Review Article

Title: Review of Current Evidence of Hydroxychloroquine in Pharmacotherapy of COVID-19

Umesh Devappa Suranagi \$#1, Harmeet Singh Rehan \$#1, Nitesh Goyal *#2

[#]Department of Pharmacology, Lady Hardinge Medical College & associated Hospitals

New Delhi, India

*Corresponding Author Name: Nitesh Goyal

Contact information: Department of Pharmacology, Lady Hardinge Medical College, New Delhi, India 110001

Email ID: drniteshgoyal@gmail.com

Ph-+91-9013964308

¹ Highest Degree = MD

² Highest Degree = MBBS

^{\$} Equal contribution

KEY POINTS

Question: What is the current evidence for use of Hydroxychloroguine in pharmacotherapy of

COVID-19?

Findings: We electronically explored various databases and clinical trial registries and identified

10 publications and 27 clinical trials with active recruitment. The in-vitro study data demonstrates

the viral inhibition by hydroxychloroquine. The clinical studies are weakly designed and

conducted with insufficient reporting and significant limitations. Well designed robust clinical

trials are being conducted all over the world and results of few such robust studies are expected

shortly.

Meaning: Current evidence stands inadequate to support the use of hydroxychloroquine in

pharmacotherapy of COVID-19.

ABSTRACT

Importance: The COVID-19 Pandemic has literally left the world breathless in the chase for

pharmacotherapy. With vaccine and novel drug development in early clinical trials, repurposing

of existing drugs takes the center stage.

Objective: A potential drug discussed in global scientific community is hydroxychloroquine. We

intend to systematically explore, analyze, rate the existing evidence of hydroxychloroquine in the

light of published, unpublished and clinical trial data.

Evidence review: PubMed Ovid MEDLINE, EMBASE, Google scholar databases, pre-proof article

repositories, clinical trial registries were comprehensively searched with focused question of use

of hydroxychloroquine in COVID-19 patients. The literature was systematically explored as per

PRISMA guidelines.

Findings: Total 139 articles were available as of 25th April 2020; of which 10 articles of relevance

were analyzed. Three in-vitro studies were reviewed. Two open label non-randomized trials, two

open label randomized control trials, one follow-up study and two retrospective cohort studies

were systematically analyzed and rated by oxford CEBM and GRADE framework for quality and

strength of evidence. Also 27 clinical trials registered in three clinical trial registries were analyzed

and summarized. Hydroxychloroquine seems to be efficient in inhibiting SARS-CoV-2 in in-vitro

cell lines. However, there is lack of strong evidence from human studies. It was found that overall

quality of available evidence ranges from 'very low' to 'low'.

Conclusions and relevance: The in-vitro cell culture based data of viral inhibition does not suffice

for the use of hydroxychloroquine in the patients with COVID-19. Current literature shows

inadequate, low level evidence in human studies. Scarcity of safety and efficacy data warrants medical communities, health care agencies and governments across the world against the widespread use of hydroxychloroquine in COVID-19 prophylaxis and treatment, until robust evidence becomes available.

Introduction

The ongoing Coronavirus disease 2019 (COVID-19) pandemic has affected most of the countries in the world with unimagined infectious disease morbidity and mortality. As per WHO (as of 25th April, 2020), there has been a total of 2,626,321 confirmed cases and 181,938 deaths due to COVID-19 worldwide. However, no specific drug has been approved for the treatment of COVID-19. Recent updates indicate the vaccine quest is at least a year away. Building on experience from past Ebola and MERS pandemics, various human trials on novel pharmacotherapeutics are in progress.² Drugs such as remdesivir and favipiravir are in exploratory phases of clinical trials.³ More than 20 other drugs such as chloroquine, hydroxychloroquine, lopinavir, ritonavir, human immunoglobulin, arbidol, oseltamivir, methylprednisolone, bevacizumab, interferons and traditional Chinese medicines are aimed at repositioning for COVID-19 treatment.⁴ Forerunners among these are antimalarial drugs chloroquine and hydroxychloroquine, used extensively in treatment of malaria and elsewhere since many decades.^{5,6} These drugs are 4-aminoquinoline derivatives exhibiting wide range of in-vitro activity against viruses. Their antiviral efficacy has been attributed to many different mechanisms. 7 Chloroquine is known to possess considerable broad-spectrum antiviral effects by interfering with the fusion process of viruses by increasing the local pH.8 Other mechanisms include raise in endosomal pH in host cells thereby inhibiting auto-lysosome fusion and disrupting the enzymes needed for the viral replication. 9,10 Hydroxychloroguine (HCQ) is synthesized by N-hydroxyethyl side chain substitution of chloroquine. Although the antimalarial activity of HCQ is equivalent to that of chloroquine, HCQ is preferred over chloroquine owing to its lower ocular toxicity. 11 It is also used in the treatment of rheumatoid arthritis, chronic discoid lupus erythematosus, and systemic lupus erythematosus.

