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Adam Goliński� and Peter Spencery

University of York

16 April 2020

Abstract

* There are many ways of analyzing the progress of an epidemic, but when it comes to short term

forecasting, it is very hard to beat a simple time series regression model. These are good at allowing for

the noise in day to day observations, extracting the trend and projecting it forward.

* Our regression models are designed to exploit this, using the daily statistics released by PHE and

NHSE. These strongly suggest that the tide has turned and that taking one day with the next, the

national �gures for deaths from this virus will now fall back noticeably, easing the pressure on the NHS

and its sta¤.

* There is still a huge range of uncertainty associated with any forecast. The model is currently

predicting a total of 113,000 admissions to UK hospitals by the end of April and that 19,000 people will

die from the virus in English hospitals by then. There is a 1 in 20 chance that the mortality �gures could

�atten out more quickly, with around 1,000 more deaths occurring by the end of April. However, there is

the same risk that this �gure continues to mount, rising to a total of 24,000 by the end of the month. On

current trends, the number of deaths in the UK is likely to be 10% higher than the number in England.

* Longer term, the impact of the virus will depend critically upon the likely relaxation of the current

government strategy of suppression.

Introduction

The UK has a great deal of expertise in modelling epidemics. Research teams at Imperial College, Oxford

and UCL have developed large models that can be adapted to represent the spread of a new virus like

Covid-19.

These models have parameters that represent the degree of contagion, morbidity and ultimately mortality

associated with any disease. They are being used to forecast the evolution of the current epidemic and
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advise the government on the likely e¤ect of interventions like the current lock-down. In these respects, they

resemble the large-scale econometric models used by the O¢ ce for Budget Responsibility and H.M. Treasury

to make economic forecasts and estimate the e¤ect of changes in government economic policy.

However, large models can miss important links, especially when confronted with �black swan�events like

a �nancial crisis or the outbreak of an unknown virus like Covid-19. They are di¢ cult to adapt to such

developments and even to update in the light of new data releases from the O¢ ce for National Statistics or

Public Health England.

Econometricians have developed a variety of simple methods of checking the properties of these models

and matching them better to the data. For example, the work of Box and Jenkins (1976) on time series

led modelers to regard physical, economic, biological and other large complex systems as a black box,

generating data that were best represented in terms of amorphous statistical models. The more recent

vector autoregressive model methodology (Sims (1980)) o¤ers a more �exible way of doing this. These

approaches are routinely used by City and other analysts to make their economic and �nancial forecasts.

The Bank of England has a suite of economic models used for di¤erent tasks, ranging from large scale models

for simulating the e¤ects of policy changes and �nancial shocks to smaller scale models used in economic

and �nancial forecasting.

Similarly, epidemiologists have a range of di¤erent ways of modelling epidemics. Many use the logistic

model to provide a simple representation of the cumulative number of infections, hospital admissions and

deaths caused by an epidemic. To do this they �t a logistic curve to these series. Remarkably, this model

accurately predicted the evolution of the Covid-19 outbreak in Wuhan, China (Batista (2020)). However,

there are well-known problems with any procedure that �ts curves to series that can grow exponentially.

In this paper, we show that these problems can be handled using techniques developed for modelling non-

stationery economic data, like growth and in�ation. We then apply these techniques to model the daily data

issued by Public Health England (PHE) and NHS England (NHSE).

These time-series models are relatively simple. They can be updated quickly to take account of the latest

data and forecast the spread of the virus through the community. As in any forecasting context, projections

need to be updated rapidly in the light of any forecasting errors. These models can distinguish the trend from

misleading day-to-day movements and then use this to identify likely turning points and o¤er an estimate of

the �nal total. They also provide estimates of the uncertainty that inevitably surrounds any forecast at the

moment. Although we do not exploit this advantage in the present paper, they also provide useful statistics

that summarize the virulence, morbidity and mortality rates in countries with di¤erent demographic and

other characteristics, allowing the e¤ects of di¤erent containment strategies to be estimated.

