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20Université Paris-Saclay, Espace Technologique Bat. Discovery - RD 128 - 2e ét, 91190 Saint-Aubin

∗Dr. Guillaume Chassagnon & Dr. Maria Vakalopoulou & Enzo Battistella have equally contributed to this work
†Corresponding author: n.paragios@therapanacea.eu

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.04.17.20069187doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.04.17.20069187


ABSTRACT

Improving screening, discovering therapies, developing a vaccine and performing staging and prognosis are decisive steps in
addressing the COVID-19 pandemic. Staging and prognosis are especially crucial for organizational anticipation (intensive-care
bed availability, patient management planning) and accelerating drug development; through rapid, reproducible and quantified
response-to-treatment assessment. In this letter, we report on an artificial intelligence solution for performing automatic staging
and prognosis based on imaging, clinical, comorbidities and biological data. This approach relies on automatic computed
tomography (CT)-based disease quantification using deep learning, robust data-driven identification of physiologically-inspired
COVID-19 holistic patient profiling, and strong, reproducible staging/outcome prediction with good generalization properties
using an ensemble of consensus methods. Highly promising results on multiple independent external evaluation cohorts
along with comparisons with expert human readers demonstrate the potentials of our approach. The developed solution offers
perspectives for optimal patient management, given the shortage of intensive care beds and ventilators1,2, along with means to
assess patient response to treatment.

Main

COVID-19 emerged in December 2019 in Wuhan, China3 – its worldwide spread lead the World Health Organization to declare
the COVID-19 outbreak as a pandemic on March 11th, 2020. The disease, caused by the SARS-Cov-2 virus has respiratory
failure due to severe viral pneumonia4 as the leading cause of death. Key to addressing the COVID-19 pneumonia pandemic is
the ability to perform - both continuously and upon hospital admission - quantification, staging and short/long-term prognosis.
Identifying patients who are most likely to deteriorate and require intubation could accord efficient management of patient
population and hospital resources, through anticipation regarding transfer to other hospitals, and selection regarding patients for
new drugs, thus reducing the need for intubation. To the best of our knowledge, there is currently no validated model able
to predict short- or long-term outcome, barring poor-outcome risk factors such as age, sex, disease extent, several biological
biomarkers and comorbidities4–10.

In this study, our clinical objective is three-fold:

• fully automatic disease quantification from CT scans, facilitating severity estimation towards optimal patient care and
faster drug trials outcomes assessment.

• COVID19-specific holistic, highly compact multi-omics explainable patient signature integrating imaging/clinical/biological
data and associated comorbidities for automatic patient staging.

• short and long-term prognosis for clinical resources optimization offering alternative/complementary means to facilitate
triage.

Artificial Intelligence (AI) aims either to reproduce human behavior with respect to a specific task (a given set of observations
and the corresponding experts’ assessments) or to find and better understand correlations between input signals and outcomes
(invisible to the human eye). AI has gained tremendous attention in recent years in medical health, providing valuable tools
toward diagnosis, treatment and personalization11–13. AI, more recently, contributed to understanding new diseases such as
COVID-1914, 15. In particular, studies already report the use of artificial intelligence in distinguishing COVID-19 patients
from community-acquired pneumonia on CT16, in computing the protein structures associated with COVID-19, or even in
discovering genomic signatures for the rapid classification of COVID-19 patients17. While CT has rapidly assumed a major
role for COVID-19 diagnosis18, it is also used for staging and severity assessment along with known biological and clinical
biomarkers such as D-dimer levels and lymphocyte count or obesity, diabetes and hypertension indicators4, 7, 9, 19.

In this study we investigated an automatic method (Figure 1) for COVID-19 pneumonia quantification, staging and prognosis
that integrates known biological, clinical and self-discovered interpretable CT-imaging biomarkers. Our rationale was that
imaging and biological/clinical information are complementary - their holistic integration bearing novel means of understanding
the disease. Our approach relied on (i) a disease quantification solution that exploited an ensemble of 2D & 3D convolutional
neural networks, (ii) a confident biomarker discovery approach seeking to determine the shared compact space of imaging,
biological and clinical features that are the most COVID19 informative, (iii) an ensemble consensus-driven robust, reproducible,
explainable AI method to reliably perform staging and prognosis.

Part I: Disease Quantification
We report on a deep learning-based segmentation tool to quantify the COVID-19 disease and lung volume, using an ensemble
network approach combining a 2D (AtlasNet framework20) and a 3D (3D-UNet21) architecture. We investigated a combination
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Figure 1. Overview of the method for CT-based quantification, staging and prognosis of COVID-19. (i) Two independent
cohorts with quantification based on ensemble 2D & 3D consensus neural networks reaching expert-level annotations on
massive evaluation, (ii) Consensus-driven COVID19 bio(imaging)-holistic profiling and staging & (iii) Consensus of linear &
non-linear classification methods for short and long term prognosis.

of 2D slice-based20, 22 and 3D patch-based ensemble architectures21. The development of the deep learning-based segmentation
solution was done on the basis of a multi-centric cohort of unenhanced chest CT scans performed at initial evaluation of
COVID-19 patients with positive Reverse transcription polymerase chain reaction (RT-PCR). The multicentric dataset was
acquired at 6 hospitals, equipped with 4 different CT models from 3 different manufacturers, with different acquisition protocols
and radiation doses (Table 1). Fifty CT exams from three centers were used for training and 130 CT exams from three different
centers were used for test (Table 2). Disease and lung were delineated on all 23,423 slices used of the training dataset, and
on only 20 slices – equispaced, covering the entire lung region per exam - but by 2 independent annotators in the test dataset
(2,600 images). The overall annotation effort took approximately 800 hours and involved 15 radiologists with 1 to 7 years of
experience in chest imaging.

The consensus between manual (2 annotators) and AI segmentation was measured using the Dice similarity score (DSC)23

and the Hausdorff distance (HD). The CovidENet performed equally well to trained radiologists in terms of DSCs and better in
terms HD (Figure 2, 5). The mean/median DSCs between the two expert annotations on the test dataset were 0.70/0.72 for
disease segmentation while DSCs between CovidENet and the manual segmentations were 0.69/0.71 and 0.70/0.73. In terms
of HDs, the average expert distance was 9.16mm while it was 8.96mm between CovidENet and the experts. When looking
at disease extent (percentage of lung affected by the disease) no significant difference was observed between the AI and the
manual segmentations’ average (19.9%±17.7[0.5−73.2] vs 19.5%±16.5[1.1−75.7]; p= 0.352).

Part II: COVID-19 Holistic Multi-Omics Profiling & Staging
Multidisciplinary medical expertise endowed with clinical, biological, pathological, imaging patient’s data are essential to
optimize and standardize COVID-19 pneumonia patient care. In a pandemic, such objectives are elusive due to (i) limited
understanding of the disease, (ii) fast progression in terms of symptoms, and (iii) lack of qualified practitioners, primarily
concentrated at urban centers. AI can address these limitations in the context of a pandemic. Automatic analysis of clinical,
biological and imaging data through an evidence-driven approach can lead to the development of a compact holistic signature
to assess the severity of the disease and provide an estimate of disease-free survival at the hospital admission stage. Our study
reviewed outcomes in patient charts within the 4 (short-term) and 31+ days (long-term) at admission, dividing the patients in 2
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Figure 2. Comparison between automated and manual segmentation. Delineation of the diseased areas on chest CT in a
COVID-19 patient: First Row: input, AI-segmentation, expert I-segmentation, expert II-segmentation. Second Row: Box-Plot
Comparisons in terms of Dice similarity and Haussdorf between AI-solution, expert I & expert II, & Plot of correlation
between disease extent automatically measured and the average disease extent measured from the 2 manual segmentation.
Disease extent is expressed as the percentage of lung affected by the disease. Third row: statistical measures on comparisons
between AI, expert I, and expert II segmentation.

groups: patients who died, or required mechanical ventilation either at initial or a subsequent admission as severe cases (S), and
patients who were non-severe cases (NS). Two disjoint independent sets were built for training (536 patients from 5 centers)
and testing (157 patients from the remaining 3 centers) (Table 3). COVID-19 multidisciplinary, multi-omics patient profiling
was achieved through an evidence-driven mining approach.

