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Summary 

Mathematical models are useful tools to predict the course of an epidemic. A heuristic global 

Gaussian-function-based algorithm for predicting the COVID-19 pandemic trend is proposed for 

estimating how the temporal evolution of the pandemic develops by predicting daily COVID-19 

deaths, for up to 10 days, starting with the day the prediction is made. The validity of the 

proposed heuristic global algorithm was tested in the case of China (at different temporal stages 
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of the pandemic). The algorithm was used to obtain predictions in six different locations: 

California, New York, Iran, Sweden, the United Kingdom, and the entire United States, and in 

all cases the prediction was confirmed. Our findings show that this algorithm offers a robust and 

reliable method for revealing the temporal dynamics and disease trends of SARS-CoV-2, and 

could be a useful tool for the relevant authorities in settings worldwide. 

 

Introduction 

In January 2020, the novel coronavirus SARS-CoV-2 was identified as the causative agent of an 

outbreak of viral pneumonia known as coronavirus disease 2019 (COVID-19) in Wuhan, China. 

As of 1 May 2020, this outbreak of COVID-19 has spread to more than 200 countries and has 

been officially declared a global pandemic [1]. The number of confirmed cases and deaths 

continues to increase every day. As of May 4, there have been 3,47 million cases and 246, 979 

deaths confirmed worldwide.  

In response to COVID-19, governments have implemented mitigation measures to reduce 

density, measures which have also affected their economies; approximately 3 billion people are 

under lockdown worldwide as of early May 2020. Mathematical models are used to forecast the 

course of the epidemic and guide governments and national authorities in making key decisions 

for rapid strengthening of outbreak surveillance and management. However, there is an urgent 

need for tools capable of early prediction, in order to further bolster the accuracy and efficiency 

of government measures [2]. It has been shown that short-term forecasts can guide the intensity 

and type of interventions needed to mitigate an epidemic [3-5]. In the light of the above, the aim 

of the present study was to apply a novel robust and reliable global algorithm for estimating and 
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predicting the COVID-19 pandemic trend for up to 10 days starting with the prediction date in 

two U.S. states (California and New York) and four countries (Iran, Sweden, UK, USA). In the 

case of USA, the algorithm was applied both to these two states as well as to the country as a 

whole, in order to investigate how the pandemic is developing in different parts of the same 

country. 

 

Methods 

Assumptions and Data sources 

During the study of the development of the COVID-19 pandemic, the daily number of confirmed 

deaths due to COVID-19 for each location have been recorded and analyzed further. The 

selection of daily deaths was based on the authors’ assumption that mortality rates provide more 

accurate and reliable data compared to the recordings of the number of daily infected individuals. 

The daily mortality rate is suggestive of additional information about the unique characteristics 

of each setting, which influence the pandemic transmission trend in each place. Such 

characteristics include:  

 The climate and environmental conditions in each location 

 The quality of the healthcare systems in each location 

 The experience and expertise of the medical staff and healthcare workers 

 The age distribution of the population 

 The pandemic mitigation measures applied in each location  
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The main assumption during the design of this algorithm was the observation that the mortality 

rate, in particular the death numbers in the respective populations, follow a normal distribution. 

Although daily recording might not be the case for optimal normal distribution, it is important to 

note that the selection of death recordings every two or three days almost always leads to an 

optimal normal distribution. Following this assumption, the simulation of the pandemic spread 

was investigated for a variety of mortality rates in different settings, and the setting giving the 

most accurate results and predictions was selected in developing the model.  

In the process of developing a new prediction model, it is common that scientists pay attention to 

the computational model; yet a reliable database is of high importance, and in order to achieve a 

reliable forecast, researchers should give the appropriate attention to the database used for the 

development, training, and validation of the model. In the light of the above, the final overall 

database was based on two individual databases. Data for the countries were obtained from the 

database Worldometer [6] and, for the United States, from the COVID Tracking project [7]. In 

our prediction we did not accommodate underreporting of cases or deaths, which is common in 

many parts of the world with considerable influence on the prediction results. Recent analysis 

shows that the official global COVID-19 death toll is much higher (60%) than officially reported 

[8]. 

 

Proposed Heuristic Algorithm 

By analyzing the official data from China, including daily COVID-19 infections and deaths, it is 

clear that they can be expressed with meaningful accuracy using a suitable Gaussian curve (or, 

equivalently, a proper normal distribution density function). In addition, by studying the 
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evolution of the pandemic and the course of the restrictions in this country, and taking into 

account that many European and other world countries have taken similarly strict restrictive 

mitigation measures, we assumed that the development of COVID-19 pandemic would have 

similarities to its development in China. In other words, we propose that the number of new 

incidents or deaths will be expressed using a proper normal distribution. 

