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Abstract 1

We present a general framework which describes the systematic (binary) scenario of 2

individuals either taking treatment or not for any reason, over the course of mass drug 3

administration (MDA) — which we refer to as ‘adherence’ and ‘non-adherence’. The 4

probability models developed can be informed by observed adherence behaviour as well 5

as employed to explore how different patterns influence the impact of MDA 6

programmes, by the use of mathematical models of transmission and control. We 7

demonstrate the interpretative value of the developed probability model employing a 8

dataset collected in the TUMIKIA project, a randomised trial of deworming strategies 9

to control soil-transmitted helminths (STH) by MDA conducted in coastal Kenya. We 10

stratify our analysis by age and sex, although the framework which we introduce here 11

may be readily adapted to accommodate other stratifications. Our findings include the 12

detection of specific patterns of non-adherence in all age groups to varying extents. This 13

is particularly apparent in men of ages 30+. We then demonstrate the use of the 14

probability model in stochastic individual-based simulations by running two example 15

forecasts for the elimination of STH transmission employing MDA within the TUMIKIA 16

trial setting with different adherence patterns. This suggested a substantial reduction in 17

the probability of elimination (between 23-43%) when comparing observed adherence 18

patterns with an assumption of independence, with important implications for 19

programmes. The results here demonstrate the considerable impact and utility of 20

considering non-adherence on the success of MDA programmes to control neglected 21

tropical diseases (NTDs). 22

Author summary 23

Mass drug administration (MDA) is an important tool in the prevention of morbidity 24

caused by various NTDs and in the reduction of their transmission. Due to a variety of 25
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social and behavioural reasons, many people will either not be offered or refuse such 26

treatment, and if this behaviour is recurring at an individual level, then control 27

measures may face a challenge in achieving their stated goals. Accurately describing the 28

patterns of individual adherence or non-adherence to MDA control measures for NTDs 29

from data, followed by their use in simulated scenarios is a relatively recent development 30

in the study of NTDs. Past analyses assessing individual adherence have informed the 31

approach we take in this work. However, we have sought to provide a framework which 32

encapsulates as many types of adherence behaviour as possible to facilitate the 33

assessment of impact in mathematical models of parasite transmission and control. Our 34

example application to the TUMIKIA data highlights the importance of such a general 35

framework as we find a dependence on past behaviour that may have been missed in 36

standard statistical analyses. 37

1 Introduction 38

Recent reviews, guidelines and analyses predicting the outcome of mass drug 39

administration (MDA) to control the transmission of various neglected tropical diseases 40

(NTDs) all emphasise the importance of individual adherence in successfully reaching 41

elimination targets [1–9]. Such analyses have taken a variety of approaches in describing 42

how participants in a given MDA programme with multiple rounds can either not be 43

offered, or actively avoid, treatment in a potentially repetitive manner. There are wide 44

a range of published studies of treatment adherence in the literature and mathematical 45

plus statistical models of adherence are included in micro-simulations of infectious agent 46

disease control strategies across a great variety of infectious agents including HIV, 47

tuberculosis and NTDs [1,3–8,10]. A much larger literature exists for non-infectious 48

diseases such as blood pressure control and statin use. 49

Although a range of terms have been used to describe this phenomenon [7], here we 50

refer to the binary scenario of individuals either taking treatment or not, for any reason, 51

over the course of multiple rounds of MDA as ‘adherence’ or ‘non-adherence’. 52

Ultimately, the effect that this behaviour has on the success or failure of control through 53

MDA is of great importance and not fully recognized in policy formulation concerning 54

the monitoring and evaluation of MDA programmes by WHO and national governments. 55

In this paper, we develop a general approach to describe individual adherence or 56

non-adherence to MDA. Our principal aim is to provide a framework within which as 57

many patterns or adherence behaviour as possible are captured by a general probability 58

model so that the evaluation of the importance of adherence patterns on the impact of 59

MDA programmes can be precisely quantified. This also involves employing, for 60

example, models of parasite transmission and control by MDA. To illustrate how our 61

methodology may be implemented and interpreted in practice, we apply it to data 62

collected during the TUMIKIA project: a recent cluster randomised, controlled trial of 63

the impact of MDA on the transmission of STH infections in Kwale County, 64

Kenya [11–13]. A statistical analysis has already been performed on this dataset, as 65

described in Ref [13], and so the analysis we present here is to illustrate the application 66

of our probability model only. 67

2 Methods 68

2.1 Model definitions 69

In this section, we will lay out a general probability model for the treatment of 70

adherence across multiple rounds in an MDA intervention programme. In Appendix S3, 71
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we discuss other implementations of adherence in probability models and how they fit 72

within our general framework. 73

At the level of an individual involved in an MDA treatment programme, we describe 74

adherence as a binary ‘choice’, made at each round of MDA, of whether to receive 75

treatment or not (or if treatment is, or is not, accessible to the individual). We 76

associate a probability with this ‘choice’, which is composed of both an individual’s 77

access to treatment and their personal choice to take it, making each round a Bernoulli 78

trial for each individual. 79

We identify three main ways in which the probability of adherence can vary in a 80

population over the course of an MDA intervention. 81

1. Dependence on past behaviour: An individual’s probability of adhering in the 82

current round may depend on their individual history of adherence in past rounds. 83

This could be alternating (for example, being treated in the previous round may 84

make individuals feel their participation in this round is less important, or prior 85

experience of unpleasant side-effects may prevent adherence) or may be persistent 86

(for example, those who live in hard-to-reach or marginalised households may be 87

consistently missed). 88

2. Time dependence: everyone involved in the trial may be subject to external 89

influences that change over time. For example, enthusiasm or funding for the 90

treatment programme may decline as it proceeds, or unforeseen sociological or 91

political events may change the population’s inclination to take part in the 92

programme. This will result in the probability of treatment in a given round for a 93

given individual being explicitly dependent on time and is distinct from 94

dependence on past behaviour. 95

3. Population-level heterogeneity: the probability of adherence may vary 96

systematically across the population on the basis of socio-demographic stratifying 97

characteristics. That is, individuals may have a individual probability of adherence 98

that they retain across multiple rounds of the intervention. In this case, the 99

probability of adherence will have a distribution across the population. Typically, 100

population-level heterogeneity may be strongly correlated with covariates such as 101

sex or age, in which case it can be represented by a stratification of the population 102

into sub-groups, each with their own adherence probability. 103

In reality, any model of adherence might include one or more of these sources of 104

variability, or none at all in the default case in which the adherence probability is 105

constant across all individuals and all treatment rounds and does not depend on past 106

history. For the purpose of illustration, we can create a tree of possible model types 107

based on the possible sources of variability (see Fig 1). Models can be stratified into 108

types which have some degree of dependence on the past behaviour of individuals and 109

those that do not. Within each group, there are models with and without population 110

heterogeneity in adherence (heterogeneous and homogeneous populations, respectively) 111

and those with and without time-dependent adherence probabilities (time-dependent 112

and independent, respectively). 113

The distinctions above are of critical importance as it is possible for example for a 114

treatment programme to suffer severely from past behaviour-dependent non-adherence 115

without any apparent heterogeneity in adherence within the population. They also allow 116

us to categorise and clarify models of adherence already described in the 117

literature [1, 4–8]. 118

The Plaisier model assigns a probability of adherence to each individual which they 119

then retain for the duration of the MDA programme [14,15]. As such, this model would 120

be characterised by us as a heterogeneous population, time-independent model with no 121
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Fig 1. A decision tree illustrating the possible classes of behaviour which may be characterised in adherence models. In the
illustrations, colours of individuals denote unique probabilities of receiving treatment and arrows to previous rounds denote
dependency of these probabilities on past behaviour.

explicit individual dependence on past behaviour. We discuss the relationship of the 122