Information relevant to the disease volume and nature (CT-imaging), the non-COVID 19 affected lungs (CT-imaging), the
heart condition / volume of the heart (CT-imaging), obesity (CT-imaging), biological data (lymphocytes, C-reactive protein
(CRP) levels) and known demographic (age & sex)/confounding (diabetes, hypertension) factors were aggregated. Least
absolute shrinkage and selection operator, with different classification methods, along with statistical significance variable
selection methods led to the creation of low-dimensional holistic clinical, biological, CT-imaging COVID-19 patient multi-
omics signature. This holistic COVID-19 pneumonia signature is presented in (Table 4) along with the prevalence of selection
and the correlations with outcome. The average signature for the severe and non-severe case in the test set are presented in
Figure 3. Consensus ensemble learning through majority voting was used to determine the subset of AI methods that have
robust, reproducible performance with good generalization properties. Human “reader+” was used as a reference through
consensus among three chest radiologists (resident, 7+ years of experience, 20+ years of experience in thoracic imaging).
The AI solution aiming to separate patients with severe and non-severe short-term outcomes had a balanced accuracy of 70%
(vs 67% for human readers consensus), a weighted precision of 81% (vs 78%), a weighted sensitivity of 64% (vs 70%) and
specificity of 77% (vs 64%) (Figure 3, Table 5) and outperformed the consensus of human readers (Figure 3, Table 6). The AI
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Figure 3. COVID-19 Holistic Multi-Omics Signature Staging: Average profiles (spider chart) with respect to the with respect
to the severe versus non-severe separation are shown along with prevalence of biomarkers (diameter of the circle).
Classification performance, confusion matrices and area under the curve with respect to the AI and the consensus of expert
readers (reader+) are reported. Selective associations of features with outcome are shown (box plots).

solution successfully predicted 81% of the severe/critical cases opposed to only 61% for the consensus reader. Severe cases as
depicted in Figure 3 referred to diabetic men, with higher level of volume/heterogeneity of disease and C-reactive protein levels.

Part III: Short & Long-Term Prognosis
The COVID-19 pneumonia pandemic spiked hospitalizations, while exerting extreme pressure on intensive care units. In the
absence of a cure, staging and prognosis is crucial for clinical decision-making for resource management and experimental
outcome assessment, in a pandemic context. Our objective was to predict patient outcomes prior to mechanical ventilation
support. Similar to staging, we reviewed outcomes of all patients and created three distinct subpopulations: those who had a
short term negative (SD = short-term deceased) outcome (deceased within 4 days after admission), those who didn’t recover
within 30 days of mechanical ventilation (LD= long-term deceased) and the ones who recovered within 30 days on mechanical
ventilation (LR= long-term recovered). The data was separated in the same manner as for the staging task leading to a total of
139 patients with severe symptoms - 108 patients (5 centers) for training and 31 for testing (3 centers). Prognosis was addressed
in a hierarchical manner, first targeting the separation between short-term negative and long-term outcomes, to differentiate
positive and negative long-term outcomes. Consensus ensemble learning through majority voting was used to determine the
subset of AI methods with robust, reproducible performance with good generalization properties. The classifier aiming to
predict the SD/(LD or LR) had a balanced accuracy of 88% (vs 81% for human readers consensus), a weighted precision of
94% (vs 87%), a weighted sensitivity of 94% (vs 88%) and specificity of 81% (vs 75%) and outperformed consensus of human
readers (Tables 6, 7). The AI full prognosis solution SD/ LD/ LR had a balanced accuracy of 71%, a weighted precision of
77%, a weighted sensitivity of 74% and specificity of 82% to provide full prognosis (Figure 4). Ablation studies (Table 8) have
been performed demonstrating the strong interest/added value of CT-imaging derived features and their complementarity with
the biological/clinical and associated comorbidities. Short-term negative outcomes (Figure 4) referred to older patients with
higher levels of lymphocytes and cardiac problems. Differentiation between long-term positive and negative outcome was
observable according to the level of volume/heterogeneity of disease, the presence of cardiomegaly and cardiac calcifications
and the condition of the non-infected lungs.
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Figure 4. Short & Long Term Prognosis. Average profiles (spider chart) with respect to the short deceased (SD), long
deceased (LD) and long recovered (LR) classes are shown along with their correlations with the outcome (diameter of the
circle). Classification performance, confusion matrices and area under the curve with respect to the AI and - when feasible - the
consensus of expert readers (reader+) are reported. Selective associations of features with final outcome are shown (box plots).
ROC curves correspond to one-vs-all classification of the SD/LR/LD patients.

Part IV: Clinical Relevance & Impact

The pandemic requires implement rapid clinical triage in healthcare facilities to categorize patients according to urgency24,
an objective our approach has fully addressed. Other studies have already reported on deep learning diagnosing COVID-19
pneumonia on chest radiograph25 or CT16, 26, or quantifying it on CT27, 28. Our study submits that AI should be part of triage,
beyond the diagnostic value of biological, clinical and imaging data for COVID-19. To the best of our knowledge this study is
the first to have developed a robust, holistic COVID19 multi-omics signature for disease staging and prognosis demonstrating
an equivalent/superior-to-human-reader performance on a multi-centric data set. Our approach complied appropriate data
collection and methodological testing requirements beyond the existing literature26. The proposed holistic signature harnessed
imaging descriptors of disease, underlying lung, heart and fat as well as biological and clinical data. Among them, disease
extent is known to be associated with severity5, 6, disease textural heterogeneity reflects more the presence of heterogenous
lesions than pure ground glass opacities observable in mild cases. Heart features encode cardiomegaly and cardiac calcifications.
Lung features show patients with severe disease having greater dispersion and heterogeneity of lung densities, reflecting the
presence of an underlying airway disease such as emphysema and the presence of sub-radiological disease. Among clinical
variables, a higher CRP level, lymphopenia and a higher prevalence of hypertension and diabetes were associated with a poorer
outcome, consistent with previous reports4, 9, 10. Interestingly, age was less predictive of disease severity than of poor outcome
in severe patients. This is linked to the fewer therapeutic possibilities for these generally more fragile patients. Lastly, the
average body mass index (BMI) in both non-severe and severe groups corresponded to overweight. Despite being correlated
with BMI, the fat ratio measured on the CT scanner was only weakly associated with outcome. Several studies have reported
obesity to be associated with severe outcomes27, 28 and an editorial described the measurement of anthropometric characteristics
as crucial to better estimate the risk of complications19. However a meta-analysis showed that whereas being associated with an
increased risk of COVID-19 pneumonia, obesity was paradoxically associated with reduced pneumonia mortality29. Overall,
the combination of clinical, biological and imaging features demonstrates their complementary value for staging and prognosis.
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Part V: Conclusions & Future Work
AI-enhanced imaging/clinical/biological/ information proved capable to identify patients with severe short/long-term outcomes,
bolstering healthcare resources under the extreme pressure of the current COVID-19 pandemic. The information obtained from
our AI staging and prognosis could be used as an additional element at admission to assist decision making. To conclude,
our work contributes to addressing the pandemic in terms of (i) patient stratification with respect to the different therapeutic
strategies, (ii) accelerated drug development through rapid, reproducible and quantified assessment of treatment response
through the different mid/end-points of the trial, and (iii) continuous monitoring of patient response to treatment. In terms of
future work, the continuous enrichment of the database with new examples is a necessary step on top of updating the outcome of
patients included in the study. Furthermore, a fine-grained quantification of the disease depicting ground glass and consolidation
could be of value both for staging and prognosis. The integration of D-dimer, that was available in a minority of patients is also
an interesting future direction.

Online Methods

Study Design and Participants
This retrospective multi-center study was approved by our Institutional Review Board (AAA-2020-08007) which waived the
need for patients’ consent. Patients diagnosed with COVID-19 from March 4th to April 5th from eight large University Hospitals
were eligible if they had positive reverse transcription polymerase chain reaction (PCR-RT) and signs of COVID-19 pneumonia
on unenhanced chest CT. A total of 693 patients formed the full dataset (321,360 CT slices). Only the CT examination
performed at initial evaluation was included. Exclusion criteria were 1/ contrast medium injection and 2/ important motion
artifacts. No patient was intubated at the time of the CT acquisition.

For the COVID-19 radiological pattern segmentation part, 50 patients from 3 centers (A: 20 patients; B: 15 patients, C:
15 patients) were included to compose a training and validation dataset, 130 patients from the remaining 3 centers (D: 50
patients; E: 50 patients, F: 30 patients) were included to compose the test dataset (Table 2). The patients from the training
cohort were annotated slice-by-slice, while the patients from the testing cohort were partially annotated on the basis of 20 slices
per exam covering in an equidistance manner the lung regions. The proportion between the CT manufacturers in the datasets
was pre-determined in order to maximize the model generalizability while taking into account the data distribution.

For the staging (severe versus non-severe case) and prognosis (short and long-term) study, 513 additional patients from
centers A (121 patients), B (157 patients), D (138 patients), G (77 patients) and H (20 patients) were included. Data of 536
patients from 5 centers (A, B, C, D and H) were used for training and those of 157 patients from 3 other centers (E, F and G)
composed an independent test set (Table 3). Only one CT examination was included for each patient. Exclusion criteria were
1/ contrast medium injection and 2/ important motion artifacts. In addition to the CT examination - when available - patient
sex, age, and body mass index (BMI), blood pressure and diabetes, lymphocyte count, CRP level and D-dimer level were also
collected (Table 3).