This paper uses this econometric approach to track the path of the Covid-19 outbreak in the UK and

predict its likely evolution. We now have enough data to say, with a reasonable degree of con�dence, that
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the corner has been turned. We focus on the two headline statistics, the daily data released by PHE for

identi�ed infections and hospital deaths. Our �rst model represents the likely daily number of new infections

in terms of variables that represent the fractions of the population that on the one hand are likely to have

been exposed to the disease and hopefully less susceptible and those that have not and remain susceptible.

The regression equation tracks these data nicely, as shown by Figure 1. The continuous line shows the

way this tracks the cumulative number of cases represented by the dots. The continuation shows the path of

infections predicted by this equation. We project the latest data forward dynamically given the estimated

parameter values assuming that the equation tracks perfectly. This gives an estimate of nearly 113; 000 for

the �nal number of infections (as of 15 April 2020). According to this model, we passed the half way stage of

56; 500 in terms of infections at the beginning of April. This is the �point of in�ection�in the jargon, which

is the peak of the �bell curve�for new cases, shown by the dotted line.
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Figure 1

Our second model represents the daily mortality statistics. This sample, though smaller, represents

harder data than the infections data and is obviously of crucial importance. The regression equation is

depicted in Figure 2, with an estimate of the �nal number of deaths put at about 15; 500. This estimate

is less well determined than in the case of infections, re�ecting the shorter data sample. But with almost

13; 000 hospital deaths recorded by 15th April, it suggests that we have turned this corner too. Thus, in the
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same way that the nights gradually start to shorten in January, we should now see the terrible �gures for

mortality begin to fall, gradually at �rst but then hopefully gaining pace.
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Figure 2

Like economic forecasts, these projections are subject to a considerable degree of uncertainty. This can

be assessed relatively easily in these simple models using stochastic simulations, as described in Section

6. Naturally, this uncertainty builds up with the horizon of the forecast, as the e¤ect of simulated errors

cumulates over time. Figures 3 and 4 show the results for the cumulative and daily number of deaths,

respectively. This clearly illustrates the range of uncertainty still associated with any forecast at this stage

of the epidemic. The 90% con�dence band in Figure 3 shows that there is a 1 in 20 chance that this number

could level out with around 1; 000 more deaths by the end of this month. But there is an equal chance of

these �gures continuing to mount until the end of the month, rising to a total of 18; 000. After that, the

impact of the virus will depend critically upon the likely relaxation of the current government strategy of

suppression.

4

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2020. ; https://doi.org/10.1101/2020.04.17.20069278doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.17.20069278
http://creativecommons.org/licenses/by-nd/4.0/


Mar 14
Mar 16

Mar 18
Mar 20

Mar 22
Mar 24

Mar 26
Mar 28

Mar 30
Apr 01

Apr 03
Apr 05

Apr 07
Apr 09

Apr 11
Apr 13

Apr 15
Apr 17

Apr 19
Apr 21

Apr 23
Apr 25

Apr 27
Apr 29

2020

 0,000

 2,000

 4,000

 6,000

 8,000

10,000

12,000

14,000

16,000

18,000

20,000
Data
Mean forecast
95% conf. int.
90% conf. int.

Figure 3

Mar 14
Mar 16

Mar 18
Mar 20

Mar 22
Mar 24

Mar 26
Mar 28

Mar 30
Apr 01

Apr 03
Apr 05

Apr 07
Apr 09

Apr 11
Apr 13

Apr 15
Apr 17

Apr 19
Apr 21

Apr 23
Apr 25

Apr 27
Apr 29

2020

     0

   200

   400

   600

   800

 1,000

 1,200
Data
Mean forecast
95% conf. int.
90% conf. int.

Figure 4

5

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2020. ; https://doi.org/10.1101/2020.04.17.20069278doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.17.20069278
http://creativecommons.org/licenses/by-nd/4.0/


Caveats

An econometric model is only as good as the data upon which it is based. We need to rely on the PHE

statistics despite their drawbacks. The infection �gure only counts those who register positive in the swab

test, which has until recently focused on hospital admissions. It is likely that this is the tip of a very large

iceberg. Indeed, this is currently a subject of controversy between the large scale modelling groups, showing

that it is not only economists that are prone to disagreement.

