Abstract
Background A novel coronavirus (SARS-CoV-2) emerged in Wuhan, China in late 2019 and rapidly spread worldwide. In the absence of effective antiviral drugs and vaccines, well-targeted social distancing measures are essential for mitigating the COVID-19 pandemic, reducing strain on local health systems, and preventing mortality. Here, we provide a quantitative assessment of the efficacy of social distancing to slow COVID-19 transmission and reduce hospital surge, depending on the timing and extent of the measures imposed for a metropolitan region and its health care systems.
Methods and Findings We built a granular mathematical model of COVID-19 transmission that incorporated age-specific and risk-stratified heterogeneity, estimates for the transmission, and severity of COVID-19 using current best evidence. We performed thousands of stochastic simulations of COVID-19 transmission in the Austin-Round Rock Metropolitan Area to project the impact of school closures coupled with social distancing measures that were estimated to reduce non-household contacts by 0%, 25%, 50%, 75% or 90%. We compare early versus late implementation and estimate the number of COVID-19 hospitalizations, ICU patients, ventilator needs and deaths through mid-August, 2020. We queried local emergency services and hospital systems to estimate total hospital bed, ICU, and ventilator capacity for the region. We expected COVID-19 hospital beds and ICU requirements would surpass local capacity by mid-May if no intervention was taken.
Assuming a four-day epidemic doubling time, school closures alone would be expected to reduce peak hospitalizations by only 18% and cumulative deaths by less than 3%. Immediate social distancing measures that reduced non-household contacts by over 75%, such as stay-at-home orders and closing of non-essential businesses, would be required to ensure that COVID-19 cases do not overwhelm local hospital surge capacity. Peak ICU bed demand prior to mid August 2020 would be expected to be reduced from 2,121 (95% CI: 2,018-2,208) with no intervention to 698 (95% CI: 204-1,100) with 75% social distancing and 136 (95% CI: 38-308) with 90% social distancing; current ICU bed capacity was estimated at 680. A two-week delay in implementation of such measures is projected to accelerate a local ICU bed shortage by four weeks.
Conclusions School closures alone hardly impact the epidemic curve. Immediate social distancing measures that reduce non-household contacts by over 75% were required to ensure that COVID-19 cases do not overwhelm local hospital surge capacity. These findings helped inform the Stay Home-Work Safe order enacted by the city of Austin, Texas on March 24, 2020 as a means of mitigating the emerging COVID-19 epidemic.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
We acknowledge the support of NIH grants R01AI151176 and U01GM087719 and CDC contract 75D-301-19-C-05930
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Not applicable