A Gaussian function is a function of the form:  T, whose graph is a 

symmetrical bell-shaped curve centered at the position 
.
  is the height of the peak and the 

variance  controls its width. On both sides of the peak, the tails of the curve quickly fall of 

and approach the x-axis (asymptote). Our algorithm aims to determine in each state or setting the 

optimal normal curve for daily deaths by calculating the parameters 
;
 i.e. by fitting the 

“best” possible normal curve. The optimality of the normal curve is given with reference to well-

known statistical indices.  

More precisely, the main steps of the algorithm are (through a triple loop):  

1. (for A / first inner loop) We start from a given value of A, and with step 1, we continue up to a 

certain value (desired accuracy) depending on the maximum value of our available data 

(deaths) 

2. (for  / second inner loop)  so peaking A,  can be calculated. The algorithm then 

uses a probability value p, starting from p=0.85, and with step 0.01, continues up to 0.99999  

(it is known that  of the data under a normal distribution curve lie inside the 

interval ,where  and ,   the cumulative 
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distribution function of the standard normal distribution (  and  its inverse function. 

This interval is used to fit the actual data, using a proper transformation).   

3. (for / third inner loop) We start from a value of  =20 and we continue, with step 1 (day), 

up to a value of =60  (we observed for example that in the case of China, the phenomenon 

lasted for about 60 days with an average [peak day of deaths] at about the 30th day). 

4. The algorithm application creates a large number of proper normal distributions by calculating 

in each of the three parameters (theoretical/experimental values) each time. Finally, these 

values are compared with the empirical values (actual numbers of deaths) and the “best” 

possible curve is being selected using a number of indices, i.e. the algorithm searches for the 

optimal curve characteristics using the available data up to the forecast day. 

 

Performance Assessment 

The reliability and accuracy of the best fit Gaussian curves developed for each one prediction 

were evaluated using Pearson’s correlation coefficient R and the root mean square error (RMSE). 

RMSE presents information on short-term efficiency, which is a benchmark of the difference in 

predicated values compared to the experimental values. A lower RMSE indicates a more 

accurate evaluation. The Pearson’s correlation coefficient R measures the variance that is 

interpreted by the model, which is the reduction of variance when using the model. R values 

ranges from 0 to 1, with the model having the healthiest predictive ability when it is near to 1 

producing little analysis when it is near to 0. These performance metrics are a good measure of 

the overall predictive accuracy.  

Methodology 
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The present section outlines the methodology used to investigate the spread of COVID-19 in a 

state, city, region, or country. As an example, the methodology is presented here step by step, as 

it was conducted and applied in the case of the investigation of the spread of the epidemic in 

China. Given that the outbreak in China preceded the spread of the epidemic to other countries, 

this allows us to apply the proposed algorithm at the beginning of the phenomenon; in the 

intermediate phase, which is usually characterized by a strong dynamic; and at its peak, where 

the phenomenon begins to fade or recede. 

The main principles of the proposed methodology are as follows: 

 In each step, the optimal normal distribution is calculated using the proposed algorithm 

and based on data available at the moment of calculation. 

 The first assessment is made 14 days after the first death record. The period of two weeks 

is considered necessary to reliably characterize the beginning of the phenomenon  

At each step, following the 14-day period from the first death recorded, the optimal data 

simulation curve is calculated with the use of the proposed algorithm. Figure 1 shows the 

optimal curves for the country of China that best simulate the number of deaths for three 

different days (6, 12, and 18 February 2020). 
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Figure 1. Prediction of the best Fit curves of the actual deaths at three different dates of 

prediction (Country of China) 

 

 

 The same procedure is applied on a daily basis. Based on the values of the maximum 

number of deaths and on the time when this maximum is attained, the curve shown in 

Figure 2 is plotted. This figure illustrates how the phenomenon evolves by providing us 

with an estimate of when the phenomenon, including the number of deaths, is expected to 

peak. This information is helps authorities prepare and make informed decisions about 

mitigation and containment measures. 
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Figure 2. Prediction of number of deaths (dashed line), in 2-day time intervals, and peak date of 

deaths (solid line) in China 

 By predicting the optimal curve of Figure 1, we are also provided with information about 

the dynamics of the phenomenon. Specifically, by knowing the parameters of the 

distribution (sigma, mi, and fitting probability), its area can be calculated, which shows 

the total predicted number of deaths. Based on the percentage change in the number of 

deaths as a function of time, the change in the dynamics of the phenomenon is defined 