Plaisier model (and others [5]) to our categorisation of adherence models with more 123

detail in Appendix S3. Additional technical details and calculations may also be found 124

in Appendix S1 for the three adherence categories. 125

2.2 Individual past behaviour-dependent adherence 126

2.2.1 Basic model 127

When the probability of an individual taking treatment is not dependent upon any of 128

their past behaviour, then it is simply given by the coverage cn in each round n of MDA. 129

In the absence of population heterogeneity, this probability would then apply to all 130

individuals within a given cohort — a case which corresponds to either the 6th or 8th 131

row of Fig 1, depending on whether the coverage changes over time, i.e., between rounds. 132

For the case of a homogeneous population with a dependence on past behaviour 133

between successive rounds, let us consider the dynamics of a single individual. In this 134

case, the model becomes a simple Markov chain. The possible patterns of adherence 135

behaviour by an individual after two successive rounds of treatment are TT, TF, FT 136

and FF, where T and F are receiving and not receiving treatment, respectively. Let the 137

probability of receiving treatment in the first round be set to P (T) = α. In round 2, we 138

now fix the conditional probability of getting treated, given treatment in the first round 139

as P (T′|T) = β. Let us also set a corresponding conditional probability for not being 140

treated in the second round given that there was no treatment in the first round as 141

P (F′|F) = 1− γ. As such, β and γ are now measures of consistent behaviour. 142

To avoid unnecessary repetition, we shall once again use the notation pn to denote 143

the probability of treatment in the n-th round. Assuming that the conditional 144
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probabilities β and γ are constant, the time-independent Markov model may be mapped 145

to the following recursion relation 146

pn = βpn−1 + (1− γ)(1− pn−1) . (1)

In Appendix S1, we demonstrate how to obtain the following solution to Eq (1) 147

pn = αλn−1 + q
(
1− λn−1

)
. (2)

Where we have defined

p0 ≡ α , λ ≡ β + γ − 1 , q ≡ 1− γ
2− γ − β

. (3)

Notice that by matching pn to the coverage of treatment in a given population, one 148

may directly compare the impact of adherence models such as Eq (1) to those with past 149

behaviour-independent adherence. Furthermore, by setting λ = 0 in Eq (2) one finds 150

the model for past behaviour-independent adherence that is time-independent, i.e., 151

pn = β = 1− γ. 152

Any sequence of treatments can be seen as a set of alternating adherent and 153

non-adherent runs. A key statistic in the context of preventive chemotherapy is the run 154

length (in rounds) over which an individual adheres or fails to adhere. For an adherence 155

run, this is the number of consecutive treatment adherences, given an initial adherence. 156

This can also be thought of as the first passage time to failure. Since the P (T′|T) = β is 157

constant, the run length is distributed according to a geometric distribution, with 158

P (nT) = βn−1(1− β) , E(nT) =
1

1− β
=

1

1− λ
1

1− q
. (4)

Correspondingly, for a run of failures, 159

P (nF) = γn−1(1− γ) , E(nF) =
1

1− γ
=

1

1− λ
1

q
. (5)

Any long run of treatment choices by an individual will breakdown into an alternating 160

sequence of F and T runs. Hence, the probability of a round chosen at random being T, 161

P (T), is 162

P (T) =
E(n

T
)

E(n
F
) + E(n

T
)

= q . (6)

From Eqs (4) and (5), it is clear that as λ approaches 1, the length of both success and 163

failure runs grows as 1/(1− λ). In the absence of past behaviour dependence, λ = 0 and 164

the adherent and non-adherent run lengths are given by 1/(1− q) and 1/q, respectively. 165

2.2.2 Statistical inference from data 166

Let us now only consider two rounds of treatment to illustrate how we may calculate 167

the important quantities for statistical inference of the time-independent Markov model 168

from a real dataset. Recall that the possible patterns of adherence behaviour by an 169

individual after two successive rounds of treatment are TT, TF, FT and FF, where T 170

and F are receiving and not receiving treatment, respectively. Once again, let: the 171

probability of treatment in the first round be set to P (T) = α; the conditional 172

probability of getting treated in the second round, given treatment in the first round be 173

set to P (T′|T) = β; and the conditional probability for not being treated in the second 174

round given that there was no treatment in the first round be set to P (F′|F) = 1− γ. 175

In this model, there are effectively 4 types of people with probabilities and 176

behaviours, mapped out in Table 1. Using the probability table, one may infer directly 177
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Table 1. Probability table corresponding to two successive rounds of treatment.

Behaviour Probability
TT αβ
TF α(1− β)
FT (1− α)(1− γ)
FF (1− α)γ

that the the likelihood L(D|θ) of the data D = {NT, NF, NTT, NTF, NFT, NFF} — 178

where NT and NF are the number treated and not treated in the first round and NTT is 179

the number treated in the first and the second rounds, etc. — is a multinomial 180

distribution, where θ ∈ Ωθ is now a 3-vector defined over the model parameter space 181

θ = (α, β, γ) within the prior domain Ωθ = {θ | θ1 ∈ [0, 1] , θ2 ∈ [0, 1] , θ3 ∈ [0, 1]}. The 182

multinomial can then be factored into independent functions of the three parameters, 183

such that 184

L(D|θ) = αNT(1− α)NFβNTT(1− β)NTFγNFF(1− γ)NFT . (7)

The likelihood above is effectively three independent beta distributions, one in each of
the parameters, such that the posterior distribution P(θ|D) becomes

P(θ|D) =

1

E
Beta(α;NT + 1, NF + 1)Beta(β;NTT + 1, NTF + 1)Beta(γ;NFF + 1, NFT + 1) , (8)

where we have assumed a flat prior π(θ) ∝ 1 to derive the following Bayesian evidence 185

normalisation 186

E =
Γ(NTT + 1)Γ(NTF + 1)Γ(NFT + 1)Γ(NFF + 1)

(NT + 1)(NF + 1)Γ(N + 2)
, (9)

and N = NT +NF is defined as the total number of individuals. 187

Note here that Eqs (7) and (9) may be generalised to the case where n rounds of 188

treatment have taken place. We have provided these expressions in Appendix S1. 189

2.3 Time-dependent adherence and more general behaviour 190

2.3.1 Introducing the choice matrices 191

A significant generalisation of Eq (1) introduces the lower triangular matrices, with 192

elements CT
nn′ and CF

nn′ corresponding to the conditional probabilities of treatment and 193

non-treatment in round n given treatment and non-treatment in round n′, respectively, 194

such that 195

pn =
n−1∑
n′=1

[
CT

nn′pn′ + CF
nn′(1− pn′)

]
. (10)

We shall hereafter refer to the above matrices as ‘choice matrices’. In Appendix S1 we 196

demonstrate that the model parameterisation defined in Eq (10) is extremely general — 197

encapsulating all of the possible adherence behaviours illustrated in Fig 1. 198

2.3.2 Lower diagonal choice matrices: the time-dependent Markov model 199

When the only nonzero elements of the choice matrices in Eq (10) are along the their 200

lower diagonals, i.e., such that only CT
nn−1 = βnn−1 6= 0 and CF

nn−1 = 1− γnn−1 6= 0, 201

the system is described by a time-dependent Markov process with recursion relation 202

pn = βnn−1pn−1 + (1− γnn−1)(1− pn−1) . (11)
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Following a similar argument to the one used in solving the homogeneous Markov model 203

(which is provided in detail in Appendix S1), we may obtain a solution to Eq (11), 204

which is given by 205

pn = α
n∏

n′=2

ωn′ +
n∑

n′′=2

(1− γn′′n′′−1)
n∏

n′=n′′

ωn′ , (12)

where we have defined an important new quantity 206

ωn ≡ βnn−1 + γnn−1 − 1 . (13)

