defined to occur 

on January 01, 2020. To account for the extreme variability of daily incident cases reported 

which probably reflects delays in reporting procedures, a moving average was used (covering 3 

days) for the Hubei dataset.  

 

Accordingly, an epidemic curve was obtained for each country with a time series where 

the first day denotes the day of the first confirmed case, and each successive day indicating the 

number of newly confirmed cases that day. To account for the country-specific differences in the 

size of the population, the number of daily new cases was normalized for 100.000 inhabitants in 

each country. The observation period varies for each country, given the difference of time 

elapsed since the disease initiation in that country. Accordingly, the longest time series covers 

the observation period of 90 days. e.g., in Hubei, with the first 22 days lacking valid data and the 

next 68 days having data. The shortest observation period was in Slovenia with only 30 days.  

 

The training data set was obtained by averaging the daily incidence rates per 100 000 

inhabitants across the 17 countries included, for each day in the time series. When calculating the 

average, missing data was left blank, i.e., NULL, e.g., countries that did not contain data for a 

specific day were excluded from the calculation of average. The resulting training data set is 

shown in Figure 1. It should be noted that the first part of the data set (up to the initial 30 days 

since Day 1 of the epidemic) contains data for almost all the countries listed, whereas the end of 

the data set contains only data from Hubei. (Figure 2) 
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Figure 2. The training dataset. Average daily new infections per 100.000 inhabitants (line 

) and the Number of datasets (line   ) 

 

2.2 RNNs-Based Model for Prediction 

The state-of-the-art for time series analysis is AI-based analytic tools, which have the best

prediction performance. Recurrent Neural Networks (RNNs) are specifically designed to cope

with sequential input, characteristic of textual or temporal data [24]. This architecture is a neural

network-based architecture, that contains hidden layers chained according to the time step, with a

possibility to predict the next sequence element(s). A time series has a special temporal form,

where the input to the i-th hidden layer is at the i-th time-step that has a corresponding x(i)

observation. In its original form, a simple RNN tries to predict the next sequence element,

however, for the purposes of the current analysis, an encoder-decoder variant is a more natural

choice, similarly to machine translation [27].  
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For our specific scenario this means that during the encoder phase including time steps

1,…,t the RNN is fed with the already known time series data (the average of the number of new

cases normalized to 100 000 inhabitants for day 1…t, respectively), followed by prediction in the

decoder phase for the future time steps t+1,…,T. In our analysis, T=t+1=90 days is the longest

known (Hubei) time interval. Since this covers quite a long data sequence, we have used gated

recurring units (namely Long Short-Term Memory – LSTM units) in compliance with the

general recommendations [25].  Figure 3 depicts our RNN architecture showing how unknown

time series elements are predicted. Figure 3 also shows how the information collected in the first

t time-steps are aggregated with a fully connected (dense) neural network layer and a consequent

regression output layer to determine a predicted number of new patients as x(t+1). 

 

 

Figure 3. The Recurrent Neural Network (RNN) Architecture used for Prediction. 
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The training data was described in the previous section. To assess possible specificities 

regarding the countries two approaches were used for prediction:  

 

•Prediction 1: An algorithm to update the training step and subsequent prediction was 

formulated. This update step is based on the general recommendations of transfer learning that 

considers the already known time interval for the given country and re-training is done in small 

increments of the RNN network accordingly [28]. Thus, we start predicting the first unknown 

element x(t+1) from the last 5% of the known data, and the same principle is applied to each 

subsequent element. Moreover, after each prediction step our RNN architecture was re-trained 

and the subsequent elements were predicted with this updated RNN. 

 

•Prediction 2:  We start predicting the first unknown element x(t+1) from the last known x(t), 

and all the subsequent elements are predicted only from the preceding ones. Here the rules 

depicted from the training data set are used, not retraining occurs. 

 

The intuitive interpretations of the difference between Prediction 1 and Prediction 2 are 

as follows. Prediction 2 makes its predictions utilizing the information derived from the training 

data set, reflective of the trends in the average time series. It follows that predictions will comply 

primarily with the Hubei time series, especially in the far future. Therefore Prediction 2 shows 

the highest fidelity to the country-specific future scenario if the approach to mitigate the 

epidemic is similar to that in Hubei. Accordingly, this scenario is also reflective of a country-

specific future state given the practices of Hubei were followed in said country. On the other 

hand, Prediction 1 is yielded after the neural network is retrained after any prediction, providing 

more valid insight into what is expected if the country goes on with the mitigation practices seen 

during the observation period. The architecture was trained in 250 epochs with a total number of 

100 hidden LSTM layers, to prepare a bit for prediction also after T=90 days. Naturally, the 

length of the RNN can be freely increased later. 
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2.3 Validation 