More worrying still, the PHE mortality data only cover hospital deaths and are subject to a long reporting

lag. They announce the number of hospital deaths reported to it the previous day. Because relatively few

deaths are reported to it on the day they occur, these announcements mainly comprise deaths in previous

days. We have explored this issue using another data set released by NHS England.1 This takes the deaths

reported in England and arranges them by the date of death rather than the date of announcement. This

shows that the reporting lag is very long, revealing that at any one time, there has been a large backlog

of unreported deaths in England, which understate the running total and arti�cially in�ate the �gures

announced later. Our estimates, described in Appendix 1, suggest that unless these reporting delays have

been signi�cantly reduced, there was a staggering backlog of 4; 800 deaths that had occurred but not yet been

reported by 14th April. Fortunately it seems that this lag structure is relatively stable, allowing adjustments

to the NHSE data that give a good indicator of deaths as they occur. This research looks very promising

and is reported in Section 5.

Finally, we would stress that this research is in progress and this discussion paper is not peer reviewed.

A new forecast methodology can only be assessed in terms of its track record over time. To help in this

assessment, our daily short-term forecasts of the coronavirus mortality rates for the UK are available on our

website: https://sites.google.com/york.ac.uk/adam-golinski/coronametrics.

1 The logistic process

The basic logistic equation is nicely explained for example in Batista (2020). His equation (1) is:

dC(t)

dt
= rC(t)

�
1� C(t)

K

�
; (1)

where: C is the accumulated number of cases, K the �nal epidemic size and r � 0 the propagation or

infection rate.

To understand this equation, we can think of infections as being generated by random encounters between

Susceptible people (S, who have not yet had the disease) and Infectious people (I, that are still contagious

1We are very grateful to Chris Giles, Economics Editor of the Financial Times for suggesting we look at this.
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but not self-isolating). This leaves the rest of the initial population as Removed (R), who have already had

the infection and have either recovered or died. This is the model of Kermack, McKendrick, and Walker

(1927) (originally published in 1927 and republished in 1991). It works like a matching model for new hires

in the labour market (which result from employers randomly meeting those looking for work).

Initially, with C(0) cases observed when the outbreak is detected, 100% of them will be Infectious and

will infect Susceptible people at the rate r per unit of time (dt) causing dC(0) = rC(0)dt new cases. Thus

initially, the disease will will spread exponentially, a word which we hear a lot of in common parlance these

days. Mathematically this is a very simple di¤erential equation: dC(t) = rC(t)dt: However, as people

recover (or die) the probability that an Infected person will meet a Susceptible one declines and amounts to

(1�C(t)=K)), resulting in rC(t)(1�C(t)=K)dt new cases per unit of time as shown by the equation. This

equation has both positive (i.e. Infectious rCt�1) and negative (Removed rC2t�1=K) feedback terms. In this

deterministic setting C will rise inexorably until C = K.2

This is another �rst-order ordinary di¤erential equation, which we can solve for the path followed by the

accumulated number of cases C. This is the well-known logistic level equation familiar from the charts that

we see on television:

C(t) =
K

1 +Ae�rt
; (2)

where: A = K=C(0)�1 (see for example Batista (2020), equation (2)). The number of new daily cases dC(t)

is technically the derivative of this function, the �gure with the bell shape in Figure 1 that the government

is trying to �atten to save the NHS.

The parameters K and r can be estimated by adding an error term and �tting this to daily or other

time series data. However, there are at least two issues with this procedure. First, there are well-known

econometric and biometric issues with �tting equations like (2) to level data, which mean we should be

working with di¤erential equations like (1). We pick up this point in Section 2 below.

Second, what accounts for the error term: is it external in�uences, randomness or indeed unrealistic model

assumptions? This is critical to the likely outcome. There are several possibilities. The most optimistic is

that we eradicate the disease, as we did with smallpox. Next best, we might suppress the disease at a low

level as has happened in Wuhan. At the other extreme, it spreads until almost everyone has been infected

and is thus immune (the limit K is then the initial size of the population).