Notice, firstly, that when wn = 0 the system reverts to a time-dependent past 207

behaviour-independent adherence model, i.e., without past behaviour dependence such 208

that pn = βnn−1 = 1− γnn−1. By analogy with the time-independent Markov model, 209

|wn| 6= 0 signals the presence of some degree of past behaviour-dependent adherence 210

behaviour. In more detail, for successive rounds over which wn > 0, the system will 211

relax towards the steady state and when wn < 0 this will be accompanied by oscillatory 212

behaviour. Note also that wn may act as an indicator for the severity of adherence and 213

non-adherence behaviour in the system — where larger absolute values for wn 214

approaching a maximum of 1 will indicate increasingly past behaviour dependence. 215

At the extrema of: wn = 1, individuals repeat their past behaviour exactly and 216

indefinitely, i.e., TTTTT... and FFFFF...; and wn = −1, individuals repeat the 217

opposite of their past behaviour exactly and indefinitely, i.e., TFTFT... and FTFTF.... 218

The value of wn is therefore a useful indicator for the type of adherence behaviour in 219

the relatively general description of time-dependent Markov models. 220

2.3.3 Fitting the model to adherence data 221

The universality of the choice matrix approach suggest that it is an ideal candidate for
parameterisation of the inference problem from data and model comparison. Let the
data now correspond to a set of n-vectors D = {X} where each individual’s adherence
or non-adherence behaviour in the n-th round is recorded, such that Xn = T,F. Using
Eq (10) the full generalisation of the likelihood (which supports all of the possible
adherence models) becomes

L(D|θ) =
∏
∀Xn∈D

n∏
n′=1

{
n′−1∑
n′′=1

[
CT

nn′1Xn′=T + CF
nn′1Xn′=F

]}
, (14)

where 1A denotes an indicator function which takes value unity when condition A is 222

satisfied, else it vanishes. 223

The large number of available degrees of freedom in Eq (14) motivates a systematic 224

approach to inferring the choice matrix components from a given set of data. We elect 225

to consider models which isolate the many degrees of freedom by constructing scenarios 226

where past behaviour-dependent adherence only occurs for a single round and is past 227

behaviour dependent to only one other round — all other degrees of freedom are hence 228

set to those corresponding to time-dependent past behaviour-independent adherence, i.e. 229

CT
nn′ = CF

nn′ = cn. The likelihoods and Bayesian evidence normalisations for this more 230

restricted set of models are calculated in Appendix S1. 231

2.4 Population heterogeneity in adherence 232

The probability of adherence may vary greatly across a population of individuals. The 233

first possible form that this heterogeneity may take can be attributed to age, gender 234
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and social plus behavioural factors. In such cases, stratification of the population into 235

separate cohorts for study is an appropriate tool to quantify this variation. 236

The second possible form that population heterogeneity could take may not be 237

immediately attributable to social or demographic groupings. In such situations, the 238

adherence probability for an individual can be drawn from a distribution which applies 239

to the entire population or defined sub-group of the population within the study. This 240

approach is the same as used in other models in the literature (see Appendix S3 for 241

more details). We shall now briefly elaborate on how one might include this form of 242

heterogeneity in the formalism we have introduced in this work through a simple, 243

generic example. 244

To illustrate the generic effect of the population heterogeneity described above on
our individual adherence probabilities, let us consider the time-independent Markov
model we introduced earlier. The long-term probability of adherence q in Eq (2) may
itself be randomly drawn from a population heterogeneity distribution Ppop(q) for an
individual within the specified cohort of study, such that q ∼ Ppop(q). Note also that λ
in Eq (2) need not vary between individuals at the same time. Using the results given in
Eqs (4) and (5) for the same model one may deduce that the mean adherent and
non-adherent run lengths are modified by

E(n
T

) =
1

1− λ
Epop

(
1

1− q

)
(15)

E(n
F
) =

1

1− λ
Epop

(
1

q

)
, (16)

where Epop(·) denotes taking an expectation value with the distribution Ppop(q). Hence, 245

depending on the choice for this distribution, one may either shorten or lengthen the 246

mean run lengths across the population accordingly. Note that due to the fact that q is 247

a probability, a possible and widely applicable candidate for Ppop(q) is the beta 248

distribution. 249

2.5 Dataset used 250

In the four rounds of individual adherence data recorded in the TUMIKIA project of 251

MDA to control STH infections, we have split the study population into pre-school-aged 252

children (pre-SAC, ages 0-4 — where only ages 2-4 were eligible for treatment), 253

school-aged children (SAC, ages 5-14) and other adult age categories. The individuals 254

considered in the TUMIKIA dataset comprise a randomly sampled cohort of 21978 255

individuals living in 40 ‘community units’ (each constituting around 1000 households) in 256

the biannual treatment arm, in which albendazole was targeted to all individuals aged 257

over two years during house-to-house delivery campaigns conducted by community 258

health volunteers every six months. Importantly, the movement of individuals between 259

age groups is not explicitly specified in the model, and so some time variation in the 260

inferred compliance behaviour may be attributable to the process of an individual 261

moving into a new age category over the course of the trial. 262

3 Results 263

3.1 Overview of statistical analysis 264

In Fig 2 we provide one example set of plots from Appendix S2 for the SAC (4-15) age 265

group of the TUMIKIA adherence dataset which gives the maximum likelihood as well 266

as the limits of the marginalised 95% credible region for the conditional probabilities 267

given treatment (filled points) or non-treatment (hollow points) in a previous round of 268
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Table 2. A measure of how past behaviour influences the adherent and non-adherent behaviour of individuals is in the n-th
round of treatment, ωn ≡ βnn−1 + γnn−1 − 1, which was introduced in Eq (13). This value is given for each age group and
sex inferred from the TUMIKIA project dataset and is computed using the maximum likelihood values for the conditional
probabilities. The uncertainties quoted with each value correspond to the standard deviation of ωn in each case.

Age group ω2 (Male) ω3 (Male) ω4 (Male) ω2 (Female) ω3 (Female) ω4 (Female)

Pre-SAC 0.294± 0.012 0.241± 0.011 0.051± 0.006 0.237± 0.013 0.250± 0.012 0.046± 0.006
SAC 0.209± 0.006 0.141± 0.006 0.027± 0.003 0.213± 0.007 0.226± 0.007 0.021± 0.003
15-29 0.228± 0.010 0.210± 0.010 0.111± 0.008 0.223± 0.009 0.182± 0.009 0.066± 0.007
30-49 0.259± 0.009 0.308± 0.009 0.268± 0.008 0.223± 0.009 0.174± 0.008 0.118± 0.007
50+ 0.244± 0.010 0.286± 0.010 0.259± 0.009 0.195± 0.011 0.181± 0.011 0.139± 0.009

the overall, male and female participants in the top, middle and bottom rows, 269

respectively. Note that we are using the symbolic representation for behaviours which 270

we introduced in Sec 2 — receiving treatment in a given round is denoted by a ‘T’, 271

whereas not receiving treatment in a given round is denoted by an ‘F’. In the left 272

column the constant conditional probabilities between any given sequential pair of 273

rounds have been inferred, which corresponds to the time-independent probability 274

model. In the right column all possible round pair dependencies are considered 275

(indicated by the arrows on the horizontal axis), where in each case the components 276

corresponding to a given round were measured assuming all other respective rounds 277

were inferred to be from past behaviour-independent adherence. In all plots, above each 278

pair of components we have also provided the log-Bayes factors [16] (see Appendix S2 279

for further explanation), where the evidence for has been evaluated using the relations 280

provided in Appendix S1 and the reference model evidence has been set to that of 281

time-dependent past behaviour-independent adherence for all components. 282

From Fig 2, the pre-SAC age group appears to be well-described by a time-dependent 283

probability model and past behaviour-dependent non-adherence is clearly present. This 284

may be identified by the largest log-Bayes factor values being given in the red-coloured 285

right column plots for all three sets of plots. However, the conditional probabilities in 286

all groups appear to drift closer together by round 4 of treatment, which signals a 287

gradual transition from past behaviour-dependent to independent adherence. From 288

these plots we also report no evidence for the existence of dependencies between rounds 289

in the pre-SAC age group that depart from a Markovian description (as can be inferred 290

from the comparatively small log-Bayes factors for the blue and green conditional 291

probabilities in the right column of all plots). We also have a detailed description of all 292

of these findings and those for all of the other age categories in Appendix S2. 293