In addition to endosomal pH increase, HCQ is also said to inhibit terminal glycosylation of ACE2 receptor, considered as target of SARS-CoV and SARS-CoV-2 cell entry. The non-glycosylated ACE2 receptor might interact inefficiently with the SARS-CoV-2 spike protein, thus inhibiting the viral entry. These myriad mechanisms of HCQ and its relative lesser toxicity profile as compared to chloroquine make it an attractive candidate in the pursuit of drug repositioning. In this highly demanding scenario of unmet need and steeply increasing morbidity and mortality of COVID-19, many government bodies and expert panels have recommended the use of chloroquine and HCQ for prophylaxis and treatment of COVID-19. The such situation of urgency, there is a need to explore the current literature and critically analyze the existing evidence. We intend to conduct a detailed systematic search analysis of current literature and propose our findings.

Materials and methods

Data sources

A comprehensive literature search was done independently by each author to find the role of HCQ in COVID-19 disease. PubMed Ovid MEDLINE, EMBASE, Google scholar databases were searched for existing literature from 2019 to 25th April, 2020. The clinical trial Registries of the United States (clinicaltrials.gov), Chinese Clinical Trial Registry, WHO International clinical trial registry platform (ICTRP) were searched for ongoing registered studies. For preprint/pre-proof articles, repositories like BioRxiv, MedRxiv and ChemRxiv were searched.

Literature search

Search words included MeSH Terms (hydroxychloroquine OR HCQ) AND (COVID-19 OR Coronavirus OR nCov2 OR SARS-CoV2). We searched for both published and unpublished studies extensively. No language, time, study type and demographic filters were used. The search expansion was done using a snowballing method applied to the authors and references of selected publications. PRISMA guidelines were followed. Article search included abstracts, original research, in-vitro experimental studies, observational studies and controlled/uncontrolled trials. We excluded the articles like news items, magazine pieces, duplicate papers, review articles, editorials and letters to editor, expert opinions, perspectives, consensus statements and articles without the mention of the role of HCQ in COVID-19 or HCQ use in other conditions.

We searched databases of clinical trial registries using the search terms 'Hydroxychloroquine', 'HCQ', 'Plaquenil', 'COVID-19', 'SARS-CoV2', 'novel Corona virus' 'nCoV 2'. After identification and elimination of duplicated appearances, 96 clinical trials were found to be registered. Each database was further scanned and analyzed to remove the non-recruiting, inactive and cancelled trials, finally yielding 27 randomized control trials (RCTs) currently undergoing active recruitment for COVID-19 treatment with HCQ.

Screening, data extraction, data analysis, critical appraisal and evidence rating

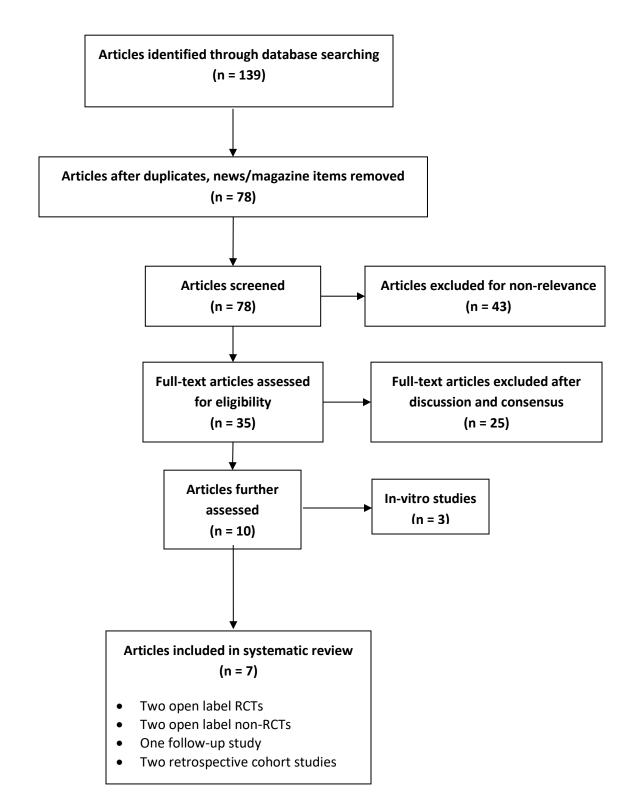
Screening of articles was done independently by investigators according to titles, abstracts, summaries and conclusions. Methodical data extraction was done from selected articles and pertinent portions were identified, tabulated and presented systematically in the form of tables