For short-term outcome assessment, patients were divided into 2 groups: those who died or were intubated in the 4 days
following the CT scan composed the severe short-term outcome subgroup, while the others composed the non-severe short-term
outcome subgroup.

For long-term outcome, medical records were reviewed from May 7th to May 10th , 2020 to determine if patients died
or had been intubated during the period of at least one month following the CT examination. The data associated with each
patient (holistic profiling), as well as with the corresponding outcomes both in terms of severity assessment as well as in terms
of final outcome and readers assessment will be made publicly available. Neither the CT scans, nor the associated experts’ or
AI system annotations will be shared.

CT acquisitions
Chest CT exams were acquired on 4 different CT models from 3 manufacturers (Aquilion Prime from Canon Medical Systems,
Otawara, Japan; Revolution HD from GE Healthcare, Milwaukee, WI; Somatom Edge and Somatom AS+ from Siemens
Healthineer, Erlangen, Germany). The different acquisition and reconstruction parameters are summarized in Table 1. CT
exams were mostly acquired at 120 (n=481/693; 69%) and 100 kVp (n=186/693; 27%). Images were reconstructed using
iterative reconstruction with a 512×512 matrix and a slice thickness of 0.625 or 1 mm depending on the CT equipment. Only
the lung images reconstructed with high frequency kernels were used for analysis. For each CT examination, dose length
product (DLP) and volume Computed Tomography Dose Index (CTDIvol) were collected.

Data annotation
Fifteen radiologists (GC, TNHT, SD, EG, NH, SEH, FB, SN, CH, IS, HK, SB, AC, GF and MB) with 1 to 7 years of experience
in chest imaging participated in the data annotation which was conducted over a 2-week period. For the training and validation
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set for the COVID-19 radiological pattern segmentation, the whole CT examinations were manually annotated slice by slice
using the open source software ITKsnap 1. On each of the 23,423 axial slices composing this dataset, all the COVID-19
related CT abnormalities (ground glass opacities, band consolidations, and reticulations) were segmented as a single class.
Additionally, the whole lung was segmented to create another class (lung). To facilitate the collection of the ground truth for the
lung anatomy, a preliminary lung segmentation was performed with Myrian XP-Lung software (version 1.19.1, Intrasense,
Montpellier, France) and then manually corrected.

As far as test cohort for the segmentation is concerned, 20 CT slices equally spaced from the superior border of aortic arch
to the lowest diaphragmatic dome were selected to compose a 2,600 images dataset. Each of these images were systematically
annotated by 2 out of the 15 participating radiologists who independently performed the annotation. Annotation consisted of
manual delineation of the disease and manual segmentation of the lung without using any preliminary lung segmentation.

Additionally, 3 radiologists, an internationally recognized expert with 20+ years of experience in thoracic imaging
(ReaderA), a thoracic radiologist with 7+ years of experience (ReaderB) and a resident with 6-month experience in thoracic
imaging (ReaderC ) were asked to perform a triage (severe versus non-severe cases) and for the severe cases (short-term
deceased versus short-term intubated) prognosis process to predict the short-term outcome.

Disease quantification
COVID-19 segmentation tool was built using an ensemble method combining a 2D & 3D neural network method. AtlasNet
framework20, a 2D fully convolutional network (CovidE2D) with a SegNet-based architecture22 was coupled with a 3D fully
convolutional network based on the 3D-UNet21 (CovidE3D). The AtlasNet framework combines a registration stage of the CT
scans to a number of anatomical templates and consequently utilizes multiple deep learning-based classifiers trained for each
template. At the end, the prediction of each model is back-projected to the original anatomy and a majority voting scheme
is used to produce the final projection, combining the results of the different networks. A major advantage of the AtlasNet
framework is that it incorporates a natural data augmentation by registering each CT scan to several templates. Moreover, the
framework is agnostic to the segmentation model that will be utilized. For the registration of the CT scans to the templates,
an elastic registration framework based on Markov Random Fields was used, providing the optimal displacements for each
template30.

The architecture of the implemented CovidENet models was based on already established fully convolutional neural network
designs from the literature21, 22. Fully convolutional networks following an encoder decoder architecture both in 2D and 3D
were developed and evaluated. For the CovidE2D models the CT scans were separated on the axial view. The network included
5 convolutional blocks, each one containing two Conv-BN-ReLU layer successions. Maxpooling layers were also distributed
at the end of each convolutional block for the encoding part. Transposed convolutions were used on the decoding part to
restore the spatial resolution of the slices together with the same successions of layers. For the CovidE3D, the model similarly
consisted of five blocks with a down-sampling operation applied every two consequent Conv3D-BN-ReLU layers. Additionally,
five decoding blocks were utilized for the decoding path, at each block a transpose convolution was performed in order to
up-sample the input. Skip connections were also employed between the encoding and decoding paths. In order to train this
model, cubic patches of size 64×64×64 were randomly extracted within a close range of the ground truth annotation border
in a random fashion. Corresponding cubic patches were also extracted from the ground truth annotation masks and the lung
anatomy segmentation masks. To this end, we trained the model with the CT scan patch as input, the annotation patch as target
and the lung anatomy annotation patch as a mask for calculating the loss function only within the lung region. In order to train
all the models, each CT scan was normalized by cropping the Hounsfield units in the range [−1024,1000].

Regarding implementation details, 6 templates were used for the AtlasNet framework together with normalized cross
correlation and mutual information as similarities metrics. The CovidE2D networks were trained using weighted cross entropy
loss using weights depending on the appearance of each class and dice loss. Moreover, the CovidE3D network was trained
using a dice loss.

The Dice loss (DL) and weighted cross entropy (WCE) are defined as follows:

DL = 1− 2pg+1
p+g+1

, WCE =−(βg log(p)+(1−g)log(1− p))

where p is the predicted from the network value and g the target/ ground truth value. β is the weight given for the less
representative class. For network optimization, we used only the class for the diseased regions.

For the CovidE2D experiments we used classic stochastic gradient descent for the optimization with initial learning rate
= 0.01, decrease of learning rate = 2.5 ·10−3 every 10 epochs, momentum =0.9 and weight decay =5 ·10−4. For CovidE3D
experiments we used the AMSGrad and a learning rate of 0.001.

1http://www.itksnap.org

8/26

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.04.17.20069187doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.17.20069187


The training of a single network for both CovidE2D and CovidE3D network was completed in approximately 12 hours
using a GeForce GTX 1080 GPU, while the prediction for a single CT scan was done in a few seconds. Training and validation
curves for one template of CovidE2D and the CovidE3D networks are shown in Figure 6.

Both Dice similarity coefficient (DSC)23 and Haussdorff distances were higher with the 2D approach compared to the 3D
approach (Figure 2). However, the combination of their probability scores led to a significant improvement. Thus, the ensemble
of 2D and 3D architectures was selected for the final COVID-19 segmentation tool.

Lung/Breast/Heart & Body Contours Annotations
Lung, breast, heart and body contours segmentation masks of all patients were extracted by using ART-Plan software
(TheraPanacea, Paris, France). ART-Plan is a CE-marked solution for automatic annotation of organs, harnessing a combination
of anatomically preserving and deep learning concepts. This software has been trained using a combination of a transformation
and an image loss. The transformation loss penalizes the normalized error between the prediction of the network and the affine
registration parameters depicting the registration between the source volume and the whole body scanned. These parameters are
determined automatically using a downhill simplex optimization approach. The second loss function of the network involved an
image similarity function – the zero-normalized cross correlation loss – that seeks to create an optimal visual correspondence
between the observed CT values of the source volume and the corresponding ones at the full body CT reference volume. This
network was trained using as input a combination of 360,000 pairs of CT scans of all anatomies and full body CT scans. These
projections used to determine the organs being present on the test volume. Using the transformation between the test volume
and the full body CT, we were able to determine a surrounding patch for each organ being present in the volume. These patches
were used to train the deep learning model for each full body CT. The next step consisted of creating multiple annotations on
the different reference spaces, and for that a 3D fully convolutional architecture was trained for every reference anatomy. This
architecture takes as input the annotations for each organ once mapped to the reference anatomy and then seeks to determine
for each anatomy a network that can optimally segment the organ of interest similar to the AtlasNet framework used for the
disease segmentation. This information was applied for every organ of interest presented in the input CT Scan. In average,
6,600 samples were used for training per organ after data augmentation. These networks were trained using a conventional dice
loss. The final organ segmentation was achieved through a winner takes all approach over an ensemble networks approach. For
each organ, and for each full body reference CT a specific network was built, and the segmentation masks generated for each
network were mapped back to the original space. The consensus of the recommendations of the different subnetworks was used
to determine the optimal label at the voxel level.