In Table 2 we have also provided the ωn values, calculated using Eq (13), for each 294

age group and sex inferred from the TUMIKIA project dataset. This value was shown 295

in Sec 2 to be an indicator of how past behaviour influences the adherent and 296

non-adherent behaviour of individuals in a future round of MDA treatment, with larger 297

(positive or negative) values corresponding to a greater degree of dependence on past 298

behaviour (individuals systematically non-adhering and adhering with more probable 299

repetition, respectively) and smaller (positive or negative) values corresponding to an 300

individual’s adherence pattern showing less of a dependence on their past behaviour. 301

We can see quite clearly from Table 2 by the values of the conditional probabilities 302

that a degree of past behaviour-dependent non-adherence is indeed present in all the 303

age groups, with the exception of the final round ω4 values for those in the pre-SAC 304

(which have mostly aged into SAC by this point) and SAC categories. This effect is 305

explained in more detail by Ref [13]. Table 2 also shows that the most past 306

behaviour-dependent non-adherent age group and sex appears to be males aged 30+ 307

(they have the largest conditional probability values across all rounds of treatment). In 308
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Table 3. The transmission elimination probability evaluated by fully age-structured stochastic individual-based simulations
of hookworm (with adult worm and eggs/larvae mortality rates set to µ1 = 0.5 and µ2 = 26.0 per year, respectively and the
density dependent fecundity factor is set to γ = 0.01, as considered in Ref [17]) with two different clustered community types
specified by the TUMIKIA transmission parameters inferred from the baseline epidemiological data in Ref [17]. The
parameters quoted are the endemic prevalence P , parasite aggregation parameter k, basic reproduction number R0 and
cluster population number N , where the age profiles are all assumed to be exactly flat for simplicity. The transmission
elimination probabilities are evaluated after 100 years post-cessation of MDA and are quoted assuming either past
behaviour-independent adherence (i.e., simple time-dependent coverage in age groups) or the adherence behaviour inferred
from our model in this paper for the TUMIKIA project (see Appendix S2). In parameter set 1:
(P, k,R0, N) = (0.15, 0.05, 2.1, 1000) and parameter set 2: (P, k,R0, N) = (0.4, 0.15, 2.5, 1000).

Community type (see Ref [17]) Transmission elimination probability Transmission elimination probability
(Past independent adherence) (TUMIKIA adherence)

1: Lower baseline prevalence, less intense 0.582 0.148
transmission but higher aggregation.

2: Higher baseline prevalence, more intense 0.902 0.672
transmission but lower aggregation.

addition to these results, Eq (1) appears to require extension to an equivalent 309

time-dependent model — see Eq (11) — in order provide a good descriptive model for 310

many of the past behaviour-dependent non-adherent age groups and sexes. 311

3.2 The impact of adherence on forecasts 312

In this section we illustrate the impact of adherence, as described by our probability 313

model, on the predictions made by simulations for the impact of MDA on the chances of 314

elimination of transmission by considering the case study of TUMIKIA and 315

forward-projecting the impact of continued MDA treatment. The adherence models 316

fitted to the TUMIKIA adherence data in the previous section are applied within a 317

stochastic individual-based simulation of hookworm transmission for two example 318

communities that were treated in the TUMIKIA project [17]. The resulting effect that 319

the known TUMIKIA adherence has on the transmission elimination probability of 320

hookworm in these two clusters is given in Table 3, where an equivalent transmission 321

elimination probability assuming past behaviour-independent adherence is also provided 322

for direct comparison in each case. The results we show here suggest a substantial 323

reduction in the probability of elimination (between 23-43%) when comparing observed 324

adherence patterns with an assumption of independence. This finding has important 325

implications for MDA programmes as it is clear for progress to be made (and indeed 326

quantified) towards transmission elimination in communities, an additional priority 327

must be placed in accurately discerning the local patterns of adherence. 328

Note that the TUMIKIA adherence pattern that we have used in these 329

representative clustered communities has been inferred across all clusters. For a specific 330

forecast of the TUMIKIA trial outcome, one should input both cluster-level posterior 331

uncertainties on the deworming simulation parameters at baseline as well as the 332

cluster-level inferred adherence model parameters — from which one might expect even 333

more substantial heterogeneity in outcomes at the cluster level. The impacts we quote 334

here are representative of the significance of adherence patterns to programs, rather 335

that specific forecasts for the TUMIKIA trial clusters. 336
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Fig 2. Left column: The maximum likelihood as well as the limits of the marginalised 95% credible region for the conditional
probabilities of receiving treatment for any given pair of sequential rounds (these are hence homogeneous in time and the
process is Markovian) given treatment (filled points) or non-treatment (hollow points) in a previous round. Right column:
The same as the left column but with allowed time-dependent in the conditional probabilities of receiving treatment in each
respective round (highlighted in orange on the horizontal axes). In each case the components corresponding to a given round
were measured assuming all other respective rounds were inferred to be from time-dependent past behaviour-independent
adherence and hence the likelihood is given in Appendix S1. Different colours for each point correspond to different lengths in
time for the dependencies in behaviour. The datasets used are from the standard SAC (4-15) age category from a cohort of
individuals from the biannual treatment arm of the TUMIKIA project where the: top row corresponds to the overall group;
middle row corresponds to the male sub-group; and bottom row corresponds to the female sub-group.
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4 Discussion and conclusions 337

The causes for non-adherent behaviour are undoubtedly varied as a result of both the 338

type of treatment, and social plus behavioural factors in any defined treated community. 339

In this paper we have been able to develop a simple but comprehensive framework 340

which describes the systematic binary ’choice’ of individuals to either take treatment, or 341

not for any reason, over the course of multiple rounds of MDA — which we have 342

referred to as ‘adherence’ and ‘non-adherence’, respectively. 343

Here, we introduce a flexible adherence framework, which can be used to account for 344

a range of behaviours not yet considered in existing models of MDA. This analysis 345

defines a summary parameter, ωn, which can be used as a guide to indicate the strength 346

of adherent or non-adherent behaviour in any given sitting. An equivalent, frequentist 347

interpretation for this parameter is that of a correlation coefficient between the (binary) 348

behaviour of an individual being treated (1) or not (0) in the n-th round of MDA and 349

their behaviour in the (n− 1)-th round of MDA. 350

In order to demonstrate the application of our probability model, we applied it to 351

the recently collected adherence data from the TUMIKIA project in Kenya, which aims 352

to control STH infections by repeated drug treatment, in Sec 3. Findings from the 353

analyses presented here extend and support previous work [13], which include past 354

behaviour-independent adherence or non-adherence for school-aged children (SAC) and 355

the detection of past behaviour-dependent non-adherence to treatment in nearly all 356

other age groups and both sexes. A full description of our results and analysis is given 357

in Appendix S2. 358

The validity of interpreting the inferences made in Sec 3 as directly due to individual 359

behaviour patterns using the TUMIKIA project adherence data [13] should be 360

considered carefully. An important caveat to this interpretation is that, for various 361

reasons, some individuals were not offered treatment and were hence automatically 362

accounted for as ‘non-adherent’ within the data, and as such we cannot discriminate 363

between refusing, and not being offered, treatment. The impact of these two reasons for 364

non-adherence to the success of an MDA programme is however the same, and hence, 365

the practical use of inferring this pattern of adherence for simulation forecasts of MDA 366

outcome is still appropriate. We cannot discriminate this behaviour pattern from simply 367

not being offered treatment in the TUMIKIA dataset. 368

Using the adherence behaviour patterns for a series of age groups from the Kenyan 369

