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Abstract: Parkinson’s disease (PD) and essential tremor (ET) are movement disorders that 

can have similar clinical characteristics including tremor and gait difficulty. These disorders 

can be misdiagnosed leading to delay in appropriate treatment. The aim of the study was to 

determine whether gait and balance variables obtained with wearable sensors can be utilized 

to differentiate between PD and ET using machine learning techniques. Additionally, we 

compared classification performances of several machine learning models. A balance and 

gait data set collected from 567 people with PD or ET was investigated. Performance of 

several machine learning techniques including neural networks (NN), support vector machine 

(SVM), k-nearest neighbor (kNN), decision tree (DT), random forest (RF), and gradient 

boosting (GB), were compared using F1-scores. Machine learning models classified PD and 

ET based on balance and gait characteristics better than chance or logistic regression. The 

highest F1-score was 0.61 of NN, followed by 0.59 of GB, 0.56 of RF, 0.55 of SVM, 0.53 of DT, 

and 0.49 of kNN. The results demonstrated the utility of machine learning models to classify 

different movement disorders. Further study will provide a more accurate clinical tool to help 

clinical decision-making. 

 

Keywords: Parkinson’s disease; essential tremor; gait; balance; inertial motion unit; machine 

learning 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2020. ; https://doi.org/10.1101/2020.04.17.20065441doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.17.20065441
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

 

1. Introduction 

Parkinson’s disease (PD) and essential tremor (ET) are common movement disorders 

characterized by the presence of tremor [1]. Although ET has traditionally been considered a 

mono-symptomatic disorder presenting with tremor, increasing evidence suggests that ET is 

a complex disorder with involvement of other motor and non-motor symptoms [2]. Both PD 

and ET can share clinical features including motor symptoms such as bradykinesia (slow 

movement), gait impairment and dystonia (involuntary muscle contraction), and non-motor 

symptoms such as cognitive impairments, sleep disturbances, depression, and anxiety [3, 4]. 

Diagnosis of these disorders can be challenging for clinicians due to overlapping symptoms, 

and these disorders are frequently confused and misdiagnosed. A past study reported that 

about a third of patients with PD or dystonia were misdiagnosed with ET [5]. Since 

misdiagnosis can prevent or delay appropriate medical care and worsen patients’ quality of 

life, accurate differentiation between PD and ET is important to provide optimal care. 

Clinical observation of gait and balance impairments can play a major role in classifying 

different conditions and monitoring the progression of PD and ET. Subtle changes in gait 

have even been found to occur before a clinical diagnosis of PD [6, 7], Alzheimer’s disease 

[8], or multiple sclerosis [9], suggesting gait as a potential biomarker for neurological 

disorders.  Balance and gait impairments are more prominent and clinically observable in 

PD than in ET. However, there is growing evidence suggesting gait abnormalities in patients 

with ET [10]. Previous studies showed gait and balance abnormalities such as decreased 

cadence [11, 12], decreased gait speed [12], increased double support [11, 12], abnormalities 

in tandem gait [13-15], and postural instability in ET [11, 16]. These abnormalities in ET are 

also commonly found in PD, which contribute to misdiagnosis of the two movement 

disorders [5]. 
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Advances in technology enable an objective assessment of gait and balance through 

numerous devices such as body-worn inertial motion unit (IMU) sensors, 3-dimentional 

motion capturing systems, force plates, gait walkways, and smartphones. Many movement 

disorder clinics and research laboratories have started to implement these technological 

devices in their practices [17], particularly IMU sensors to evaluate balance and gait in PD [18, 

19] . Subsequently, a vast amount of complex and non-linear data from technological devices 

are available for clinicians and researchers that require advanced statistical analyses. Machine 

learning is widely employed to analyze large data sets produced from movement disorder 

clinics and research laboratories [20]. Among various machine learning techniques, neural 

network (NN) models are broadly utilized due to their superior performance compared to 

traditional analytic methods such as logistic regression (LR) [21]. Previously, NNs have been 

employed in gait and balance studies to process signals from wearable devices in PD [22-25]. 

In addition, a study used a NN to successfully discern PD from ET using surface 

electromyography data [26]. Other machine learning algorithms such as support vector 

machine (SVM) and k-nearest neighbor (kNN) were used to differentiate between PD and ET 

based on IMU sensors, but they mainly investigated upper body tremors [27-30]. To our 

knowledge, no study has utilized machine learning techniques to differentiate between PD 

and ET based on data collected from gait and balance characteristics from wearable IMU 

sensors. 