(Figure 3). This figure strongly demonstrates that the COVID-19 phenomenon is a 

predominantly dynamic phenomenon with clear dynamic characteristics which oscillates 

strongly during its transition to the peak, and then dissipates where the balance of the 

pandemic phenomenon takes place. This diagram is can be used to quantify the 

effectiveness of the control and mitigation measures starting from the first day of 

application, and it provides a temporal prediction of the time period required for the 

dampening of the phenomenon.  
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Figure 3. Prediction of the dynamics of COVID-19 phenomenon for the country of China 

 

 In addition to the producing the above estimates and revealing the dynamic 

characteristics of the phenomenon, the proposed heuristic algorithm also enables reliable 

prediction of the expected number of deaths for the next 10 days (Figure 4). The 

algorithm provides simultaneous estimates for its higher and lower limits. Based on a 

comprehensive study in the six aforementioned locations and the results presented below, 

these limits, as well as the difference between the predicted and actual deaths, were 

confirmed for all locations. 
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Figure 4. Prediction of number of deaths in China, in 2-day intervals, for the next ten days 

starting 12 February 2020. Black dots represent actual data until the day on which the algorithm 

made the prediction. Blue dots represent actual data after the day on which the algorithm made 

the prediction. 

 

Results and Discussion 

In order to predict the course of the COVID-19 epidemic, a new computer software has been 

developed at the Computational Mechanics Laboratory, School of Pedagogical and 

Technological Education, Athens, Greece. Utilizing this software through implementation of the 

heuristic algorithm, the development of the epidemic was investigated in six different 

geographical locations: the states California and New York, the United States as a whole, and 

Iran, Sweden, and the United Kingdom. The investigation was implemented in two stages. In the 

first stage the data as well as the daily mortality rates and results were known. This stage served 

to evaluate the phenomenon, as well as to document the proposed heuristic global algorithm and 
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its methodology. In the second stage, predictions were made for which the results are unknown. 

For all the above-mentioned locations the number of daily deaths was predicted for the 10 

consecutive days, following 13 April 2020. The results are presented in detail for each location 

in the tables and figures in the supplementary materials.    

The main results of our study are the following:  

 In the first phase, where data and results of daily mortality rates were known, the 

proposed algorithm was confirmed in all the cases where it was implemented. 

 The proposed methodology provides an upper and a lower estimation limit, which was 

confirmed for the total cases in the first stage.  

 For the secondary stage, and specifically for the time period 13 - 22 April, the predictions 

are in Table 1. For each setting, the predictions for the next ten days as well as the 

predicted time and the number of deaths at the predicted time are presented in the Figures 

in the supplementary materials. In Figure 5, the predictions for the state of California are 

presented (blue dots). In this figure, the number of deaths, in 2-day intervals, for the next 

ten days is presented, starting 13 April 2020. Black line shows the course of the 

prediction. Black dots represent actual data until the day in which the algorithm made the 

prediction, while blue dots represent the predicted data after the day in which the 

algorithm made the prediction. These were performed on 12 April, the same day of the 

current study. Please note that the upper and lower estimation limit is in our predictions 

much smaller than the respective limits provided by IHME as evident in Table 1. We 

have already uploaded our predictions (April 16, 2020) as a preprint in MedRxiv [9] 

before the end of the forecasting (April 22). It is of utmost importance that all our 
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predictions were confirmed after the end of predictions: all graphs followed the expected 

course (black line) as documented in each figure presenting the values for each country.    

 

 
Figure 5. Prediction of number of deaths, in 2-day intervals, for the next ten days starting 13 April 2020, for the state 

of California. Black dots represent actual data until the day on which the algorithm made the prediction. Blue dots 

represent actual data after the day on which the algorithm made the prediction. This figure (as well as all the similar 

Figures presented in supplementary materials) and the predictions have been uploaded (April 16, 2020) by the 

authors as a preprint in MedRxiv [9] 
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Table 1 Predicted daily deaths, in the time interval 13-22 April 2020, obtained using our model 

compared, with corresponding predictions by the Institute for Health Metrics and Evaluation 

(IHME). Predicted number of deaths (estimated) refers to the number reported before 13 April 