TUMIKIA dataset, we then demonstrated the use of a stochastic individual-based 370

simulation model for STH transmission and control by MDA by running two example 371

forecasts for the likelihood of elimination of hookworm transmission with the adherence 372

behaviour recorded in Kenya by comparison with runs that assume random adherence 373

at each round of treatment for any given treatment coverage level. From Table 3 it is 374

immediately clear that although there is relatively high coverage of MDA in the 375

TUMIKIA project [11,12], the occurrence of past behaviour-dependent non-adherence 376

has an important effect on the transmission elimination probabilities, shifting the 377

chances of hookworm elimination in both communities lower by 43% and 23%, 378

respectively, when compared to the standard forecasts which assume that current and 379

future adherence behaviour is independent of past adherence. The difference between 380

the two assumptions is striking. These results show clearly the great importance of 381

measuring adherence if the outcome of any given MDA based control programme is to 382

be correctly predicted. Note that a full forecast of TUMIKIA would also include 383

posterior uncertainties evaluated for the simulation parameters and initial conditions, 384

hence the simulation results we have provided in this work are intended only as guide to 385

the importance of including adherence patterns into forecasting simulations. 386

In Table 3 when the baseline (equilibrium) prevalence is lowered, but the aggregation 387

increases, this typically has the seemingly counter-intuitive effect of lowering the overall 388
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probability of eliminating transmission. This result arises from the relationship we have 389

assumed between baseline (equilibrium) prevalence and the aggregation of worms within 390

hosts, which was statistically inferred from the TUMIKIA data in Ref [17]. When 391

aggregation of worms within hosts is higher for the population at equilibrium, this 392

means that fewer people are required to sustain transmission indefinitely. In contrast, 393

when the aggregation of worms within hosts is lower for the population at equilibrium, 394

this means that a larger number of individuals are required to sustain transmission 395

indefinitely. 396

For perspective on how our new adherence framework fits into the wider context of 397

analysis approaches, we investigated the Plaisier model, which assigns a probability of 398

adherence to each individual which they then retain for the duration of the MDA 399

programme [14,15]. In our categorisation scheme — which is illustrated in Fig 1 — this 400

model would be characterised by us as a heterogeneous population, time-independent 401

model with no explicit individual dependence on past behaviour. We also discussed the 402

relationship of other models [5] to our categorisation of adherence models, where all of 403

our comparisons can be found in Appendix S3. 404

WHO recommendations on how best to measure the impact of MDA programmes to 405

control NTDs only advise recording patterns of treatment coverage round by round with 406

some rough stratification by the age groupings treated (usually pre-SAC, SAC and 407

adults). No advice to Ministries of Health is given on trying to record adherence 408

patterns in part because of the challenges presented in recording these patterns in many 409

communities. As we have demonstrated, the precise form of the adherence pattern can 410

greatly influence the extent of the required MDA coverage and the number of treatment 411

rounds necessary to eliminate parasite transmission. For instance, as we demonstrated 412

with dat collected from the TUMIKIA project in Sec 3.2, if the individual adherence 413

patterns are found to have dependence on past behaviour, this can significantly reduce 414

the probability of transmission elimination. 415

The lack of WHO guidance on adherence is understandable, given the costs and time 416

involved in longitudinal studies to record adherence of individuals within any given 417

MDA programme. However, given the importance of these pattens in determining 418

control progamme impact and outcome, collecting such data should be given a higher 419

priority even if just focused on a few sentinel sites to broadly capture the prevailing 420

behaviours in defined settings. It is also likely, the social, environmental and other 421

influences will create some heterogeneity in adherence patterns within countries and 422

health implementation units. Additional background research on what degree of 423

heterogeneity exists in a given country would also be of great value. In the coming few 424

years more data on adherence patterns will emerge from detailed research studies of 425

MDA impact to add to the information provided by the TUMIKIA study [11]. These 426

include the ongoing DW3 trial studies in India, Benin and Malawi for the control of 427

STH [18] and the Geshiyaro study in Ethiopia for the control of STH and schistosome 428

infections by MDA [19]. 429

Though we have addressed in this paper how those equipped with modelling 430

capacities should use this data to improve forecasting pipelines, it remains an open, and 431

important, question as to how programme implementers can best use the data directly. 432

We propose in this case that computing the binomial frequentist estimators of the ωn 433

values we have provided in Table 2 would be an excellent start towards this end, since 434

these values stratified according to demographics could potentially be used in real time 435

to optimise policies designed to mitigate the strength of non-adherence through, for 436

example, targeted interventions. 437
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S1 Appendix.

Summary. In this supplementary information we derive the key mathematical
expressions which are used and referred to in the main text.

Time-independent Markov model

Assuming that the conditional probabilities β and γ are constant, the time-independent
Markov model may be mapped to the following recursion relation

pn = βpn−1 + (1− γ)(1− pn−1) . (17)

As in the main text, defining the system state vector as

pn =

(
pn

1− pn

)
, (18)

we may rewrite Eq (17) above in the form pn = Mpn−1 where we have defined the
following transition matrix

M ≡
(

β 1− γ
1− β γ

)
. (19)

The eigenvalues and eigenvectors of M are given by

λ′ = 1 , v′ =
1

2− γ − β

(
1− γ
1− β

)
≡
(

q
1− q

)
, (20)

λ = β + γ − 1 , v =

(
−1
1

)
. (21)

where v′ is normalised to sum to 1. Given that |λ| < 1 in all realistic circumstances, it
is clear from this description that v represents the equilibrium of the system over
multiple rounds with λ defining the rate of relaxation towards it. When λ = 0, the
model becomes a history-independent model in which the next round is dictated solely
by its probability at that round.

In order to study the dynamics in more detail, we apply the following transformation

pn → p̃n = pn(β + γ − 1)1−n , (22)

to the relation given by Eq (17), such that

p̃n = p̃n−1 + (1− γ)(β + γ − 1)1−n . (23)

Through explicit summation, Eq (23) is solved by

p̃n − p̃1 =
n∑

n′=2

(p̃n′ − p̃n′−1) =
n∑

n′=2

(1− γ)(β + γ − 1)1−n
′
. (24)

By reapplying the inverse transformation p̃n → pn to Eq (24) and identifying
p̃1 = p1 = α, we obtain the following solution to Eq (17)

pn = α(β + γ − 1)n−1 +
n∑

n′=2

(1− γ)(β + γ − 1)n−n
′

= α(β + γ − 1)n−1 +
1− γ

β + γ − 2

[
(β + γ − 1)n−1 − 1

]
. (25)
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Fig 3. The probability of receiving treatment in the n-th round given by the
Markovian model solution in Eq (25) for a range of γ values. The other probabilities
have been fixed to α = 0.5 and β = 0.5.

Equivalently, satisfying the dual to Eq (17) in terms of the probability of non-treatment
in the n-th round 1− pn, solutions to Eq (25) must also satisfy

1− pn = (1− α)(β + γ − 1)n−1 +
1− β

β + γ − 2

[
(β + γ − 1)n−1 − 1

]
. (26)

In Fig 3 we illustrate the dynamics of the system using Eq (25) with range of parameter
values chosen for γ. Notice, in particular, that the system exhibits oscillation before
relaxing to a steady state when γ is chosen such that the eigenvalue λ = β + γ − 1 < 0.