Either way, C can go up but never fall. However, in�uenza can mutate in a way that having had it

once, people can get it a second time. So rC=K; the fraction of the population that is Infected, can go

up and down. That gives a stochastic equilibrium or steady state described by a beta distribution, which

models the fraction of those Infected in a population as it varies between 0 and K. However, that involves

2This is the Verhulst (1838) model. He used it as a deterministic model of population growth, which has similar character-
istics, a slow take-o¤ in from a low base, followed by fast growth and �nally a slow down as equilibrium is approached.
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longer-term issues that are not our immediate concern. This paper is focussed on modelling the �rst wave

of the coronavirus epidemic in the UK, which we are living through now. The next section is inevitably

technical, but the intuition is simple: C(t) converges monotonically on K and then stays there, at least until

the next outbreak.

2 A stochastic model

If we add a Gaussian random error term �dz to (1) this gives the Stochastic Logistic or Stochastic Verhulst

di¤usion:
dC(t)

C(t)
= r(1� C(t)=K)dt+ �dz (3)

This model is extensively used to model the growth of variables like population and GDP (Merton (1975)).

Because the volatility term �C(t) vanishes as C(t) tends to zero, it has a lower bound at zero. It has a

Gamma distribution in steady state provided that 2r=�2 > 1: However, it is unsuitable for modelling the

fraction of the population a¤ected by a virus since this is bounded between zero and K, while GDP and the

population itself have an in�nite upper bound.

To give the model an upper bound of unity, we also need to ensure that the variance term vanishes as

C(t)=K tends to unity. For example we can use the square root volatility speci�cation of Feller (1959) and

used to model the lower bound on interest rates by Cox, Ingersoll, and Ross (1985) and Ahn and Gao (1999):

dC(t)

C(t)
= r(1� C(t)=K)dt+ �

p
(1� C(t)=K)dz (4)

() dC(t) = r(C(t)� C(t)2=K)dt+ �C(t)
p
(1� C(t)=K)dz

This means that the variance (1 � C(t)=K)C(t) vanishes at both C(t) = 0 and C(t)=K = 1, ensuring

that the process is bounded within the domain [0;K]. To test the e¢ cacy of this speci�cation we build an

encompassing model that embeds this and other congruent volatility speci�cations:

dC(t) = r(C(t)� C(t)2=K)dt+ �C(t)�1(1� C(t)=K)�2dz (5)

This is a Constant Elasticity of Variance model since the elasticity of the variance �C(t)2�1(1�C(t)=K)2�2

with respect to C(t) and (1� C(t)=K) terms is constant (respectively �1 and �2).
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3 Modeling the PHE data for infections

To �t this to daily data we then discretize (5) and use it to explain the number of new cases identi�ed in

any day:

Ct � Ct�1 = r(Ct�1 � C2t�1=K) + �C�1t (1� Ct�1=K)�2et: (6)

where Ct represents the cumulative number of deaths at time t and et is an error term, et � N(0; 1). Given

the estimates of the parameters we can then solve for the path of C and extrapolate it forward.

This speci�cation assumes that there is no signi�cant infection or recovery lag between the right hand

side positive and negative feedback terms and the number of infections being identi�ed in the daily statistics.

However, putting in longer lags on these terms reduces the �t of the regression model. This is likely because

the recent data represent a larger sample that also re�ects infection passed on from people that are missed by

the o¢ cial statistics. It may re�ect other measurement errors in the data. This may also re�ect behavioral

feedbacks. For example, as Ct grows and people hear about the spread of the virus and its consequences,

they seem likely to modify their behavior in a way that mimics the e¤ect of the negative �Removed�feedback

term (1�Ct�1=K), reducing the K parameter representing the �nal total and perhaps speeding up the lags.

We start the estimation sample from 27 February, when the total number of infected cases exceeded 15,

since we noted that including the sample by the early period when only a few cases were recorded introduces

a bias in the estimation results. Initial experiments showed that the best volatility model had optimal

elasticities close to �1 = �2 = 0:75. Imposing these rounded values gave the result:

Ct � Ct�1 = 0:2029
0:0109

(Ct�1 � C2t�1=113; 027
4;058

) + 0:5583
0:0574

C
3=4
t (1� Ct=113; 027)3=4et:

27 February 2020 - 15 April
(7)

Standard errors are reported in small typeface. The estimate K = 113; 027 is reasonably well determined

and tells us that according to this model, we are around the half way stage of K=2 = 56; 513. This is the

point of in�ection in Figure 1, which is the peak of the bell curve for new cases. Thus, we should now see

the number of new infections start to fall, taking one day with another.