Holistic Multi-Omics Profiling & Staging
To this end, we investigate a variety of imaging characteristics extracted by the pathological regions as well as additional regions
of interest that are associated with obesity, heart condition and healthy lung. These imaging characteristics are combined
with powerful clinical and biological indicators that are reported from the literature to be associated with short and long-term
outcome of Covid-19 patient progression.

Features extraction
A large variety of imaging features are extracted from the CT scans using the previously described segmentations of the disease,
lung and heart. As a preprocessing step, all images were resampled by cubic interpolation to obtain isometric voxels with sizes
of 1mm. Subsequently, disease, lung and heart masks were used to extract 107 radiomic features for each of them (left and
right lung were considered separately both for the disease extent and entire lung). These features included first order statistics
(maximum attenuation, skewness and 90th percentile etc), shape features (surface, maximum 2D diameter per slice, volume
etc) and texture features (GLSZM, GLDM, GLRLM etc).

Two image indexes were also calculated, namely disease extent and fat ratio. The disease extent was calculated as the
percentage of lung affected by the disease in respect to the entire lung volume. The disease components were extracted by
calculating the number of individual connected components for the entire disease regions. Finally, as an indicator of obesity we
calculated the fat ratio directly from the CT scans. The index was defined in an unsupervised manner. First the CT scans were
smoothed using a Gaussian kernel with a standard deviation of 2 to remove noise and make the regions more homogeneous.
Then, a threshold of the intensities in the range of [29,130] was applied on the smoothed CTs indicating the fat regions. From
these masks the regions of breast, lung and outside the body were excluded and the fat masks were calculated starting from the
highest to the lowest part of the lungs. The fat index indicates the ratio of these masks on the corresponding body volume. To
evaluate this morphometric measurement we assessed its correlation with BMI in the 362 patients for which BMI was available
and found a strong correlation using Pearson correlation (r= 0.64; p<0.001; Figure 7).

Holistic Biomarker Selection
Using all the calculated attributes (clinical, biological, imaging) we constructed a high dimensional space of size 543 - including
clinical/biological variables -. A min-max normalization of the attributes was performed by calculating the minimum and
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maximum values for the training and validation cohorts. The same values were also applied on the test set.
To prevent overfitting and to also discover the most informative and robust attributes for the staging and prognosis of the

patients we performed biomarker selection. Feature selection is very important for classification tasks and has been used widely
in literature especially for radiomics31. First, the training data set was subdivided into training and validation on the principle
of 80%-20% while respecting that the distribution of classes between the two subsets was identical to the observed one. To
perform features selection, we have created 100 subdivisions on this basis and evaluated variety of classical machine learning
- using the entire feature space - classifiers such as Decision Tree Classifier, Linear Support Vector Machine, XGBoosting,
AdaBoost and Lasso. These classifiers were trained and validated to distinguish between Severe (S) and Non-Severe (NS)
cases. In addition to these 5 classifiers-based feature selection approaches, we also considered statistics- based approaches
based on Mutual Information, Chi-squared statistics and Univariate linear regression tests (Table 4). Each of these metrics was
used to assess the correlation between the features and the outcome. Then, for each metric, the 5% features with the highest
correlations were selected. Features were ranked according to their prevalence, the number of splits they were selected in, for
each of the methods.

Our experiments indicated that different classifiers highlight different attributes as important. In order to take advantage
of each feature selection properties, we adopted a consensus feature selection method. In particular, features having the best
combined prevalence (sum of prevalences over the 8 selection techniques) were kept. For this feature selection task, Decision
Tree Classifier was taken of maximum depth 3, Linear Support Vector Machine was taken with a linear kernel, a polynomial
kernel function of degree 3 and a penalty parameter of 0.25, XGBoosting was used with a regression tree boosted over 30
stages, AdaBoost was used with a Decision Tree Classifier of maximum depth 2 boosted 3 times and Lasso method was used
with 200 alphas along a regularization path of length 0.01 and limited to 1000 iterations.

Holistic COVID19 Multi-Omics Profiling
Using the descripted method, we have extracted 15 different features from the radiomics. These features belong to: features
from imaging and in particular from the disease regions (5 features), lung regions (5 features) and heart features (5 features).
To these radiomics features we added biological and clinical data (6 features: age, sex, high blood pressure (HBP), diabetes,
lymphocyte count and CRP level) and image indexes (2 features: disease extent and fat ratio). At the end our biomarker
consisted of 23 features in total. The correlation to outcome of these features is presented in the Table 9.

For the clinical and biological we kept all the collected features for our signature, except D-dimer level which was available
in only 339/693 patients (Table 3). For other features missing data were imputed using the mean value on training set.

Regarding imaging features, we identified the following features as more important for the prognosis of the Covid-19
patients. These features include both first and second order statistics together with some shape features.

• Disease areas: Non- Uniformity of the Gray Level Dependence Matrix (GLDM), Dependence Non-Uniformity (GLDM),
Mesh Volume, Voxel Volume, Non-Uniformity of the Gray level Run Length Matrix (GLRLM).

• Lung areas: Kurtosis, Mean Absolute Deviation, Zone Emphasis (GLSZM), Non-Uniformity (GLSZM), Variance
(GLSZM).

• Heart areas: Maximum 2D diameter Slice, Non-Uniformity (GLSZM), Sphericity, Flatness, Minimum Length on the
Axis.

The selected disease areas features capture both disease extent and disease textural heterogeneity. Disease textural
heterogeneity is associated with lesions the presence of imaging pattern more complex than pure ground glass opacities usually
found in mild disease. The selected lung areas features capture the dispersion and heterogeneity of lung densities, both of which
may reflect the presence of an underlying airway disease such as emphysema but also the presence of sub-radiological disease.
Lastly, the selected disease areas encode cardiomegaly and the presence of cardiac calcifications.

Staging Mechanism
The staging/prognosis component was addressed using an ensemble learning approach. Similarly to the biomarker extraction,
the training data set was subdivided into training and validation sets on the principle of 80%-20%. This subdivision was
performed such that the distribution of classes between the two subsets was identical to the observed one. We have created
10 subdivisions on this basis and evaluated the average performance of the following supervised classification methods:
Nearest Neighbor, {Linear, Sigmoid, Radial Basis Function (RBF), Polynomial Kernel} Support Vector Machines (SVM),
Gaussian Process, Decision Trees, Random Forests, AdaBoost, XGBoosting, Gaussian Naive Bayes, Bernoulli Naive Bayes,
Multi-Layer Perceptron & Quadratic Discriminant Analysis. These classifiers have been trained using the identified holistic
signature. For each binary classification task design a consensus model was designed selecting the top 5 classifiers with
acceptable performance,> 60% in terms of balanced accuracy, as well as coherent performance between training and validation,
performance decrease < 20% for the balanced accuracy between training and validation, were trained and combined together
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through a weighted winner takes all approach to determine the optimal outcome (Table 10, 11, 12). The weights granted to
each selected classifier determined according to the rank of this classifier on validation regarding balanced accuracy weighted
with a higher importance the best performing algorithms. Then, the selected classifiers were retrained using the entire training
set, and their performance was reported in the external test cohort. Moreover, in order to assess the impact of each feature
category to the implemented models we performed an ablation study by successively removing one category of features from
the 6 categories defined for each classification task, results are presented in Table 8. The feature categories were identified
as follow: a) D0: disease extent, b) D1: disease variables that are shape/geometry related, c) D2: disease variables that are
tissue/texture, d) O1: heart/lungs variables that are shape/geometry related, e) O2: heart/lungs variables that are tissue/texture,
f) B1: age, gender, biological/obesity/diabetes/fat/high blood pressure.

Prognosis Mechanism
To perform the Short-term deceased (SD)/ long-term Deceased (LD)/Long term recovered (LR) classification task, a SD/SI
(SI: Intubated at 4 days) classifier and a LD/LR classifiers were applied in a hierarchical way, performing first the short-term
staging and then the long-term prognosis for patients classified as in need of mechanical ventilation support. More specifically,
a majority voting method was applied to classify patients into SD and SI cases (Table 11). Then, another hierarchical structure
was applied on the cases predicted as SI only to classify them into the ones who didn’t recover within 31+ days of mechanical
ventilation (LD) and the ones who recovered with 30 days on mechanical ventilation (LR). The ensemble of the classifiers was
trained using the same technique (Table 12).