13. Actual (reported) refers to number of deaths reported after the time interval, after 22 April. 

Country/Di

strict Model 
Prediction April 

13 14 15 16 17 18 19 20 21 22 

California 

Proposed 

Algorithm 

Upper Limit 77 77 87 87 98 98 108 108 118 118 

Prediction 60 60 62 62 63 63 62 62 60 60 

Lower Limit 35 35 31 31 27 27 22 22 17 17 

IHME 

Upper Limit 167 166 177 185 186 192 192 179 154 137 

Prediction 45 46 48 50 51 51 52 51 50 48 

Lower Limit 2 1 2 3 5 7 8 10 11 13 

Actual (reported) Prediction 54 54 66 66 91 91 68 68 73 73 

Iran 

Proposed 

Algorithm 

Upper Limit 98 86 86 74 74 63 63 52 52  

Prediction 98 86 86 74 74 63 63 52 52  

Lower Limit 76 63 63 51 51 41 41 32 32  

IHME Prediction NA NA NA NA NA NA NA NA NA NA 

Actual (reported) Prediction 105 93 93 81 81 89 89 91 91 105 

New York 

Proposed 

Algorithm 

Upper Limit 775 704 704 600 600 479 479 359 359  

Prediction 770 699 699 596 596 476 476 357 357  

Lower Limit 599 488 488 366 366 254 254 162 162  

IHME 

Upper Limit 2163 1952 1742 1518 1292 1079 886 716 575 453 

Prediction 743 651 595 536 474 412 353 297 246 200 

Lower Limit 193 142 142 140 135 130 118 104 91 77 

Actual (reported) Prediction 715 765 765 618 618 524 524 480 480  

Sweden 

Proposed 
Algorithm 

Upper Limit 197 197 239 239 285 285 335 335 388 388 

Prediction 52 52 40 40 28 28 18 18 11 11 

Lower Limit 4 4 2 2 1 1 0 0 0 0 

IHME 

Upper Limit 420 422 425 428 432 446 498 520 554 613 

Prediction 150 142 150 159 169 179 191 204 218 234 

Lower Limit 15 40 46 50 55 61 67 72 76 82 

Actual (reported) Prediction 16 16 142 142 99 99 70 70 113 113 

UK Proposed 

Algorithm 

Upper Limit 1180 1180 1227 1227 1227 1180 1180 1180 1051 1051 

Prediction 967 967 924 924 924 808 808 808 646 646 

Lower Limit 734 734 627 627 627 482 482 482 334 334 
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IHME 

Upper Limit 4255 4115 3953 3706 3431 3118 2797 2484 2167 1868 

Prediction 1156 1079 1067 1040 1002 952 895 830 760 687 

Lower Limit 247 177 191 201 207 209 210 213 208 200 

Actual (reported) Prediction 752 752 865 865 865 624 624 624   

USA 

Proposed 

Algorithm 

Upper Limit 2965 2965 2965 3434 3434 3434 3813 3813 3813 4061 

Prediction 2755 2755 2755 3097 3097 3097 3321 3321 3321 3400 

Lower Limit 1907 1907 1907 1844 1844 1844 1667 1667 1667 1409 

IHME 

Upper Limit 7084 6771 6564 6278 5960 5631 5312 4989 4684 4386 

Prediction 2150 1953 1928 1888 1838 1779 1715 1648 1582 1518 

Lower Limit 464 292 307 326 340 350 357 362 365 369 

Actual (reported) Prediction 2080 2080 2080 1993 1993 1993 1952 1952 1952  

 

NA, data not available 
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 The diagrams that present the development of the phenomenon provide additional 

information to support the efficacy and efficiency of the restrictive measures, including 

lockdown, implemented by governments to address the pandemic. A typical example is 

the case of China, where the impact of the dynamic diminishes 23 days after the 

implementation of restrictive measures. This is in accordance with other publications, 

where it has been suggested that there is a two- to three-week lag between the 

introduction of interventions and the manifestation of their impact on in hospitalized case 

numbers [10].  

Although so far there are reports available on country-specific models [4, 11] that take into 

consideration the specific features of each country or region, this novel global algorithm is of 

particular importance as it applies to six different locations with singular and distinctive 

characteristics. Iran is one of the most populous countries in Eurasia, and has experienced 

significant infections and death from COVID-19 compared to its nearby neighbors, such as Iraq. 

Sweden is a Nordic country with the world’s eleventh-highest per capita income and a high 

ranking among countries for quality of life; it is also one of the few countries worldwide that has 

not imposed a lockdown or even school closures. The United Kingdom is a sovereign country 

northwest of Europe with a high-income GDP and nationalized healthcare, while the USA, 

located in North America, is the third most populous country in the world and has an unusual 

public-private healthcare system.  