4 Modeling the PHE announcements of hospital deaths

Arguably a more important question is: when will we see the mortality statistics peak and at what level?

Strictly speaking this requires a di¤erent kind of model, since there should be a simple linear relationship

between the number of deaths and the number of infections in earlier days. However, the PHE infections

statistics record those who register positive in the swab test, which were initially targeted on hospital

admissions. It is very likely that this is the tip of a very large iceberg, a subject of controversy as noted in

9

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2020. ; https://doi.org/10.1101/2020.04.17.20069278doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.17.20069278
http://creativecommons.org/licenses/by-nd/4.0/


the introduction. In this sense, mortality statistics could represent harder data than infections statistics.

Instead, we can extend the reasoning of the logistic infections model to track deaths instead. Suppose

that deaths represent a lagged fraction of the true number of infections. Substituting this into the logistic

dynamics (6) gives the model:

Dt �Dt�1 = r(Dt�1 �D2
t�1=K) + �D

�1
t (1�Dt�1=K)�1et; (8)

where Dt represents the cumulative number of deaths at time t and K is now the model parameter rep-

resenting the �nal total. Since the mortality record due to Covid-19 is shorter than the total number of

infections, we decrease the initial threshold to 10 cases and start the sample from 14 March. In this case the

best volatility model had optimal elasticities close to �1 = �2 = 0:5, giving a square root model. Imposing

these rounded values gave the regression result:

Dt �Dt�1 = 0:2397
0:0127

(Dt�1 � D2
t�1=15; 533

578
) + 2:1139

0:2651

p
Dt
p
(1�Dt=15; 533)et:

14 March 2020 - 15 April
(9)

The estimate K = 15; 533 is less well determined than in the case of infections, re�ecting the shorter

data sample.

5 Modeling the NHS England date of death data

The PHE data analyzed in the previous section give the number of hospital deaths reported to it the previous

day. Because relatively few deaths are reported to it on the day they occur, these mainly comprise deaths

in previous days. This is apparent from another data set released by NHS England. This takes the deaths

reported in England and arranges them by the date of death rather than the date of announcement. So for

example, if we take the total of 778 UK deaths announced on 14th April, 744 occurred in England, but only

122 of these occurred on 13th April. Another 319 occurred on 12th, 132 on the 11th, 63 on 10th and the

remaining 108 on previous days. This breakdown of the announcement �gures is fairly typical and reveals

that at any one time, there has been a large backlog of unreported deaths in England, which in�ate the

�gures announced later. We estimate that on 13th April there were a staggering 4; 800 deaths that had

occurred but not yet been reported. Our methodology is based on our analysis of the reporting lags seen

between March 31 and April 13 and is explained in Appendix 1.
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Figure 5: The number of deaths on each day, before and after adjustment.

We initially undertook this exercise to assess the scale and structure of the reporting lag. However, we

found that this was stable enough from day to day to allow us to estimate the �nal number of deaths in

any day by suitably adjusting the NHS England daily �gures. Their �gures for the most recent days can be

misleading, since they tend to dip because of the reporting lag. Figure 5 shows the daily allocation published

on 14 April for example. However, we can use the analysis of the reporting lags in previous weeks to make

an allowance for this, as explained in Appendix 1. This adjusted series is also shown the �gure. We exclude

the �gures for 13 April because the number of deaths reported on the day of death is too small to provide

a reliable estimate of the true number. Figure 6 shows this alongside the English data arranged by the date

of announcement rather than the date of death. On a typical day, these English �gures make up 90% of the

UK headline total.

11

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2020. ; https://doi.org/10.1101/2020.04.17.20069278doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.17.20069278
http://creativecommons.org/licenses/by-nd/4.0/


Mar 05
Mar 12

Mar 19
Mar 26

Apr 02
Apr 09

2020

     0

   200

   400

   600

   800

 1,000

 1,200
D

ai
ly 

de
at

hs
Adjusted NHSE date of  death data
PHE Announced death data

Figure 6: Deaths by day they were announced and the day they occurred.

These adjusted date of death data (ADD) o¤er another way to monitor the e¤ect of the virus on mortality.