For the learning dataset, we used the data from the first pandemic wave. That is, we took 

the available factual data from the first case reported in a country until April 10, 2020. Based on 

that, we have made the above mentioned two predictions (1 and 2). Moreover, for the validation 

process, we used the factual data of the first wave. By country, we considered 85-90 days from 

the first case reported. Thus, the number of days predicted varied from country to country in the 

same way as for the learning dataset. The amount of Root Mean Squared Logarithmic Errors 

(RMSLE) was used for validation. In our analysis, the possible bias regarding the different ratios 

between the observed and predicted values are interpreted using the RMSLE. Let n be the 

number of days used for validation. Let p_1i and p_2i be the number of new cases per day 

obtained using the two prediction methods in the examined time interval and let a_i be the actual 

data for the given days. Err1 and Err2 will be RMSLE for Prediction 1 and Prediction 2, 

respectively, where: 
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3. RESULTS 

This section shows the outcomes for Prediction 1 and Prediction 2 for the individual 

country-level data for France, Germany, Hungary, Italy, Spain, USA, and UK (Figures 4-10). 

For each main graph, the small graph in the upper right corner contains the daily error values 

calculated for the predictions. The more accurate the prediction, the smaller the RMSLE error. It 

should be noted that if the error function is parallel to the x-axis, it means that the trend of the 

prediction is the same as the real trend, only at a lower or higher scale. Also, the total errors for 

the entire investigated period, the summarized mean of the predictions (RMSLE) by country, is 

shown in Table 1. 
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Figure 4. Observation and predictions for France. The small graph in the upper right corner 

shows the daily error values calculated for the predictions. 
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Figure 5. Observation and predictions for the Germany. The small graph in the upper right 

corner shows the daily error values calculated for the predictions. 
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Figure 6. Observation and predictions for Hungary. The small graph in the upper right corner 

shows the daily error values calculated for the predictions. 
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Figure 7. Observation and predictions for Italy. The small graph in the upper right corner shows 

the daily error values calculated for the predictions. 

 

 

 

 

 

 

 

 

 

s 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 27, 2021. ; https://doi.org/10.1101/2020.04.17.20069666doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.17.20069666


 

 

Figure 8. Observation and predictions for Spain. The small graph in the upper right corner 

shows the daily error values calculated for the predictions. 
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Figure 9. Observation and predictions for the United Kingdom (UK). The small graph in the 

upper right corner shows the daily error values calculated for the predictions. 
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Figure 10. Observation and predictions for the United States of America (USA). The small 

graph in the upper right corner shows the daily error values calculated for the predictions. 
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Table 1. Total RMSLE error for the entire investigated period 

Country 

Mean of 

RMSLE of 

Prediction 1 

Mean of 

RMSLE of 

Prediction 2 

Hungary 0.06 0.107 

UK 0.234 0.455 

Italy 0.114 0.155 

Spain 0.266 0.181 

Germany 0.147 0.108 

France 0.513 0.307 

USA 0.216 0.528 

 

 

4. DISCUSSION 

The current COVID-19 pandemic has opened avenues for more effective and efficient 

application of AI in various aspects of fighting and tackling infectious diseases. At the early 

stage of the COVID-19 outbreak when little data were available regarding the nature and 

transmissibility of SARS-CoV-2, modelling studies have attempted to predict the epidemic 

outcomes using Susceptible-Exposed-Infectious-Recovered (SEIR) model, based on data from 

Wuhan, China ; the starting point of the outbreak [29]. Besides, forecasting and predicting the 

COVID-19 trajectories was not the only application of AI during the current pandemic. AI has 

been adopted in contact-tracing , tracking public health behaviors, and currently in COVID-19 

vaccination [30,31]. Since March 2020, we have had the opportunity in our present study to use 

the declared numbers of daily new cases of COVID-19 to predict our models and to compare the 

predicted trajectories with the observed data. In countries that imposed strict measures (e.g., 
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strict lockdown), for example, France, Hungary, Italy, and Spain, the predicted models and 

observed data were closely similar, however, this was not the case of the UK and the USA. This 

could be attributed to the fact that the learning dataset was based mainly on data from Hubei 

province where a strict total lockdown was imposed there, unlike the UK and the USA.  Besides, 

we can notice in the models that Prediction 1 is more accurate for some countries (Hungary, 

Italy, UK, USA), while Prediction 2 is more accurate for others (France, Germany, Spain). 