Although both New York and California are densely populated, COVID-related outcomes have 

been enormously different, with California experiencing a milder outbreak and New York 

experiencing a severe outbreak: as of 13 April, California had more than 23,000 confirmed cases 

and about 680 confirmed deaths, while New York State has more than 190,000 confirmed cases 
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and about 9,400 confirmed deaths. This may be attributed to a variety of factors, from socio-

economic factors to divergences in the states’ respective management of the pandemic. Perhaps 

most significant is that California imposed restrictive measures earlier than New York: 

California reported its first death on 4 March and imposed lockdown measures starting on 19 

March, while New York reported its first death on 14 March and imposed lockdown measures 

starting on 23 March. This shows the importance of proactive measures and the significance of 

available accurate predictive models. 

While the states across the USA imposed localized lockdowns, the UK went into full lockdown 

on 23 March and Iran on 19 March. Sweden is one of the few countries that used a different 

strategy and did not mandate strict social distancing measures. Notably, in Figure 3, the effect of 

the applied measures is shown and presents the dynamic nature. Mitigation measures start to 

show effects three weeks after the start of the quarantine measures, and the effect is obvious in 

the relevant graph (Figure 3). The number of deaths slowed down 23 days after the start of 

mitigation interventions. 

Although there are significant differences and unique local transmission dynamics among 

different settings, we managed to develop and apply an algorithm that is able to predict with high 

confidence the outcome of the outbreak in all examined states for the consecutive 10 days. 

Interestingly, previous reports show that good probabilistic calibrations of their forecast models 

was achievable also at short time horizons of one or two weeks [3-5]. Thus, despite the fact that 

every setting has unique internal socioeconomic and political characteristics, as well as differing 

policy responses to the pandemic, as a result of which the impact of the epidemic may not be 

evenly distributed, the global prediction tool that we have developed can be applied to all the 

settings tested. 
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Conclusions 

We applied a novel algorithm for comparatively estimating and predicting the COVID-19 

pandemic trend in 6 locations for up to 10 days, starting at the prediction date. This novel global 

algorithm accurately predicted the outcome of the outbreak in all geographic locations in which 

it was applied, despite differences among the six settings and in their responses to COVID-19. 

The proposed algorithm may provide a useful tool for policymakers in addressing COVID-19-

related preparedness and planning. 
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Figure 1. Prediction of number of deaths (dashed line), in 2-day time intervals, and peak-date of deaths (solid line) 

for the state of California, USA 

 
Figure 2. Prediction of number of deaths, in 2-day intervals, for the next ten days starting April 13, 2020, for the 

state of California, USA. Black dots represent actual data until the day in which the algorithm made the prediction. 

Blue dots represent actual data after the day in which the algorithm made the prediction. 
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Figure 3. Prediction of number of deaths (dashed line), in 2-day time intervals, and peak-date of deaths (solid line) 

for the country of Iran 

 
Figure 4. Prediction of number of deaths, in 2-day intervals, for the next ten days starting April 13, 2020, for the 

country of Iran. Black dots represent actual data until the day in which the algorithm made the prediction. Blue dots 

represent actual data after the day in which the algorithm made the prediction. 
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Figure 5. Prediction of number of deaths (dashed line), in 2-day time intervals, and peak-date of deaths (solid line) 

for the state of New York, USA 

 
Figure 6. Prediction of number of deaths, in 2-day intervals, for the next ten days starting April 13, 2020, for the 

state of New York, USA. Black dots represent actual data until the day in which the algorithm made the prediction. 

Blue dots represent actual data after the day in which the algorithm made the prediction. 
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Figure 7. Prediction of number of deaths (dashed line), in 2-day time intervals, and peak-date of deaths (solid line) 

for the country of Sweden 

 
Figure 8. Prediction of number of deaths, in 2-day intervals, for the next ten days starting April 13, 2020, for the 

country of Sweden. Black dots represent actual data until the day in which the algorithm made the prediction. Blue 

dots represent actual data after the day in which the algorithm made the prediction. 
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Figure 9. Prediction of number of deaths (dashed line), in 3-day time intervals, and peak-date of deaths (solid line) 

for the country of United Kingdom 

 
Figure 10. Prediction of number of deaths, in 3-day intervals, for the next ten days starting April 13, 2020, for the 

country of United Kingdom. Black dots represent actual data until the day in which the algorithm made the 

prediction. Blue dots represent actual data after the day in which the algorithm made the prediction. 
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Figure 11. Prediction of number of deaths (dashed line), in 3-day time intervals, and peak-date of deaths (solid line) 

for the country of USA 

 
Figure 12. Prediction of number of deaths, in 3-day intervals, for the next ten days starting April 13, 2020, for the 

country of USA. Black dots represent actual data until the day in which the algorithm made the prediction. Blue dots 

represent actual data after the day in which the algorithm made the prediction. 
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