The regression model give this result:

ADDt �ADDt�1 = 0:2338
0:0115

(ADDt�1 � ADD2
t�1=18; 906

836
) + 0:3291

0:0380
ADD

3=4
t (1�ADDt=18; 906)3=4et:

14 March 2020 - 12 April
(10)

Re�ecting the larger number of deaths on this measure, the regression returns a much higher estimate

of the �nal size of the epidemic, K = 18; 906, than the announced data set does. This coe¢ cient is better

determined statistically, as is the reproduction coe¢ cient: r = 0:2338: Figure 7 shows the model �t and

extrapolation.
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Figure 7: Modeling the adjusted date of death data.

6 Allowing for uncertainty

Figures 1 and 2 project these data forward dynamically given the estimated parameter values assuming that

the shocks represented by et are zero. However, like economic forecasts, they are subject to uncertainty.

This is relatively easy to evaluate in these models using stochastic simulations. Please see Appendix 2 for

the technical detail.

There are two sources of uncertainty to evaluate. The �rst is the additive equation error term et, geared

up by the volatility term. This source of uncertainty builds up initially with the horizon of the forecast, but

eventually declines to zero as the process converges to its limit K. The second source of uncertainty concerns

the parameters. This is indicated by their estimated standard errors (and covariances). Given these values,

a random number generator is used to simulate values of et and errors in the parameter estimates, which are

then fed back into the equation dynamics. Repeating this exercise 100; 000 times gives 100; 000 paths for the

pattern of infections and deaths due to the virus, which can be used to construct fan charts like Figures 3

and 4, which show the results for the number of deaths. This clearly illustrates the huge range of uncertainty

still associated with any forecast at this stage of the epidemic.

13

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2020. ; https://doi.org/10.1101/2020.04.17.20069278doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.17.20069278
http://creativecommons.org/licenses/by-nd/4.0/


7 Conclusion

There are many ways of analyzing the economy and the same is true of an epidemic. On the one hand, we

need detailed structural models to analyze the likely e¤ects of public health interventions like the current

lock-down and on the other we need ways of tracking the progression of the virus and assessing its likely

evolution. At the moment for example, some commentators are trying to say where we are on �the curve�

and use the experience of other countries that are further along this curve to judge what is likely to happen

here. However, as recent experience has shown, it is notoriously di¢ cult to distinguish signal from noise in

daily data. It is very easy to make the mistake of thinking that two swallows make a summer. Moreover,

the evolution of this virus has di¤ered between countries.

Our approach to this problem, based on our experience of using a range of di¤erent approaches to

economic forecasting over the years, is that when it comes to short term forecasting, it is very hard to beat

a simple time series model. These models are good at allowing for the noise in month to month observation,

extracting the trend and projecting it forward. We believe that the same is true of the day to day �gures

released by PHE and our regression models are designed to exploit this. We are con�dent that the tide has

turned and that taking one day with the next, the national �gures for infections, hospital admissions and

deaths from this virus will now start to fall back.
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Appendix 1: Analyzing the NHSE data

The date of death data set released by NHSE is available at:

https://www.england.nhs.uk/statistics/statistical-work-areas/covid-19-daily-deaths/

This takes the deaths reported in England and arranges them by the date of death rather than the date

of announcement. Two tables are published each day. The �rst is for the newly announced deaths, which are

arranged in terms the date of death. (They are also broken down in terms of age, region and local authority

but we focus on the total for England.) The second table cumulates these �gures to get the running total

for the number of deaths that occurred on each day. These build up over time as deaths are reported and

announced.

We treat the �rst of these tables as revisions, similar to the revisions seen in economic data, which gives

di¤erent vintages for di¤erent release dates. We �rst express the �gure for the revision for each day as a

percentage increase on the previous cumulative value for that day. This immediately reveals that the lag is

very signi�cant. In particular, the number of deaths reported on the day they occurred is a very unreliable

guide to the �nal total. In the �rst half of April, it was on average revised up by 237% the next day

(vintage 1), 45% the day after (vintage 2) 20% the day after that (vintage 3), and so on and so forth.