The findings of our study underscores that the COVID-19 pandemic is a propagated 

source outbreak, therefore repeated peaks on the epidemic curve (rise of the daily number of 

newly diagnosed infections) are to be anticipated. Predictions that were made using AI-based 

RNNs further implicate that albeit the majority of investigated countries are near or over the 

peak of the curve, they should prepare for a series of successively high peaks in the near future, 

until all susceptible people will be infected by the SARS-CoV-2, or effective preventive (e.g., 

vaccination) or treatment options will become available and utilized effectively. These scenarios 

are similar to other known propagated source epidemics, e.g., SARS and measles [32].  

Albeit suppression and mitigation measures can reduce the incidence of infection, 

COVID-19 disease, given its relatively high transmissibility reflected by average R0 values of 

3.28, will continue to spread, most likely [16]. Accordingly, public health measures must be 

implemented as the incubation period of the virus may be long (1-14 days, but there are some 

opinions, that this can be 21 days), during which time asymptomatic or pre-symptomatic 

spreading may ensue. Moreover, currently it is uncertain, whether those, who were diagnosed 

with COVID-19 infection, will acquire sufficient immunity or not [13]. Finally, data from 

countries with warm climates suggest that summer is unlikely to stop the pandemic, as the virus 

already spreading in Australia and South Africa as well [15,19]. This is why the recurrence of 

another peak is very likely, and the end of the pandemic cannot be accurately predicted at this 

time.  

Nevertheless, recent publications showed that the earlier the mitigation attempts are in 

place (e.g., border closure, closing schools, the lockdown of the country, curfew), the more 

effective is the reduction of the spread of the epidemic [19].  In fact, analyzing the effects of a 

suppression strategy concerning the COVID-19, it was shown that early implementation of 

suppression at 0.2 deaths per 100 000 population per week could save 30.7 million lives 
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compared to late implementation of these measures at 1.6 deaths per 100 000 population per 

week [33]. This seems to be the case in the countries, which had prior knowledge regarding 

coronavirus infections (e.g., China, Singapore, Hong Kong), as they were more prepared to 

implement public health measures, had more equipment and health care personnel in place to 

mitigate the spread of the infections. Those countries, that failed to implement efficient and strict 

mitigation policies in a timely manner, were facing difficulty in controlling the spread of the 

disease, as is the case of Italy, the UK  and the USA [16]. 

To the best of our knowledge, this is the first study to model the predicted evolution of 

the newly diagnosed infections using data from official databases with the help of the AI-based 

RNNs trained on the currently available data, which were validated by RMSLE calculation. Most 

studies to date expect a single peak of the epidemic curve, but some fear the emergence of future 

peaks when mitigation-suppression measures will be discontinued. According to our model, this 

can even happen, if strict measures are sustained.  

Nevertheless, the are some limitations in our study. As the nature of SARS-COV-2 is 

relatively unknown or dynamic, and it is prone to mutations, the prediction of the spread of the 

pandemic is not an easy mission. Factors that influenced the reported new cases per day, for 

example, the efficiency of reporting, the different quality and timing of public health measures, 

country-specific age-pyramid, and chronic disease burden of the population were not included in 

our training data set due to lack of reliable data.  We did not investigate the number of deaths and 

recoveries, as we found no reliable data at that time. Similarly, the data regarding diagnostic tests 

performed per country, or death rates were omitted, given they are highly influenced by the 

countries’ economic wellbeing, health care systems, facilities and capacities, and other factors 

[34,35]. There are lots of unforeseen uncertainties and coincidences which could not be 

implemented in our model, for example, there were days when a large number of people have 

been diagnosed with COVID-19 on one day (for example in care homes in France or Hungary) 

that caused a large increase in the number of the daily new cases [16]. 

To summarize, the COVID-19 disease is a global health challenge, which forced the 

WHO to declare it a “public health emergency of international concern on 30/01/2020” and later 

as a global pandemic [18]. The influence of this global epidemic has dug deep into the day-to-

day conduct of everyone, with unforeseen challenges still pending for governments and 
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policymakers. Starting from this, everyone, especially decision-makers must be aware, that the 

current situation might be just the beginning, and even if strict public health measures are 

executed and sustained, future peaks of infections are possible.  

 

5. CONCLUSION 

The findings of our study underscore that the COVID-19 pandemic is a propagated 

source epidemic, therefore repeated peaks of the rise of the daily number of newly diagnosed 

infections are to be anticipated. In countries where strict control measures were imposed, the 

predicted models were closely similar to the observed data. Most studies to date expect a single 

peak on the epidemic curve, but some fear the emergence of future peaks when mitigation-

suppression measures will be discontinued. According to our models, this can even happen, if 

strict measures are sustained. The AI-based predictions might be useful tools and can be 

recalculated according to the newly observed data to get a more precise forecast of the pandemic. 

Finally, AI-based predictions are expected to provide public health practitioners and decision 

makers with sufficient data that would be useful in improving countries’ preparedness to the next 

stage of a pandemic. 
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