Concerning the implementation details, to overcome the unbalance dataset for the different classes, each class received a
weight inversely proportional to its size. For the NS versus S majority voting classifier the top 5 classifiers consists in RBF
SVM, Linear SVM, AdaBoost, Random forest, Decision Tree (Table 5). The SVM methods were granted a polynomial kernel
function of degree 3, the Linear kernel one had a penalty parameter of 0.3 while the RBF SVM had a penalty parameter of 0.15.
In addition, the RBF SVM was granted a kernel coefficient of 1. The Decision Tree classifier was limited to a depth of 2 to
avoid overfitting. The Random Forest classifier was composed of 25 of such Decision Trees. AdaBoost classifier was based
on a decision tree of maximal depth of 1 boosted 4 times. For the SI versus SD majority voting classifier the top 5 classifiers
consists in polynomial SVM, Linear SVM, Decision Tree, Random Forest and AdaBoost (Table 7). The Linear and Polynomial
SVM were granted a polynomial kernel function of degree 2 and a penalty parameter of 0.35. The Decision Tree classifier was
limited to a depth of 1 and Random Forest was composed of 50 of such trees. AdaBoost classifier was based on a decision tree
of maximal depth of 1 boosted 2 times. Finally, the LR versus LD (Table 13) majority voting classifier was only using the 4
classifiers with balanced accuracy > 0.6 namely Linear and Sigmoid SVM, Decision Tree, and AdaBoost Classifiers. The SVM
methods were defined with a kernel function of degree 3 and a penalty parameter of 1. Decision Tree was defined to a depth
of 1, AdaBoost being defined with such a Decision Tree boosted 3 times. In the extended Figures 8, 9, 10 we visualize the
distributions of the different features along the ground truth labels of the hierarchical classifier for each subject. In particular,
all the samples are grouped using their ground truth labels and a boxplot is generated for each group and each feature. The
boxes had been generated by using the 25th, median and 75th percentile of the features. It is therefore clearly visible that some
features such as the disease extent, the age, the shape of the disease and the uniformity seems to be very important on separating
the different subjects.

Statistical Analysis
The statistical analysis for the deep learning-based segmentation framework and the radiomics study was performed using
Python 3.7, Scipy32, Scikit-learn33, TensorFlow34 and Pyradiomics35 libraries. The dice similarity score (DSC)23 was calculated
to assess the similarity between the 2 manual segmentations of each CT exam of the test dataset and between manual and
automated segmentations. The DSC between manual segmentations served as reference to evaluate the similarity between the
automated and the two manual segmentations. Moreover, the Hausdorff distance was also calculated to evaluate the quality of
the automated segmentations in a similar manner. Disease extent was calculated by dividing the volume of diseased lung by the
lung volume and expressed in percentage of the total lung volume. Disease extent measurement between manual segmentations
and between automated and manual segmentations were compared using paired Student’s t-tests.

For the stratification of the dataset into the different categories, classic machine learning metrics, namely balanced accuracy,
weighted precision, and weighted specificity and sensitivity were used. The weighted metrics are expressed as follows. If
we denote N the total number of samples, Nl the number of samples with class of label l and Sl the non-weighted score in
one-vs-rest classification for class of label l, the corresponding weighted score WS is then:

WS =
1
N ∑

l
NlSl

Moreover, the correlations between each feature and the outcome was computing using a Pearson correlation over the
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entire dataset.Patient characteristics between training/validation and test datasets were compared using chi-square and Student’s
t-tests.
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Center A Center B Center C Center D Center E Center F Center G Center H
CT equip-
ment

Somatom AS+ Resolution HD Aquilion Prime Somatom Edge Revolution HD Aquilion Prime Revolution HD Somatom AS+

Kilovoltage 100-120 120 100-120 100-120 120-140 100-120 120 100-120

DLP
(mGy.cm)

109±42
[44-256]

306±104
[123-648]

102±30
[43-189]

131±44
[55-499]

177±48
[43-276]

115±26
[75 - 186]

285±108
[70 - 679]

332±156
[179 - 755]

CTDIvol
(mGy)

3.2±1.5
[1.2-11.9]

8.7±2.8
[3.9-18.5]

2.7±0.9
[1.0-5.3]

3.2±0.9
[1.4-9.5]

5.5±1.8
[1.2-12.3]

2.5±0.6
[1.7-4.3]

7.9±2.9
[1.7-18.0]

8.5±4.0
[4.4-19.8]

Slice thick-
ness

1mm 0.625mm 1mm 0.625mm 1mm 1mm 0.625mm 1mm

Convolution
Kernel

i70 Lung FC51-FC52 i50 Lung FC51-FC52 Lung i70

Iterative
reconstruc-
tions

SAFIRE 3 ASIR-v 80% IDR 3D0.67 SAFIRE 4 ASIR-v 60% IDR 3D ASIR-v 60% SAFIRE 3

Table 1. Acquisition and reconstruction parameters. Note.— For quantitative variables, data are mean ± standard deviation,
and numbers in brackets are the range. CT = Computed Tomography ; CTDIvol = volume Computed Tomography Dose Index ;
DLP = Dose Length Product * significant difference with p < 0.001
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Training/Validation Dataset
(Centers A+B+C; N=50)

Test Dataset
(Centers D+E+F; n=130) p value

Age (y) 57±17 [26-97] 59±16 [17-95] 0.363
No. of Men 31(62) 87(67) 0.534
Disease extent*
Manual 18.1± 14.9 [0.3-68.5] 19.5±16.5 [1.1-75.7] 0.574
Automated - 19.9%±17.7 [0.5-73.2] -
DLP (mGy.cm) 180±124 [43-527] 139±49.0 [43-276] 0.026
CTDIvol (mGy) 4.9±3.4 [1.0-13.0] 4.0±1.9 [1.2-12.3] 0.064

Table 2. Patient characteristics in the datasets used for developing the segmentation tool. Note. For quantitative variables,
data are mean ± standard deviation, and numbers in brackets are the range. CT = Computed Tomography; CTDIvol = volume
Computed Tomography Dose Index; DLP = Dose Length Product

Training/Validation Dataset
(Centers A+B+C+D+H; N=536)

Test Dataset
(Centers E+F+G; n=157) p value

Age (y) 63±16 [22-98] 62±17 [17-98] 0.495
No. of Men 374(70) 103(78) 0.321
High blood pression* 235 (44) 71 (45) 0.773
Diabetes* 97 (18) 37 (24) 0.888
Body mass index (kg/m2)* 27.7±5.1 [17.0-44.1] 27.1±5.1 [14.5-42.7] 0.390
Lymphocyte count (×109/L)* 1.3±2.7 [0.1-48.5] 1.3±3.3 [0.23-41.0] 0.915
CRP (mg/L)* 104.3±82.9 [1.0-430.7] 94.2±74.8 [2.0-342] 0.166
D-dimers (microg/L)* 2458±6533 [181-86248] 815±924 [168-6138] < 0.001
Disease extent** 22.2±18.4 [0.0-89.8] 24.0±18.7 [1.1-89.8]
Fat ratio on CT 18.6±5.9 [1.7-42.3] 18.3±5.5 [2.7-30.6] 0.589
Short-term outcome 0.994
Deceased 28(5) 8(5)
Intubated 80(15) 23(15)
Alive and Not Intubated 428(80) 126(80)
Follow-up duration
Worst evolution during follow-up*** 0.554
Deceased 69(13) 17(11)
Intubated 68(13) 22(14)
DLP (mGy.cm) 181±115 [43-755] 218±106 [ 43-679 ] < 0.001
CTDIvol (mGy) 4.9±3.2 [1.0-19.8] 6.1±3.0 [1.2-18.0] < 0.001

Table 3. Patient characteristics of the training and testing datasets used for the creation of the Holistic Multi-Omics COVID19
signature and the development of short, long-term prognosis tools. Note.— For quantitative variables, data are mean ±
standard deviation, and numbers in brackets are the range. For qualitative variables, data are numbers of patients, and
numbers in parentheses are percentages. CT = computed tomography, CTDIvol = volume Computed Tomography Dose Index;
DLP = Dose Length Product * Available clinical data: n = 692 for diabetes and high blood pressure(leading to 0.19% of
missing data on the training set), n = 674 for lymphocyte count (leading to 2.05% and 5.10% of missing data on the training
and test sets respectively), n = 654 for CRP (leading to 4.66% and 8.92% of missing data on the training and test sets
respectively), n = 362 for Body Mass Index, and n = 339 for D-dimers. **Percentage of lung volume on the whole CT, ***data
available for 688 patients
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(2020).
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Clinical

Features Lasso Decision Tree Linear SCV XG Boost AdaBoost ch2
ANOVA
F-value

Mutual
Information Consensus

Lymphocytes 0 0.25 0.66 1 0.57 0 0 0.02 0.31
Age 0.53 0.03 0.94 0.82 0.12 0 0 0.02 0.31
Sex 0.98 0 0.95 0 0 0.02 0 0.01 0.25
CRP 0 0.16 0.65 0.88 0.14 0 0 0 0.15
HBP 0.39 0 0.75 0.02 0 0 0 0 0.23
Diabetes 0.32 0 0.6 0.03 0 0.01 0 0 0.12
Indexes