Therefore, the primary aim of this data-driven study was to distinguish between PD and 

ET using balance and gait characteristics obtained from IMU sensors using machine learning 

techniques. The secondary aim of the study was to compare and evaluate different machine 

learning performances in distinguishing between PD and ET using balance and gait data 

obtained from IMU sensors. 
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2. Methods 

2.1. Participants 

The instrumented gait and balance tests were administered at the Parkinson’s Disease and 

Movement Disorder Clinic of the University of Kansas Medical Center. Between January 3, 2017 

and December 11, 2018, a total of 1,468 people was tested. We excluded people if they were 

diagnosed with both PD and ET (n = 29) and/or if they had a history of deep brain stimulation 

surgery (n = 468). For those who visited the clinic more than once during the study period (n = 

628), we only included the data from their first visits. Additionally, we excluded people with no 

data recorded due to technical error of the measuring device (n = 65), leaving a total of 567 

people with PD or ET in the study. 

 

2.2. Protocol and materials 

Participants wore six IMU sensors (Opal, APDM, Inc., Portland, OR, USA). Two wrist 

sensors were bilaterally mounted on the dorsal side of the wrist and two foot sensors were 

bilaterally mounted to the instep (dorsal side of metatarsus) of each foot. The sternum 

sensor was mounted on the sternum of the chest and the lumber sensor was mounted to the 

posterior side at the L5 region. All six sensors were firmly tightened to the designated 

locations using straps during testing. 

The instrumented stand and walk (iSAW) test was administered. During the iSAW test, 

participants were instructed to stand still for 30 seconds, walk straight for 7 meters at a 

comfortable speed after hearing a beep, turn 180° around at the end of 7-meter marker, then 

walk back to the start point. The iSAW test is a reliable and valid balance and gait measure 

for clinical use [31-33]. 
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The IMU utilized in the study contained two accelerometers (range: ± 16g and ± 200g, 

resolution: 14 and 17.5 bits, sample rate: 128 Hz), a gyroscope (range: ± 2000°/s, resolution: 

16 bits, sample rate: 128 Hz), and a magnetometer (range: ± 8 Gauss, resolution: 12 bits, 

sample rate: 128 Hz). A total of 130 gait and balance parameters were automatically 

computed using the Mobility Lab software (APDM, Inc., Portland, OR, USA). 

 

2.3. Data analysis 

2.3.1. Pre-processing data set 

Among 130 gait and balance parameters computed by the Mobility Lab software, a total 

of 48 parameters with clinical relevance were included in the study based on a recent review 

[34] and the clinical expertise of the authors (Table 1). In the data set, 524 participants had 

PD (age = 66.73 ± 9.17, disease duration = 8.20 ± 5.11 years), while 43 had ET (age = 66.98 ± 

9.84, disease duration = 13.83 ± 13.79 years) as their primary diagnoses. The ratio between 

PD participants and ET participants was highly imbalanced, 92.5% (PD) vs 7.5% (ET), in the 

data set. To mitigate the effect derived from the imbalanced data, we utilized a Synthetic 

Minority Over-sampling Technique (SMOTE) [35], an oversampling approach to create 

synthetic minority class examples. For missing values, we used a univariate feature 

imputation algorithm to predict missing values in datasets before training the classification 

model. We initially attempted to reduce the dimension of the data using principal 

component analysis (PCA); however, we found that there was a slight performance drop 

when applying PCA. One potential reason behind this phenomenon was that we manually 

selected useful features before PCA. Hence, we did not utilize the dimension reduction 

technique. 
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Table 1. Gait and balance features utilized in the analysis. 

Gait – lower limb  

Cadence [left] (steps/min) Cadence [right] (steps/min) 
Double support [left] (%GC) Double support [right] (%GC) 
Gait speed [left] (m/s) Gait speed [right] (m/s) 
Lateral step variability [left] (cm) Lateral step variability [right] (cm) 
Foot strike angle [left] (degrees) Foot strike angle [right] (degrees) 
Toe off angle [left] (degrees) Toe off angle [right] (degrees) 
Single limb support [left] (%GC) Single limb support [right] (%GC) 
Stance [left] (%GC) Stance [right] (%GC) 
Step duration [left] (s) Step duration [right] (s) 
Stride length [left] (m) Stride length [right] (m) 
Swing [left] (%GC) Swing [right] (%GC) 
Terminal double support [left] (%GC) Terminal double support [right] (%GC) 
  

Gait – lumbar  

Coronal range of motion (degrees)  
Sagittal range of motion (degrees)  
Transverse range of motion (degrees)  
  

Gait – trunk  

Coronal range of motion (degrees)   
Sagittal range of motion (degrees)   
Transverse range of motion (degrees)  
  