& summary. Randomized clinical trials with active recruitment were analyzed after collecting publically available information on various clinical trial databases. We used GRADE (Grading of Recommendations, Assessment, Development and Evaluations) framework methodology to rate the certainty of evidence from both published and unpublished clinical studies and Oxford center for evidence based medicine (CEBM) to assess and rate the quality of evidence.

Results

Total 139 articles were identified on initial search of databases. Following screening of titles and abstracts and removal of duplicates, ten articles (three *in-vitro* studies, two open label non-randomized trials, two open label randomized control trials, one follow-up study, two retrospective cohort studies) were selected for further data extraction and analyses. Out of these 10, four clinical studies (one open label randomized control trial, one open label non-randomized trial and two retrospective cohort studies) were from pre-print servers. We also identified 96 clinical trials registered in three clinical trial registry databases. Methodical screening and analysis further yielded 27 RCTs currently undergoing active recruitment.

Figure1: PRISMA flow diagram



Identification

Screening

Eligibility

Included

In vitro studies of Hydroxychloroquine demonstrating anti-coronaviral activity

Yao et al, assessed the pharmacological activity of chloroquine and HCQ using SARS-CoV-2 infected Vero cells. Further as continued part of the study, they simulated physiologically-based pharmacokinetic models (PBPK) on the *in vitro* data obtained. The researchers found HCQ to be more potent than chloroquine to inhibit SARS -CoV-2 *in vitro*. Based on PBPK extrapolation, they recommended a loading dose of 400 mg twice daily of HCQ sulfate given orally, followed by a maintenance dose of 200 mg given twice daily for 4 days.¹⁹

In another correspondence report letter of an *in vitro* study by Liu et al, the investigators used VeroE6 cells and compared the antiviral activity of chloroquine versus HCQ against SARS-CoV-2 to determine different multiplicities of infection (MOIs) by quantification of viral RNA copy numbers. They found out that 50% maximal effective concentration (EC50) for HCQ was significantly higher than chloroquine and HCQ can efficiently inhibit SARS-CoV-2 infection *in vitro*.²⁰

Previously in 2006, French researchers demonstrated that chloroquine and HCQ effectively inhibit both human and feline SARS COV in the infected Vero cells. EC50 for HCQ was significantly higher than chloroquine.²¹ (Table 1)

Table 1: Summary of *in-vitro* studies showing efficacy of hydroxychloroquine against SARS-CoV-2 infected Cell lines

Authors,	Targeted	D	Models used for the	A attitud affa at
country, year	virus	Drugs used	study	Antiviral effect

Yao X et al ¹⁹	SARS-CoV-2	HCQ sulfate	Vero cells from African	50% maximal
China, 2020			green monkey in	effective
			Dulbecco's modified	concentration
		Chloroquine	eagle medium.	(EC50) HCQ
		phosphate	Further supplemented	(EC50=0.72 μM) was
			by Physiologically	found to be more
			based pharmacokinetic	potent than CQ
			models (PBPK)	(EC50=5.47μM) <i>in</i>
			simulation	vitro.
Liu et al ²⁰	SARS-CoV-2	HCQ	African	EC 50 of Chloroquine
China, 2020			green monkey kidney	(2.71, 3.81, 7.14, and
			VeroE6 cells (ATCC-	7.36 μM) was
		Chloroquine	1586) was	significantly lower
			measured by standard	than HCQ (4.51,
			CCK8 assay	4.06, 17.31, and
				12.96 μΜ)
Biot et al, ²¹	Human	HCQ	Vero cells	Chloroquine: EC 50 =
France, 2006	SARS-CoV			6.5 ± 3.2 μM
				HCQ : EC 50 = 34 ± 5
		Chloroquine		μМ
	Feline		Crandell–Reese feline	Chloroquine: EC 50 >
	coronavirus		kidney (CRFK)	0.8 μΜ
			cells	HCQ : EC 50 = 28 ±
				27 μΜ