For another way of calculating the expected lengths of repeat adherence E(n
T

) or
non-adherence E(n

F
) of an individual (as computed in the main text), given that they

begin with the same choice in the first round, one need only fix (α = β, γ = 1) or
(α = 1− γ, β = 1) and take moments with Eq (25), respectively, such that

(α = β, γ = 1) ⇒ E(nT) =

∞∑
n=0

n

(
1− pn

pn−1

)
pn−1

=
∞∑

n=0

n(1− β)βn−1 =
1

1− β
(27)

(α = 1− γ, β = 1) ⇒ E(n
F
) =

∞∑
n=0

n

(
1− 1− pn

1− pn−1

)
(1− pn−1)

=

∞∑
n=0

n(1− γ)γn−1 =
1

1− γ
. (28)

Time-dependent Markov model

Consider the choice matrices with elements CT
nn′ and CF

nn′ corresponding to the
conditional probabilities of treatment and non-treatment in round n given treatment
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and non-treatment in round n′, respectively, such that

pn =
n−1∑
n′=1

[
CT

nn′pn′ + CF
nn′(1− pn′)

]
. (29)

When the only nonzero elements of the choice matrices in Eq (29) are along the their
lower diagonals, i.e., such that only CT

nn−1 = βnn−1 6= 0 and CF
nn−1 = 1− γnn−1 6= 0,

the system is described by a time-dependent Markov process with recursion relation

pn = βnn−1pn−1 + (1− γnn−1)(1− pn−1) . (30)

Following a similar argument to the one used in solving the homogeneous Markov case,
we may obtain an implicit solution to Eq (30). Using the transformation

pn → p̃n =
pn∏n

n′=2(βn′n′−1 + γn′n′−1 − 1)
, (31)

we once again substitute into the relation given by Eq (30), yielding

p̃n = p̃n−1 +
1− γnn−1∏n

n′=2(βn′n′−1 + γn′n′−1 − 1)
, (32)

where Eq (32) is solved by the explicit summation

p̃n − p̃1 =
n∑

n′′=2

(p̃n′′ − p̃n′′−1) =
n∑

n′′=2

1− γn′′n′′−1∏n′′

n′=2(βn′n′−1 + γn′n′−1 − 1)
. (33)

Using the corresponding inverse transformation to Eq (32) we hence obtain a solution to
Eq (30), which is given by

pn = α
n∏

n′=2

(βn′n′−1+γn′n′−1−1)+
n∑

n′′=2

(1−γn′′n′′−1)
n∏

n′=n′′

(βn′n′−1+γn′n′−1−1) . (34)

General choice matrices: non-Markovian models

The most general set of causal adherence models described by Eq (29) have choice
matrices which take the form

CT =


0 0 0 . . .

CT
nn−1 0 0 . . .

CT
nn−2 CT

n−1n−2 0 . . .
...

...
...

 CF =


0 0 0 . . .

CF
nn−1 0 0 . . .

CF
nn−2 CF

n−1n−2 0 . . .
...

...
...

 , (35)

where ‘non-Markovian’ behaviour in the n-th round clearly corresponds to a past
behaviour dependence between rounds which exceeds the immediate last round, i.e.,
CT,F

nn−m 6= 0 where m > 1.
Notice that all of the adherence models that we have identified in this work may be

categorised by various constraints on the elements of the choice matrices introduced in
Eq (29). For completeness and reference, these are

1. Past behaviour-independent adherence that is time-independent: ∀n > 1 only
CT,F

nn−1 6= 0, CT
nn−1 = CF

nn−1 = c and p1 = c, giving one degree of freedom
multiplied by the number of independent bins for population-level heterogeneity.
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2. Past behaviour-independent adherence that is time-dependent: ∀n > 1 only
CT,F

nn−1 6= 0, CT
nn−1 = CF

nn−1 = cn and p1 = c1, giving n degrees of freedom
multiplied by the number of independent bins for population-level heterogeneity.

3. Markovian past behaviour-dependent adherence that is time-independent: ∀n > 1
only CT,F

nn−1 6= 0, CT
nn−1 = β, CF

nn−1 = 1− γ and p1 = α, giving 3 degrees of
freedom multiplied by the number of independent bins for population-level
heterogeneity.

4. Markovian past behaviour-dependent adherence that is time-dependent: ∀n > 1
only CT,F

nn−1 6= 0, CT
nn−1 = βnn−1, CF

nn−1 = 1− γnn−1 and p1 = α, giving 2n− 1
degrees of freedom multiplied by the number of independent bins for
population-level heterogeneity.

5. Non-Markovian past behaviour-dependent adherence that is time-dependent:
∀n > 1 and ∀n′ < n only CT,F

nn′ 6= 0 and p1 = α, giving 1 + n(n− 1) degrees of
freedom multiplied by the number of independent bins for population-level
heterogeneity.

Likelihoods and Bayesian evidence

Let the data now correspond to a set of n-vectors D = {X} where each individual’s
adherence or non-adherence behaviour in the n-th round is recorded, such that
Xn = T,F. Using Eq (29) the full generalisation of the likelihood (which supports all of
the possible adherence models, becomes

L(D|θ) =
∏
∀Xn∈D

n∏
n′=1

{
n′−1∑
n′′=1

[
CT

nn′1Xn′=T + CF
nn′1Xn′=F

]}
, (36)

where 1A denotes an indicator function which takes value unity when condition A is
satisfied, else it vanishes.

The large number of available degrees of freedom in Eq (36) motivates a systematic
approach to inferring the choice matrix components from a given set of data. We elect
to consider models which isolate the many degrees of freedom by constructing scenarios
where past behaviour-dependent adherence only occurs for a single round and is
temporally dependent on only one other round — all other degrees of freedom are hence
set to those corresponding to time-dependent past behaviour-independent adherence, i.e.
CT

nn′ = CF
nn′ = cn. The likelihood for this more restricted set of models — which we

denote as Lnn′(D|θ), where nn′ corresponds to the pair of rounds chosen to be
dependent on each other in time — may be obtained by rewriting Eq (36) in the
following form

Lnn′(D|θ) =

(1− CT
nn′)

Zn′n
TF (CT

nn′)
Zn′n

TT (1− CF
nn′)

Zn′n
FF (CF

nn′)
Zn′n

FT

∏
∀n′′ 6=n

c
Nn′′
n′′ (1− cn′′)N−Nn′′ , (37)

where we have defined
Zn′n
AB ≡

∑
{∀X |Xn′=A, Xn=B}

NX , (38)

where the data D = {NX} has now been compressed into the set of numbers of people
who track the same behaviour as X, i.e., for 3 rounds, this forms the set of the
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following numbers of people: NTTT, NTTF, NTFT, etc. The Bayesian evidence integral
corresponding to Eq (37) with a choice of flat prior π(θ) ∝ 1 is therefore

Enn′ =

∫ 1

0

(1− CT
nn′)

Zn′n
TF (CT

nn′)
Zn′n

TT

∫ 1

0

(1− CF
nn′)

Zn′n
FF (CF

nn′)
Zn′n

FT dCT
nn′dC

F
nn′

×
∏
∀n′′ 6=n

[∫ 1

0

c
Nn′′
n′′ (1− cn′′)N−Nn′′dcn′′

]

=
Γ(Zn′n

TF + 1)Γ(Zn′n
TT + 1)

Γ(Zn′n
TT + Zn′n

TF + 2)

Γ(Zn′n
FF + 1)Γ(Zn′n

FT + 1)

Γ(Zn′n
FF + Zn′n

FT + 2)

×
∏
∀n′′ 6=n

Γ(Nn′′ + 1)Γ(N −Nn′′ + 1)

Γ(N + 2)
. (39)

Some non-Markovian past dependence may be captured by the likelihood defined in
Eq (37), however their Bayesian evidence may need to be compared with equivalent
Markovian models which also generate decaying long-term correlations of a particular
form. Using the same formalism as Eq (37), the time-dependent Markov model has the
following likelihood

L(D|θ) =

αNT(1− α)NF

∏
∀n≥2

(1− CT
nn−1)Z

n−1n
TF (CT

nn−1)Z
n−1n
TT (1− CF

nn−1)Z
n−1n
FF (CF

nn−1)Z
n−1n
FT ,

(40)

and, hence, yields the following Bayesian evidence

E =

∫ 1

0

αNT(1− α)NFdα
∏
∀n≥2

∫ 1

0

(1− CT
nn−1)Z

n−1n
TF (CT

nn−1)Z
n−1n
TT

×
∫ 1

0

(1− CF
nn−1)Z

n−1n
FF (CF

nn−1)Z
n−1n
FT dCT

nn−1dCF
nn−1

=
Γ(NT + 1)Γ(NF + 1)

Γ(N + 2)

∏
∀n≥2

Γ(Zn−1n
TF + 1)Γ(Zn−1n

TT + 1)

Γ(Zn−1n
TT + Zn−1n

TF + 2)

Γ(Zn−1n
FF + 1)Γ(Zn−1n

FT + 1)

Γ(Zn−1n
FF + Zn−1n

FT + 2)
.