Features Lasso Decision Tree Linear SVC XG Boost AdaBoost chi2
ANOVA
F-value

Mutual
Information Consensus

Fat index 0 0.04 0.93 0.42 0.06 0 0 0 0.18
Disease Extent 0.01 0.08 0.34 0.25 0.07 1 0.95 0.81 0.44
Heart

Features Lasso Decision Tree Linear SVC XG Boost AdaBoost chi2
ANOVA
F-value

Mutual
Information Consensus

Maximum 2D
Diameter Slice 0.25 0.03 0.93 0.65 0.08 0 0 0 0.24

Non-Uniformity
on the GLSZM 0.68 0 0.89 0.01 0 0 0 0 0.20

Sphericity 0 0.02 0.62 0.78 0.04 0 0 0 0.18
Flatness 0 0.13 0.88 0.34 0.1 0 0 0 0.18
Least Axis Length 0 0 0.81 0.29 0 0 0 0 0.14
Lung

Features Lasso Decision Tree Linear SVC XG Boost AdaBoost chi2
ANOVA
F-value

Mutual
Information Consensus

Mean Absolute
Deviation 0.59 0 0.49 0.4 0 0.86 0.94 0.97 0.53

Kurtosis 0 0.72 0.92 0.98 0.73 0.07 0.01 0.64 0.51
Zone Emphasis
on the GLSZM 0 0.02 0.92 0.5 0.01 1 0.82 0.45 0.47

Non-Uniformity
on the GLSZM 1 0 0.98 0.49 0.02 0.01 0.92 0.26 0.46

Variance on the
GLSZM 0 0 0.98 0.39 0.03 1 0.92 0.26 0.45

Disease

Features Lasso Decision Tree Linear SVC XG Boost AdaBoost chi2
ANOVA
F-value

Mutual
Information Consensus

Non-Uniformity
on the GLSZM 0.95 0.18 0.88 0.91 0.23 1 1 0.93 0.76

Non-Uniformity

on the GLDM
0.03 0.23 06 0.86 0.24 0.77 1 0.69 0.55

Mesh Volume 0.08 0.03 0.99 0.4 0.03 0.99 1 0.73 0.53
Voxel Volume 0.02 0 0.99 0.47 0.05 0.99 1 0.57 0.51
Non-Uniformity on
the GLRLM 0 0.1 1 0.74 0.15 0.3 0.96 0.83 0.51

Table 4. Supervised biomarker discovery for the creation of the Holistic Multi-Omics COVID19 signature. Each of the
selected features together with their prevelances per feature selection method as well as on the final concensus is presented.
Note.— GLSZM =Gray Level Size Zone Matrix , GLRLM = Gray Level Run Length Matrix, GLDM = Gray Level Dependence
Matrix
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Classifier
Balanced
Accurary

Weighted
Pecision

Weighted
Sensitivity

Weighted
Specificity

Training Test Training Test Training Test Training Test
L-SVM 0.7 0.67 0.79 0.78 0.71 0.71 0.69 0.64
RBF-SVM 0.75 0.68 0.82 0.79 0.7 0.67 0.79 0.7
Decision Tree 0.71 0.67 0.82 0.82 0.61 0.53 0.81 0.81
Random
Forest 0.72 0.68 0.81 0.79 0.69 0.69 0.75 0.68

AdaBoost 0.72 0.67 0.83 0.82 0.63 0.54 0.82 0.81
Ensemble
Classifier 0.73 0.7 0.82 0.81 0.67 0.64 0.8 0.77

Table 5. Performances of each of the top-5 individual classifiers and of the ensemble classifier to differentiate between patient
with Severe (S) and Non-Severe (NS) short-term outcome Note.- L-SVM = Support Vector Machine with a linear kernel;
RBF-SVM = Support Vector Machine with a Radial Basis Function kernel

Balanced
Accuracy

Weighted
Precision

Weighted
Sensitivity

Weighted
Specifcity

NS/SI/SD
ReaderA 0.62 0.77 0.68 0.69
ReaderB 0.59 0.75 0.67 0.65
ReaderC 0.61 0.76 0.68 0.62
Reader+++ 0.63 0.77 0.70 0.67
Reader−−− 0.61 ±0.01 0.76 ±0.01 0.68 ±0.01 0.66 ±0.03
AI-driven 0.67 0.81 0.63 0.80
NS/S
ReaderA 0.69 0.79 0.70 0.67
ReaderB 0.66 0.77 0.70 0.62
ReaderC 0.65 0.76 0.70 0.60
Reader+++ 0.67 0.78 0.70 0.64
Reader−−− 0.67 ±0.01 0.77 ±0.01 0.70 ±0.01 0.63 ±0.03
AI-driven 0.70 0.81 0.64 0.77
SI/SD
ReaderA 0.81 0.87 0.88 0.75
ReaderB 0.79 0.84 0.84 0.74
ReaderC 0.81 0.87 0.88 0.75
Reader+++ 0.81 0.87 0.88 0.75
Reader−−− 0.81 ±0.01 0.87 ±0.01 0.87 ±0.01 0.75 ±0.03
AI-driven 0.88 0.94 0.94 0.81

Table 6. Prognosis of medical experts for the Non Severe (NS) versus Severe (S), Intubated (SI) versus Deceased (SD) and
NS/SI/SD patients Note.- Classification Performance ReaderA (Senior), ReaderB (Established), ReaderC (Resident),Reader+++

(Consensus among Human Readers), Reader−−− (Average performance of Human Readers)
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Classifier
Balanced
Accurary

Weighted
Pecision

Weighted
Sensitivity

Weighted
Specificity

Training Test Training Test Training Test Training Test
P-SVM 0.88 0.7 0.89 0.76 0.84 0.74 0.92 0.67
Decision Tree 0.9 0.88 0.92 0.94 0.92 0.94 0.88 0.81
Random
Forest 0.9 0.81 0.92 0.91 0.92 0.9 0.88 0.81

AdaBoost 0.9 0.88 0.92 0.94 0.92 0.94 0.88 0.81
Gaussian
Process 0.95 0.77 0.96 0.83 0.96 0.84 0.94 0.7

Ensemble
Classifier 0.9 0.88 0.92 0.94 0.92 0.94 0.88 0.81

Table 7. Performances of each of the top-5 individual classifiers and of the ensemble classifier to differentiate between
Intubated (SI) and Deceased (SD) patients in the short-term outcome. Note.- P-SVM = Support Vector Machine with a
polynomial kernel
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Study
Case Task Balanced Accuracy Weighted Precision

Weighted
Sensitivity

Weighted
Specificity

Training Test Training Test Training Test Training Test

All
Features

NS/S 0.73 0.70 0.82 0.81 0.67 0.64 0.80 0.77
SI/SD 0.90 0.88 0.92 0.94 0.92 0.94 0.88 0.81
LD/LR 0.82 0.69 0.84 0.76 0.8 0.74 0.83 0.65
SD/LD/LR 0.77 0.71 0.8 0.77 0.78 0.74 0.9 0.82

Without
D0

NS/S 0.73 0.7 0.82 0.8 0.68 0.65 0.79 0.74
SI/SD 0.89 0.88 0.92 0.94 0.92 0.94 0.88 0.81
LD/LR 0.56 0.5 0.74 0.54 0.74 0.74 0.39 0.26
SD/LD/LR 0.65 0.58 0.73 0.64 0.76 0.74 0.79 0.72

Without
D1

NS/S 0.74 0.69 0.82 0.8 0.67 0.64 0.8 0.74
SI/SD 0.89 0.88 0.91 0.93 0.91 0.93 0.88 0.81
LD/LR 0.56 0.5 0.74 0.54 0.74 0.74 0.39 0.26
SD/LD/LR 0.65 0.58 0.73 0.64 0.76 0.74 0.79 0.72

Without
D2

NS/S 0.73 0.69 0.82 0.8 0.67 0.64 0.8 0.74
SI/SD 0.89 0.88 0.91 0.93 0.91 0.93 0.88 0.81
LD/LR 0.58 0.5 0.74 0.54 0.76 0.74 0.48 0.26
SD/LD/LR 0.67 0.58 0.73 0.64 0.76 0.74 0.82 0.72

Without
O1

NS/S 0.73 0.7 0.82 0.79 0.72 0.73 0.75 0.67
SI/SD 0.89 0.88 0.91 0.93 0.91 0.93 0.88 0.81
LD/LR 0.58 0.5 0.73 0.54 0.74 0.74 0.42 0.26
SD/LD/LR 0.66 0.58 0.72 0.64 0.76 0.74 0.81 0.72