These average revisions are shown in terms of their vintage in Figure 8.
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Figure 8. Revisions and adjustment factors by vintage

We can compound these percentage revisions going backwards in time to get an multiplicative adjustment

factor, which, when applied the unadjusted data gives an estimate of the likely �nal value. These are also

depicted in Figure 8. This shows that the number of deaths reported on the day they occurred is on average

revised up by a factor of 4:7. After the �rst revision it is subsequently revised by a factor of 2:3 and so

on. These adjustment factors are shown in Figure 8. Applying these factors to the running totals published

by NHSE gives our adjusted value. The series for the 13th April are depicted in Figure 5. Finally, the

cumulative di¤erence between these two series gives an estimate of the number of deaths that have occurred

but not been announced. This stood at 4; 800 on 13th April. The estimate for 12th April is not shown since

the adjusted value of the number of deaths reported on the day they occurred is very unreliable. However,

we �nd that this adjustment procedure o¤ers a good indicator after the �rst and second revision.

Finally, the cumulative di¤erence between the published and adjusted series gives an estimate of the

number of deaths that have occurred but not been announced. This stood at 4; 800 on 13th April. A

spreadsheet setting out these calculations is available from the authors.

Appendix 2: Stochastic simulations

We analyse the uncertainty surrounding these forecasts using stochastic simulations. There are two sources

of uncertainty to evaluate. The �rst source of uncertainty concerns the parameters. This is indicated by their

estimated standard errors and covariances. To capture the correlation between the parameter estimates, we
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decompose the variance-covariance matrix of the estimates using the Cholesky decomposition and generate

the new set of parameters as e�s = b�+ C�s; (11)

where b� is a 3 � 1 vector of maximum likelihood parameter estimates, C is the lower-triangular of the

variance matrix of b� and �s is a 3 � 1 vector of standard normal variable generated by a random number

generator.

The second source of uncertainty comes from the additive equation error term et, geared up by the

volatility term. This uncertainty builds up initially with the horizon of the forecast, but eventually declines

to zero as the process converges to its limit K. Given the (randomized) parameter values, a random number

generator of a standard normal variable is used to simulate values of et, which are then fed back into the

dynamics equation (8).

The inconvenient feature of this simulation approach is that as the process approaches the steady-state

K, the volatility of the shocks dies out, e¤ectively leaving us only with the parameter uncertainty at the

sample. For example, consider two extreme scenarios: one when, by chance, all the unexpected shocks are

positive and in the other all unexpected shocks are negative. These shocks have only some limited impact on

the forecasts in the middle horizon, but eventually in about three weeks the forecasts are exactly the same.

It is rather reasonable to expect that e.g. a large realization of the random shock et (which could result

from underestimation of the K value) should result in an upward revision of the steady-state. Therefore we

propose the following recursive method to update the expectations about the steady-state. Assume that we

are at time T , i.e. the end of the estimation sample. Denote the estimated K by KT . The model predicts

that, absent random shocks, the process will change by:

bDT+1 �DT = r(DT �D2
T =KT ); (12)

while in fact the (simulated) realization of the process is

DT+1 �DT = r(DT �D2
T =KT ) + �D

�1
T (1�DT =KT )

�1eT+1: (13)

At this point, the unexpected part of the process realization (�D�1
T (1�DT =K0)

�1eT+1) can be considered a

contribution to the �nal value of the steady-state. The value of K that is consistent with this realization is

DT+1 �DT = r(DT �D2
T =KT+1): (14)
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Thus, at time T + 1 we update of the steady-state as

KT+1 =
rD2

T

rDT � (DT+1 �DT )
: (15)

Note that for if the unexpected shock is zero and the value of the realized process is equal to its expectation

at time T as in (12), then KT+1 = KT . In the next period T + 2 we repeat this procedure and proceed in

this manner until the end of our forecast horizon.

Summarizing, we randomize the parameter values and use them to generate arti�cial path of the process

simulating the random shocks et. At each step we update the steady-state K. Repeating this procedure

100; 000 times gives 100; 000 paths for the pattern of infections and deaths due to the virus, which can be

used to construct fan charts like Figures 3 and 4, which show the results for the number of deaths. This

clearly illustrates the huge range of uncertainty still associated with any forecast at this stage of the epidemic.
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