Postural sway  

Mean velocity (m/s) Acc - path length (m/s2) 
Mean velocity [coronal] (m/s) Acc - path length [coronal] (m/s2) 
Mean velocity [sagittal] (m/s) Acc - path length [sagittal] (m/s2) 
Acc - RMS sway (m/s2) Acc - RMS sway (degrees) 
Acc - RMS sway [coronal] (m/s2) Acc - RMS sway [coronal] (degrees) 
Acc - RMS Sway [sagittal] (m/s2) Acc - RMS sway [sagittal] (degrees) 
Sway area radius [coronal] (degrees) Acc - range (m/s2) 
Sway area rotation (degrees) Acc - range [coronal] (m/s2) 
Sway area (degrees2) Acc - range [sagittal] (m/s2) 
  

Abbreviation: Acc = acceleration, GC = gait cycle, RMS = root mean square 
 

2.3.2. Classification and model selection 
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The classification models included NN, SVM, kNN, decision tree (DT), random forest (RF), 

gradient boosting classifier (GB), and LR. To find out the optimal values of the 

hyper-parameters of the classification models, we used a stratified 3-fold cross validation 

with grid search strategy. Table 2 shows the hyper-parameter search spaces of each 

classification model. 

 

Table 2. Model hyper-parameters of the classification models. 

Classification models Hyper-parameter search spaces 

Neural network (NN) hidden_layer_sizes = {100, 200, 300} 
Support vector machines (SVM) C = {0.01, 0.1, 1, 5, 10, 100}, kernel = {‘linear’, ‘rbf'}, 

gamma = {0.01, 0.1, 1, 10}, class_weight = {None, 
‘balanced’} 

k-nearest neighbor (kNN) n_neighbors = {1,3,5,7,9}, weights = {‘uniform’, 
‘distance’} 

Decision tree (DT) max_depth = {5, 6, 7, 8, 9, 10, 15, 20}, class_weight = 
{None, ‘balanced’} 

Random forest (RF) n_estimators = {20, 50, 100, 200}, class_weight = 
{None, ‘balanced’, ‘balanced_subsample’} 

Gradient boosting (GB) n_estimators = {20, 50, 100, 200} 
Logistic regression (LR) C = {0.01, 0.1, 1, 5, 10, 100}, penalty = {‘l1’, ‘l2’}, 

class_weight = {None, ‘balanced’} 
Note: gamma parameter in SVM was applied when the kernel is radial basis function ‘rbf'; 
class_weight was applied when the oversampling approach (SMOTE) was not used. 
 

2.3.3. Performance evaluation 

The classification models were evaluated with accuracy (a ratio of correct prediction to 

total observations), recall (a ratio of correct prediction of positive cases to all observations in 

actual cases), precision (a ratio of correct prediction of positive cases to all positive cases), 

and F1 score (a harmonic mean of precision and recall). Of note, all performances were 

micro-averaged. The accuracy, and precision and recall for the F1-score were calculated as 

follows (TP = true positive, TN = true negative, FP = false positive, FN = false negative): 
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3. Results 

The results of NN, SVM, kNN, DT, RF, GB, and LR with and without the oversampling 

approach are shown in Table 3. With SMOTE, (1) the accuracy of the models ranged from 

0.65 (kNN) to 0.89 (NN); (2) the precision was similar across the models ranging from 0.54 

(SVM, kNN, DT, and LR) to 0.61 (NN); (3) the recall ranged from 0.58 (DT) to 0.63 (kNN and 

GB); and (4) the F1-score ranged from 0.53 (DT and LR) to 0.61 (NN). 

 

Table 3. Accuracy, Precision, Recall, and F1-score of logistic regression, support vector 

machine, neural network, k-nearest neighbor, decision tree, random forest, and gradient 

boosting. 

  Dummy NN SVM kNN DT RF GB LR 

With 
SMOTE 

Accuracy 0.92 0.89 0.87 0.65 0.77 0.83 0.85 0.73 
Precision 0.46 0.61 0.54 0.54 0.54 0.56 0.58 0.54 
Recall 0.50 0.61 0.59 0.63 0.58 0.59 0.63 0.62 
F1-score 0.48 0.61 0.55 0.49 0.53 0.56 0.59 0.53 

Without 
SMOTE 

Accuracy 0.92 0.92 0.76 0.88 0.77 0.90 0.92 0.68 
Precision 0.46 0.68 0.55 0.68 0.56 0.55 0.63 0.54 
Recall 0.50 0.56 0.62 0.54 0.61 0.53 0.51 0.61 
F1-score 0.48 0.58 0.54 0.54 0.55 0.53 0.50 0.50 

Abbreviations: Dummy = reference classifier (when the model chooses only PD), LR = logistic 
regression, SVM = support vector machine, NN = neural network, kNN = k-nearest neighbor, 
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RF = random forest, GB = gradient boosting, SMOTE = synthetic minority over-sampling 
technique. 
 