Without
O2

NS/S 0.75 0.69 0.83 0.8 0.67 0.62 0.82 0.76
SI/SD 0.89 0.88 0.91 0.93 0.91 0.93 0.88 0.81
LD/LR 0.78 0.59 0.82 0.68 0.83 0.68 0.72 0.5
SD/LD/LR 0.74 0.65 0.78 0.73 0.79 0.7 0.87 0.78

Without
B1

NS/S 0.73 0.71 0.82 0.81 0.67 0.66 0.79 0.77
SI/SD 0.67 0.58 0.74 0.65 0.74 0.67 0.6 0.48
LD/LR 0.74 0.53 0.79 0.64 0.79 0.68 0.7 0.37
SD/LD/LR 0.58 0.41 0.59 0.48 0.59 0.48 0.73 0.66

Clinical
Only

NS/S 0.71 0.58 0.8 0.73 0.68 0.58 0.73 0.58
SI/SD 0.89 0.88 0.91 0.93 0.91 0.93 0.88 0.81
LD/LR 0.73 0.53 0.79 0.64 0.8 0.68 0.65 0.37
SD/LD/LR 0.72 0.6 0.77 0.7 0.78 0.7 0.85 0.74

Table 8. An ablation study of the different selected features. A leave-one-out method has been applied by removing one
feature sequentially to test the features importance and the performance robustness. Note.- a) D0: disease extent, b) D1:
disease variables that are shape/geometry related, c) D2: disease variables that are tissue/texture, d) O1: heart/lungs variables
that are shape/geometry related, e) O2: heart/lungs variables that are tissue/texture, f) B1: age, gender,
biological/obesity/diabetes/fat/high blood pressure. LD = long-term-deceased; LR = long-term deceased; NS = non severe; S
= severe; SI = short-term intubation; SD = short-term deceased
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Features Correlation
S/NS SI/SD LR/LD

Age 0.0670 0.6742 0.3336
Sex 0.1318 -0.0491 -0.0587
CRP 0.0023 0.0145 0.0182
HBP 0.0329 0.2929 0.3318
Diabetes 0.0647 -0.1303 -0.0611
Lymphocytes 0.0330 0.0198 0.0122
Fat Index 0.0552 -0.1916 0.1222
Disease Extent 0.3283 -0.069 0.2135

Heart

Non-uniformity
on the GLSZM 0.0668 -0.1368 -0.1120

Sphericity -0.1608 -0.2460 -0.1007
Flatness -0.1260 -0.0389 -0.1097
Minimum Length
on the Axis 0.0438 0.0664 -0.0831

Left Right Left Right Left Right

Lung

Kurtosis -0.2844 -0.2888 0.0767 0.0091 0.0051 0.0057
Mean Absolute Deviation 0.3051 0.3222 -0.0028 -0.0011 0.0167 -0.0255
Zone Emphasis
on the GLSZM 0.2989 0.3178 -0.0232 0.0451 0.2131 0.1989

Non-Uniformity
on the GLSZM -0.3054 -0.3048 -0.0176 -0.0306 -0.1735 -0.1382

Variance on the GLSZM 0.3054 0.348 0.0176 0.0306 0.1735 0.1382

Disease

Mesh Volume 0.2966 0.3633 -0.0868 0.0236 0.2091 0.1254
Volume Volume 0.2970 0.3632 -0.0868 0.0237 0.2090 0.1253
Dependence Non-
Uniformity on the GLDM 0.2663 0.3380 -0.0673 0.0001 0.2020 0.1683

Non-Uniformity on the
GLDM 0.2865 0.3625 -0.0788 0.0166 0.2030 0.1420

Non-uniformity

on the GLRLM
0.2841 0.3402 -0.0757 0.0374 0.1935 0.1232

Table 9. Correlation between outcome and the 23 selected features. Note.— GLSZM =Gray Level Size Zone Matrix , GLRLM
= Gray Level Run Length Matrix, GLDM = Gray Level Dependence Matrix , LD = long-term-deceased , LR = long-term
deceased , NS = non severe , S = severe , SI = short-term intubation , SD = short-term deceased

32. Virtanen, P. et al. Scipy 1.0: fundamental algorithms for scientific computing in python. Nat. methods 1–12 (2020).

33. Pedregosa, F. et al. Scikit-learn: Machine learning in python. J. machine learning research 12, 2825–2830 (2011).

34. Abadi, M. et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. CoRR abs/1603.04467
(2016). 1603.04467.

35. Van Griethuysen, J. J. et al. Computational radiomics system to decode the radiographic phenotype. Cancer research 77,
e104–e107 (2017).
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Classifier
Balanced Accuracy Weighted Precision Weighted Sensitivity Weighted Specificity
Training Validation Training Validation Training Validation Training Validation

Nearest
Neighbors

0.73
±0.02

0.56
±0.03

0.86
±0.01

0.74
±0.03

0.87
±0.01

0.77
±0.01

0.59
±0.03

0.36
±0.05

L-SVM* 0.71
±0.02

0.66
±0.05

0.8
±0.01

0.77
±0.03

0.72
±0.01

0.67
±0.06

0.71
±0.03

0.64
±0.05

P-SVM
0.79
±0.01

0.66
±0.03

0.85
±0.01

0.77
±0.02

0.8
±0.02

0.7
±0.04

0.78
±0.02

0.61
±0.04

S-SVM
0.57
±0.02

0.59
±0.03

0.72
±0.01

0.73
±0.02

0.61
±0.04

0.61
±0.02

0.53
±0.03

0.57
±0.06

RBF-SVM* 0.75
±0.01

0.67
±0.03

0.83
±0.0

0.78
±0.02

0.7
±0.02

0.62
±0.05

0.8
±0.02

0.71
±0.04

Gaussian
Process

0.62
±0.02

0.59
±0.04

0.82
±0.02

0.79
±0.04

0.83
±0.01

0.81
±0.02

0.41
±0.02

0.36
±0.06

Decision
Tree*

0.71
±0.01

0.7
±0.03

0.82
±0.01

0.82
±0.02

0.6
±0.03

0.6
±0.04

0.82
±0.02

0.81
±0.04

Random
Forest*

0.74
±0.01

0.68
±0.03

0.82
±0.01

0.79
±0.02

0.7
±0.02

0.66
±0.02

0.78
±0.02

0.71
±0.06

Multi-Layer
Perceptron

0.98
±0.02

0.59
±0.03

0.99
±0.01

0.74
±0.02

0.99
±0.01

0.73
±0.04

0.97
±0.03

0.45
±0.03

AdaBoost* 0.73
±0.01

0.69
±0.04

0.82
±0.01

0.8
±0.02

0.69
±0.07

0.66
±0.07

0.77
±0.06

0.73
±0.09

Gaussian
Naive Bayes*

0.63
±0.01

0.64
±0.05

0.78
±0.01

0.78
±0.03

0.81
±0.01

0.8
±0.03

0.45
±0.02

0.47
±0.07

Bernouilli
Naive Bayes

0.52
±0.01

0.51
±0.01

0.85
±0.0

0.69
±0.05

0.81
±0.0

0.79
±0.01

0.24
±0.01

0.23
±0.02

QDA
0.78
±0.04

0.62
±0.04

0.86
±0.02

0.77
±0.03

0.85
±0.02

0.77
±0.03

0.71
±0.06

0.48
±0.08

XGBoost
0.7
±0.02

0.58
±0.02

0.9
±0.01

0.8
±0.02

0.88
±0.01

0.82
±0.01

0.52
±0.02

0.34
±0.04

Ensemble
Classifier

0.75
±0.01

0.7
±0.03

0.83
±0.01

0.8
±0.02

0.69
±0.02

0.65
±0.03

0.8
±0.01

0.75
±0.05

Table 10. Performances of the 15 evaluated classifiers for the Severe (S) versus Non-Severe (NS) task on cross-validation.
Note.-Asterixis indicates the top 5 classifiers reporting that were finally selected, L-SVM = Support Vector Machine with a
linear kernel; P-SVM = Support Vector Machine with a polynomial kernel, S-SVM = Support Vector Machine with a sigmoid
kernel, RBF-SVM = Support Vector Machine with a Radial Basis Function, QDA = Quadratic Discriminant Analysis
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Figure 5. Some additional qualitative analysis for the comparison between automated and manual segmentations. Delineation
of the diseased areas on chest CT in different slices of COVID-19 patients: From left to right: Input, AI-segmentation, expert
I-segmentation, expert II-segmentation
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Figure 6. Training and validation curves for one template of AtlasNet and the 3D U-Net.