(41)

Eqs (40) and (41) may also be used to obtain the likelihood of the time-independent
Markov model

L(D|θ) =

αNT(1− α)NFβ
∑
∀n≥2 Zn−1n

TT (1− β)
∑
∀n≥2 Zn−1n

TF γ
∑
∀n≥2 Zn−1n

FF (1− γ)
∑
∀n≥2 Zn−1n

FT ,
(42)
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and the Bayesian evidence of the same model

E =

∫ 1

0

αNT(1− α)NFdα

∫ 1

0

β
∑
∀n≥2 Zn−1n

TT (1− β)
∑
∀n≥2 Zn−1n

TF dβ

×
∫ 1

0

γ
∑
∀n≥2 Zn−1n

FF (1− γ)
∑
∀n≥2 Zn−1n

FT dγ

=
Γ(NT + 1)Γ(NF + 1)

Γ(N + 2)

Γ
(∑

∀n≥2 Z
n−1n
TF + 1

)
Γ
(∑

∀n≥2 Z
n−1n
TT + 1

)
Γ
[∑
∀n≥2

(
Zn−1n
TT + Zn−1n

TF

)
+ 2
]

×
Γ
(∑

∀n≥2 Z
n−1n
FF + 1

)
Γ
(∑

∀n≥2 Z
n−1n
FT + 1

)
Γ
[∑
∀n≥2

(
Zn−1n
FF + Zn−1n

FT

)
+ 2
] . (43)
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S2 Appendix.

Summary. In this supplementary information we apply the framework of our
mathematical model for adherence to the TUMIKIA project [11–13] and write a brief
analysis description for each age group and sex.

Introduction

In Figs 4, 5, 6, 7 and 8 we plot the maximum likelihood as well as the limits of the
marginalised 95% credible region for the conditional probabilities given treatment (filled
points) or non-treatment (hollow points) in a previous round of the overall, male and
female participants in the top, middle and bottom rows, respectively. In the left column
the constant conditional probabilities between any given sequential pair of rounds have
been inferred, which corresponds to the time-independent Markov model of the main
text and Appendix S1. In the right column all possible round pair dependencies are
considered (indicated by the arrows on the horizontal axis), where in each case the
components corresponding to a given round were measured assuming all other
respective rounds were inferred to be from past behaviour-independent adherence. In all
plots, above each pair of components we have also provided the log-Bayes factors [16],
defined by

ln Bnn′ = ln

(
Enn′
Eref

)
, (44)

where the evidence for each pair Enn′ has been evaluated using the relations provided in
Appendix S1 and the reference model evidence Eref has been set to that of
time-dependent past behaviour-independent adherence for all components.

Results

In Figs 4, 5 and 6 we present our results for the pre-SAC, SAC and 15-29 age groups of
individuals in the TUMIKIA project. These age groups appear to be well-described by
a time-dependent Markov model so past behaviour-dependent non-adherence is clearly
present. This may be identified by the largest log-Bayes factor values being given in the
red-coloured right column plots for all three sets of plots. However, the conditional
probabilities in all groups appear to drift closer together by round 4 of treatment, which
signals a gradual transition from past behaviour-dependent to independent adherence.

In Figs 7 and 8 we present our results for the 30-49 and 50+ age groups of
individuals in the TUMIKIA project. The overall cohort, as well as the males and
females in both age groups, appear to exhibit strong evidence of past
behaviour-dependent non-adherence — in particular, they are all apparently
well-described by a time-independent Markov model. These conclusions may be drawn
both by the consistent distance between all of the values for the inferred conditional
probabilities with the red points of the right column of plots, as well as the largest
evidence (as measured by the log-Bayes factor in the top row of the plots) for a
difference in conditional probabilities in the left column in both plots.

In all of the cohorts studied in Figs 4, 5, 6, 7 and 8, we report no evidence for the
existence of dependencies between rounds that depart from a Markovian description (as
can be inferred from the comparatively small log-Bayes factors for the blue and green
conditional probabilities in the right column of all plots). This is an interesting, and
perhaps surprising, result regarding the nature of human behaviour in response to mass
drug administration.
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Fig 4. Left column: The maximum likelihood as well as the limits of the marginalised 95% credible region for the conditional
probabilities of receiving treatment for any given pair of sequential rounds (these are hence homogeneous in time and the
process is Markovian) given treatment (filled points) or non-treatment (hollow points) in a previous round. Right column:
The same as the left column but with allowed time dependence in the conditional probabilities of receiving treatment in each
respective round (highlighted in orange on the horizontal axes). In each case the components corresponding to a given round
were measured assuming all other respective rounds were inferred to be from time-dependent past behaviour-independent
adherence and hence the likelihood is given in Appendix S1. Different colours for each point correspond to different lengths in
time for the dependencies in behaviour. The datasets used are from the standard pre-SAC (0-4) age category from a cohort of
individuals from the biannual treatment arm of the TUMIKIA project where the: top row corresponds to the overall group;
middle row corresponds to the male sub-group; and bottom row corresponds to the female sub-group.
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Fig 5. Left column: The maximum likelihood as well as the limits of the marginalised 95% credible region for the conditional
probabilities of receiving treatment for any given pair of sequential rounds (these are hence homogeneous in time and the
process is Markovian) given treatment (filled points) or non-treatment (hollow points) in a previous round. Right column:
The same as the left column but with allowed time-dependent in the conditional probabilities of receiving treatment in each
respective round (highlighted in orange on the horizontal axes). In each case the components corresponding to a given round
were measured assuming all other respective rounds were inferred to be from time-dependent past behaviour-independent
adherence and hence the likelihood is given in Appendix S1. Different colours for each point correspond to different lengths in
time for the dependencies in behaviour. The datasets used are from the standard SAC (4-15) age category from a cohort of
individuals from the biannual treatment arm of the TUMIKIA project where the: top row corresponds to the overall group;
middle row corresponds to the male sub-group; and bottom row corresponds to the female sub-group.
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Fig 6. Left column: The maximum likelihood as well as the limits of the marginalised 95% credible region for the
conditional probabilities of receiving treatment for any given pair of sequential rounds (these are hence homogeneous in time
and the process is Markovian) given treatment (filled points) or non-treatment (hollow points) in a previous round. Right
column: The same as the left column but with allowed time-dependent in the conditional probabilities of receiving treatment
in each respective round (highlighted in orange on the horizontal axes). In each case the components corresponding to a given
round were measured assuming all other respective rounds were inferred to be from time-dependent past
behaviour-independent adherence and hence the likelihood is given in Appendix S1. Different colours for each point
correspond to different lengths in time for the dependencies in behaviour. The datasets used are from the 15-29 age category
from a cohort of individuals from the biannual treatment arm of the TUMIKIA project where the: top row corresponds to the
overall group; middle row corresponds to the male sub-group; and bottom row corresponds to the female sub-group.
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Fig 7. Left column: The maximum likelihood as well as the limits of the marginalised 95% credible region for the
conditional probabilities of receiving treatment for any given pair of sequential rounds (these are hence homogeneous in time
and the process is Markovian) given treatment (filled points) or non-treatment (hollow points) in a previous round. Right
column: The same as the left column but with allowed time dependence in the conditional probabilities of receiving treatment
in each respective round (highlighted in orange on the horizontal axes). In each case the components corresponding to a given
round were measured assuming all other respective rounds were inferred to be from time-dependent past
behaviour-independent adherence and hence the likelihood is given in Appendix S1. Different colours for each point
correspond to different lengths in time for the dependencies in behaviour. The datasets used are from the 30-49 age category
from a cohort of individuals from the biannual treatment arm of the TUMIKIA project where the: top row corresponds to the
overall group; middle row corresponds to the male sub-group; and bottom row corresponds to the female sub-group.
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Fig 8. Left column: The maximum likelihood as well as the limits of the marginalised 95% credible region for the
conditional probabilities of receiving treatment for any given pair of sequential rounds (these are hence homogeneous in time
and the process is Markovian) given treatment (filled points) or non-treatment (hollow points) in a previous round. Right
column: The same as the left column but with allowed time dependence in the conditional probabilities of receiving treatment
in each respective round (highlighted in orange on the horizontal axes). In each case the components corresponding to a given
round were measured assuming all other respective rounds were inferred to be from time-dependent past
behaviour-independent adherence and hence the likelihood is given in Appendix S1. Different colours for each point
correspond to different lengths in time for the dependencies in behaviour. The datasets used are from the 50+ age category
from a cohort of individuals from the biannual treatment arm of the TUMIKIA project where the: top row corresponds to the
overall group; middle row corresponds to the male sub-group; and bottom row corresponds to the female sub-group.
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S3 Appendix.