4. Discussion 

This data-driven study aimed to differentiate between two movement disorders, PD and 

ET based on gait and balance characteristics collected from IMU sensors using various 

machine learning models. Additionally, the classification performance was compared across 

different machine learning models. 

Recent technological advances enable clinics and research laboratories to employ 

wearable devices in their balance and gait assessments. This allows precise measurement of 

balance and abnormalities and accurate monitoring of physical activities of daily living. 

However, the data produced by technological devices are often overwhelming and 

under-utilized due to the size and complexity of the data [36]. Our data set provides useful 

clinical information for gait and balance such as gait speed, cadence, and postural sway 

collected by wearable devices. Our current results suggest that machine learning models can 

increase the utility of these complex data collected by technological devices. Our machine 

learning models outperformed (F1-scores ranging between 0.49 and 0.61) the dummy model 

(F1-score = 0.48) to classify the two movement disorders. 

In this study, with SMOTE, the NN outperformed other models in classifying two 

different movement disorders solely based on a clinically available gait and balance data set. 

The F1-score of NN was 0.61, showing the highest performance among 8 models in the 

analysis. The robustness of NN performance typically shows in large and complex data. 

Previous studies in PD have demonstrated NN as the superior machine learning technique 

using data collected from wearable IMU sensors in levodopa-induced dyskinesia assessment 

and detection [22, 23], gait abnormality classification [24], and discrimination between 
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people with PD who underwent subthalamic stimulation and healthy controls [25]. Although 

the GB showed a similar performance based on the F1-score (0.59), the accuracy of GB (85%) 

was lower than that of the NN (89%). Accuracies of other comparison models including SVM, 

kNN, DT, RF, and LR ranged between 65% and 87% and their F1-scores were lower than the 

NN. However, particularly for this data-driven study, a higher performance in accuracy is not 

likely to reflect superior performance of the model, because the data set was heavily 

imbalanced with 92.5% of people with PD and 7.5% of people with ET. This implies that a 

dummy model will be 92.5% accurate in classifying PD if the model categorized each case as 

PD. The F1-score is a more adequate measure especially for an imbalanced data set in 

machine learning, because a greater F1-score reflects both low false positives and negatives 

[37]. 

The current study has several limitations. First, in our study, the data set was imbalanced 

towards an overrepresentation of PD. To overcome this limitation, we implemented the 

SMOTE that generates synthetic minority class samples, which is a widely used oversampling 

method [38]. Our findings demonstrated the SMOTE increased the classification 

performance, based on F1-scores, in the majority of models in the study (Table 3). This result 

may indicate the SMOTE was effective to minimize the influence of imbalanced class 

distribution in the current data set. However, further classification studies are required to use 

a data set that better reflects the actual disease representation in the population. Second, the 

design of the current study was a cross-sectional design including patients with clinically 

diagnosed PD or ET. Future research needs to include a longitudinal analysis using data over 

time to inform the accuracy of NNs using gait and balance characteristics from wearable 

devices to assist in the differential diagnosis or disease progression of PD and ET. Third, 

unlike past studies that utilized raw signal data captured by IMU sensors [22-25], the current 
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study utilized pre-processed data (i.e. gait speed, sway area, cadence, etc.) from raw signal 

data as input variables. We opted to use the pre-processed data since these are readily 

available, adding to the clinical relevance of our current findings. However, we acknowledge 

that using raw data adds more information to the model since the pre-processing procedure 

might result in a significant loss of raw signal features directly from IMU sensors. In general, 

the performance of NN can be more precise and accurate when the model is fed more data. 

Thus, further examination using raw data collected from wearable IMU sensors can offer new 

insights that extend our current findings. 

 

5. Conclusions 

Wearable sensors for balance and gait assessments can be implemented in movement 

disorders clinics to produce a vast amount of potentially informative data for assisting in 

diagnosis and monitoring disease progression. The current study showed that NN with 

SMOTE outperformed machine learning models and traditional logistic regression in 

classifying PD and ET based on the pre-processed balance and gait IMU data set. With 

further validation, a data-driven approach using machine learning techniques may provide a 

more efficient diagnostic and prognostic tool that can aid clinicians’ decision-making 

process. 

 

Ethical Statement: The study ethics was approved by the University of Kansas Medical 

Center Institutional Review Board (#12351 - Movement Disorder Research Registry and 

#STUDY00143000 - Gait assessment in Movement Disorders). The data set used in this 

retrospective data base study was collected as part of routine patient care after patient’s 

consent. 
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