Figure 7. Correlation between body mass index (BMI) and fat ratio.
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Figure 8. Boxplots of the selected features and their association with the annotation labels for the severe (S) versus non severe
(NS) cases on the short-term outcome for the test set. The boxes had been generated by using the 25th , median and 75th
percentile of the features.
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Figure 9. Boxplots of the selected features and their association with the annotation labels for the short intubated (SI) versus
deceased (SD) on the short-term outcome for the test set. The boxes had been generated by using the 25th , median and 75th
percentile of the features.
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Figure 10. Boxplots of the selected features and their association with the ground truth labels for the recovered (LR) versus
deceased (LD) on the long-term outcome for the test set. The boxes had been generated by using the 25th , median and 75th
percentile of the features.
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Classifier
Balanced Accuracy Weighted Precision Weighted Sensitivity Weighted Specificity
Training Validation Training Validation Training Validation Training Validation

Nearest
Neighbors

0.81
±0.03

0.71
±0.07

0.88
±0.02

0.79
±0.05

0.88
±0.01

0.79
±0.04

0.75
±0.05

0.62
±0.11

L-SVM
0.8
±0.03

0.77
±0.06

0.83
±0.02

0.82
±0.05

0.76
±0.03

0.73
±0.05

0.83
±0.03

0.81
±0.08

P-SVM* 0.86
±0.03

0.78
±0.05

0.88
±0.02

0.82
±0.03

0.82
±0.03

0.76
±0.05

0.89
±0.04

0.8
±0.06

S-SVM
0.63
±0.04

0.62
±0.09

0.73
±0.02

0.72
±0.07

0.74
±0.02

0.73
±0.05

0.51
±0.07

0.52
±0.14

RBF-SVM
0.7
±0.06

0.64
±0.07

0.84
±0.01

0.77
±0.08

0.83
±0.02

0.78
±0.05

0.57
±0.1

0.5
±0.09

Gaussian
Process

0.92
±0.05

0.84
±0.05

0.95
±0.03

0.88
±0.04

0.95
±0.03

0.87
±0.05

0.9
±0.06

0.81
±0.08

Decision
Tree*

0.89
±0.03

0.89
±0.08

0.91
±0.02

0.91
±0.06

0.91
±0.03

0.89
±0.08

0.88
±0.04

0.88
±0.09

Random
Forest*

0.9
±0.04

0.83
±0.11

0.93
±0.03

0.88
±0.08

0.92
±0.04

0.87
±0.07

0.88
±0.05

0.79
±0.15

Multi-Layer
Perceptron

1.0
±0.01

0.79
±0.08

1.0
±0.0

0.84
±0.05

1.0
±0.0

0.83
±0.04

1.0
±0.01

0.75
±0.13

AdaBoost* 0.89
±0.03

0.88
±0.08

0.91
±0.02

0.91
±0.06

0.91
±0.02

0.89
±0.08

0.88
±0.05

0.86
±0.09

Gaussian
Naive Bayes

0.66
±0.05

0.62
±0.08

0.81
±0.03

0.77
±0.1

0.81
±0.02

0.78
±0.05

0.52
±0.09

0.47
±0.12

Bernouilli
Naive Bayes

0.59
±0.02

0.53
±0.03

0.83
±0.01

0.66
±0.14

0.79
±0.01

0.76
±0.02

0.39
±0.03

0.3
±0.05

QDA
0.61
±0.06

0.5
±0.0

0.82
±0.03

0.55
±0.0

0.8
±0.03

0.74
±0.0

0.43
±0.09

0.26
±0.0

XGBoost* 0.97
±0.02

0.78
±0.13

0.99
±0.01

0.84
±0.1

0.99
±0.01

0.83
±0.09

0.96
±0.03

0.74
±0.19

Ensemble
Classifier

0.93
±0.03

0.87
±0.08

0.94
±0.02

0.9
±0.06

0.93
±0.02

0.89
±0.07

0.92
±0.04

0.85
±0.12

Table 11. Performances of the 15 evaluated classifiers for the Intubated (SI) versus Deceased (SD) in the short-term task on
cross-validation. Note.-Asterixis indicates the top 5 classifiers reporting that were finally selected, L-SVM = Support Vector
Machine with a linear kernel; P-SVM = Support Vector Machine with a polynomial kernel, S-SVM = Support Vector Machine
with a sigmoid kernel, RBF-SVM = Support Vector Machine with a Radial Basis Function, QDA = Quadratic Discriminant
Analysis
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Classifier
Balanced Accuracy Weighted Precision Weighted Sensitivity Weighted Specificity
Training Validation Training Validation Training Validation Training Validation

Nearest
Neighbors

0.71
±0.04

0.54
±0.03

0.83
±0.04

0.66
±0.06

0.82
±0.03

0.69
±0.04

0.6
±0.04

0.39
±0.02

L-SVM*
0.81
±0.03

0.67
±0.11

0.83
±0.03

0.73
±0.08

0.78
±0.01

0.68
±0.08

0.83
±0.05

0.65
±0.13

P-SVM
0.96
±0.02

0.54
±0.09

0.96
±0.02

0.63
±0.08

0.96
±0.02

0.63
±0.09

0.96
±0.03

0.44
±0.12

S-SVM*
0.6
±0.09

0.61
±0.14

0.7
±0.07

0.68
±0.16

0.74
±0.04

0.75
±0.1

0.46
±0.14

0.46
±0.19

RBF-SVM
0.55
±0.05

0.5
±0.0

0.75
±0.12

0.52
±0.0

0.74
±0.03

0.72
±0.0

0.36
±0.06

0.28
±0.0

Gaussian
Process

0.81
±0.07

0.57
±0.07

0.91
±0.03

0.69
±0.12

0.89
±0.04

0.73
±0.06

0.72
±0.11

0.4
±0.09

Decision
Tree*

0.75
±0.02

0.61
±0.08

0.8
±0.02

0.71
±0.09

0.7
±0.07

0.58
±0.09

0.79
±0.03

0.63
±0.14

Random
Forest

0.64
±0.08

0.5
±0.11

0.73
±0.06

0.58
±0.1

0.7
±0.08

0.58
±0.15

0.57
±0.14

0.41
±0.14

Multi-Layer
Perceptron

1.0
±0.0

0.52
±0.08

1.0
±0.0

0.61
±0.07

1.0
±0.0

0.62
±0.07

1.0
±0.0

0.42
±0.12

AdaBoost* 0.83
±0.04

0.61
±0.1

0.86
±0.03

0.69
±0.09

0.82
±0.06

0.64
±0.09

0.83
±0.04

0.58
±0.16

Gaussian
Naive Bayes

0.56
±0.02

0.52
±0.04

0.8
±0.03

0.58
±0.12

0.74
±0.01

0.73
±0.03

0.37
±0.03

0.3
±0.06

Bernouilli
Naive Bayes

0.53
±0.02

0.5
±0.02

0.69
±0.09

0.54
±0.05

0.72
±0.01

0.72
±0.02

0.34
±0.03

0.29
±0.04

QDA
0.9
±0.06

0.5
±0.0

0.95
±0.03

0.52
±0.0

0.94
±0.03

0.72
±0.0

0.85
±0.08

0.28
±0.0

XGBoost
0.91
±0.05

0.57
±0.08

0.95
±0.03

0.67
±0.1

0.95
±0.03

0.71
±0.05

0.87
±0.07

0.43
±0.12

Ensemble
Classifier

0.82
±0.04

0.65
±0.07

0.84
±0.02

0.73
±0.07

0.78
±0.04

0.64
±0.06

0.85
±0.04

0.66
±0.12

Table 12. Performances of the 15 evaluated classifiers for the Deceased (LD) and Recovered (LR) in the long-term task on
cross-validation. Note.-Asterixis indicates the top 5 classifiers reporting that were finally selected, L-SVM = Support Vector
Machine with a linear kernel; P-SVM = Support Vector Machine with a polynomial kernel, S-SVM = Support Vector Machine
with a sigmoid kernel, RBF-SVM = Support Vector Machine with a Radial Basis Function, QDA = Quadratic Discriminant
Analysis

Classifier
Balanced
Accurary

Weighted
Pecision

Weighted
Sensitivity

Weighted
Specificity

Training Test Training Test Training Test Training Test
L-SVM 0.77 0.62 0.81 0.7 0.74 0.63 0.81 0.61
S-SVM 0.63 0.69 0.71 0.76 0.56 0.63 0.7 0.74
AdaBoost 0.82 0.69 0.84 0.76 0.8 0.74 0.83 0.65
Decision Tree 0.7 0.72 0.8 0.78 0.6 0.68 0.81 0.76
Ensemble
Classifier 0.82 0.69 0.84 0.76 0.8 0.74 0.83 0.65

Table 13. Performances of each of the individual classifiers and of the ensemble classifier to differentiate between Deceased
(LD) and Recovered (LR) in the long-term outcome. Note.- P-SVM = Support Vector Machine with a polynomial kernel;
S-SVM = Support Vector Machine with a sigmoid kernel
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