Summary. In this supplementary information, we analyse some of the existing models
of adherence from the literature in the context of our proposed framework.

The Plaisier model

Several models of MDA treatment programmes employ an adherence model developed
by Plaisier in the context of onchocerciasis control [8, 20]. The Plaisier model assigns a
probability of adherence to each individual which they then retain for the duration of
the MDA programme [14,15]. As such, this model would be characterised by us as a
heterogeneous population, time-independent model with no explicit individual
dependence on past behaviour. The individual probability of adherence is given by
U (1−c)/c, where U is a uniform random number and c is expected probability of
treatment and hence the expected coverage. The model is therefore completely
parameterized by the overall expected coverage. The PDF for the adherence probability
for this process is given by

π(p) =
c

1− c
p(2c−1)/(1−c) . (45)

The PDF of p rises monotonically from zero to one for all values of c > 0.5 and falls
monotonically for c < 0.5 (for c = 0.5, it is flat). Note that π(p) is a beta distribution:
π(p) = Beta[p; c/(1− c), 1]. For this distribution, the mean failure run length is hence
given by

E(nF) =
c

2c− 1
. (46)

Note that in this model, adherence failure run length becomes undefined at a coverage
of 50% or less. Additionally, one can show that the variance of this random variable
becomes undefined for values of coverage below 66%, suggesting that failure run lengths
in finite populations drawn from this distribution will exhibit extreme variability.

The probability of an individual being untreated across N rounds of MDA in this
model can also be calculated, giving

πun =

∫ 1

0

(1− p)NBeta[p; c/(1− c), 1] dp =
c

1− c
B[c/(1− c), N + 1] , (47)

where B(·, ·) is the beta function. Fig 9 shows the distribution of adherence
probabilities for 2 different coverage values and also the probability of an individual not
adhering with treatment across a 4-round MDA programme.

The Griffin Model

The adherence model used by Irvine et al [5] to model MDA adherence in the treatment
of lymphatic filariasis was originally created by Griffin et al in the context of
intevention strategies against malaria transmission [21]. The original Griffin model is
quite broad and deals with multiple simultaneous interventions and the correlations in
their uptake. It does not include conditional dependencies for an individual’s behaviour
and is therefore a heterogeneous population, time-independent, individually past
behaviour-independent model in its simplest form. Each individual in the population is
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Fig 9. A) Probability of an individual with adherence drawn from the Plaisier distribution of not adhering with treatment
during a 4 round MDA programme. B) The probability distribution for adherence for coverages of 25% and 75%.

assigned a correlation parameter, ui, drawn from a normal distribution with mean u0
and variance σ2. These parameters are retained throughout the MDA programme. At
each round a MDA round, each individual draws a unit-variance normal deviate with
mean ui, z. Treatment is received if z < 0. The expected coverage is given by
φ(−u0/

√
1 + σ2), where φ is the standard normal cumulative probability function. This

leaves one free parameter to control the distribution of adherence probabilities across
the population.

The cumulative distribution of adherence probability, p, is given by

π(p) = φ[φ−1(p; 0, 1) + u0; 0, σ2] , (48)

giving a PDF

P (p) ∝ exp

[
−1− σ2

2σ2

(
φ−1(p) +

u0
1− σ2

)2
]
. (49)

The function φ−1(p; 0, 1) varies monotonically in the range (−∞,∞) with p. In Eq (49),
the parameter σ = 1 acts to discriminate between two functional forms. For σ < 1, the
distribution has a ‘normal’ shape with a single local maximum, while for σ > 1, the
distribution has asymptotes with local maxima at the p = 0 and/or 1. In this, it is very
similar, qualitatively, to the beta distribution (see Fig 10).
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18. Ásbjörnsdóttir KH, Ajjampur SSR, Anderson RM, Bailey R, Gardiner I, Halliday
KE, et al. Assessing the feasibility of interrupting the transmission of
soil-transmitted helminths through mass drug administration: The DeWorm3
cluster randomized trial protocol. PLOS Neglected Tropical Diseases. 2018
01;12(1):1–16. Available from:
https://doi.org/10.1371/journal.pntd.0006166.

19. Mekete K, Ower A, Dunn J, Sime H, Tadesse G, Abate E, et al. The Geshiyaro
Project: a study protocol for developing a scalable model of interventions for
moving towards the interruption of the transmission of soil-transmitted helminths
and schistosome infections in the Wolaita zone of Ethiopia. Parasites & vectors.
2019;12(1):1–12.

20. Dyson L, Stolk WA, Farrell SH, Hollingsworth TD. Measuring and modelling the
effects of systematic non-adherence to mass drug administration. Epidemics.
2017;18:56–66. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/28279457http:

//www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5340860.

August 11, 2020 30/31

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2020. ; https://doi.org/10.1101/2020.04.17.20069476doi: medRxiv preprint 

https://doi.org/10.1186/s13071-017-2206-5
http://www.sciencedirect.com/science/article/pii/S0738399101002191
https://doi.org/10.1371/journal.pntd.0006166
http://www.ncbi.nlm.nih.gov/pubmed/28279457 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5340860
http://www.ncbi.nlm.nih.gov/pubmed/28279457 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5340860
https://doi.org/10.1101/2020.04.17.20069476
http://creativecommons.org/licenses/by-nc-nd/4.0/


21. Griffin JT, Hollingsworth TD, Okell LC, Churcher TS, White M, Hinsley W,
et al. Reducing Plasmodium falciparum Malaria Transmission in Africa: A
Model-Based Evaluation of Intervention Strategies. PLoS Medicine. 2010
aug;7(8):e1000324. Available from:
http://dx.plos.org/10.1371/journal.pmed.1000324.

August 11, 2020 31/31

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2020. ; https://doi.org/10.1101/2020.04.17.20069476doi: medRxiv preprint 

http://dx.plos.org/10.1371/journal.pmed.1000324
https://doi.org/10.1101/2020.04.17.20069476
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Methods
	Model definitions
	Individual past behaviour-dependent adherence
	Basic model
	Statistical inference from data

	Time-dependent adherence and more general behaviour
	Introducing the choice matrices
	Lower diagonal choice matrices: the time-dependent Markov model
	Fitting the model to adherence data

	Population heterogeneity in adherence
	Dataset used

	Results
	Overview of statistical analysis
	The impact of adherence on forecasts

	Discussion and conclusions