Clinical studies conducted in COVID-19 patients

In the positive background of successful *in vitro* data and in the situation of an emerging epidemic, the Chinese authorities issued a consensus statement for the use of chloroquine in COVID-19 patients.¹⁴ The earliest data of chloroquine administration in humans came from various parts of China in the form of collective reports were published by Gao et al.²² The authors reported clinical experience data of treating more than 100 patients with chloroquine in various locations. They mentioned that chloroquine reduced the duration of illness and improved the pneumonia and pulmonary image changes in COVID-19 positive patients. The authors also recommended the drug to be included in the COVID-19 Guidelines issued by the National Health Commission of China for the use of drug in larger populations.²³

The first empirical evidence of use of HCQ in humans was obtained by a small RCT conducted by Chen et al²⁴ in 30 adult COVID-19 patients. The treatment group received 400mg HCQ for 5 days, while the standard care was given to control group. The primary outcome was nasopharyngeal swab test results on Day 7. Investigators found that there is no difference between treatment and control group in the number of patients testing negative for COVID-19 on Day 7 (13 v/s 14), the duration of illness did not differ significantly (p= >0.05). There was one drop out and seven (three in treatment group and four in control) adverse events. The authors concluded that COVID-19 has good prognosis and larger sample size with better endpoints is needed to investigate the effects further.²⁴

An open-label, non-randomized clinical trial was conducted by Gautret et al²⁵ in France with 36 patients diagnosed with COVID-19. HCQ in dose of 200mg three times daily was given to 20 patients for 10 days, additionally six patients in this group received azithromycin (500 mg on day

1, 250mg on days 2-5) to prevent bacterial superinfection. The control group received standard care. The primary outcome was detection of SARS-CoV-2 RNA in nasopharyngeal samples. The authors reported that patients in the treatment group significantly differed for SARS-CoV-2 detection than controls. On Day 6 of post initiation, 70% of HCQ treated patients were virologically cured compared to 12.5% in the control group (p= 0.001). They concluded that HCQ treatment is significantly associated with viral load reduction/disappearance in COVID-19 patients and its effect is reinforced by azithromycin.²⁵

A six-day pilot, uncontrolled, non-comparative observational follow-up study was conducted by French investigators to assess the clinical and microbiological effect of a combination of HCQ and azithromycin in 80 COVID-19 patients. The investigators reported that all patients but two (a 86 years old succumbed to illness, a 74 years old needed ICU) showed clinical improvement with the combination therapy. qPCR testing showed a rapid fall of nasopharyngeal viral load- 83% and 93% patients were negative at Day 7, and Day 8 respectively. 97.5% of respiratory samples were negative for virus cultures at Day 5. The researchers urged to evaluate the combination strategy to treat patients in early course and avoid the spread of the disease. ²⁶ (Table 2)

Table 2: Summary of clinical studies with hydroxychloroquine treatment in COVID-19 patients

Authors	Study	Intervention/	Inclusion	Outcomes	Conclusion	Limitations/
country,	design	treatment	criteria			lacunae
year	Sample size					
	(treatment/					
	control)					
Chen J et	Open label		-Age ≥18	At day 7 post-	Prognosis of	-Open label
	Орентавет	400mg of HCQ	Agc 210	At day 7 post	1106110313 01	Орентавет
al., ²⁴	randomized	P.O daily for 5	-Tested	inclusion, 86.7	COVID-19	design,
China	control trial	days	positive	% of HCQ	patients is	-weak
2020			for COVID-19	treated	good. Much	primary
	N=30 (15/15)			patients were	larger sample	endpoint,
	11 30 (13/13)			virologically	size is	-small
				cured as	needed for	sample size,
				compared to	better	-selection
				93.3% in the	assessment	and
				control group		confounding
				(p= >0.05)		bias
Gautret	Open label	200 mg of	-SARS-CoV-2	At day 6 post-	HCQ is	- Weak study
al, ²⁵	non	HCQP.O three	Carriage in	inclusion, 70%	significantly	design,
France	randomized	times a day for	nasopharyngea	of HCQ	associated	-Small
2020	clinical trial	10 days; six	I	treated	with viral	sample size,
	N=36 (20/16)	patients	sample	patients were	load	

		additionally	-Age >12 years	virologically	reduction/dis	-six patients
		received		cured as	appearance	drop out,
		azithromycinP.		compared	in COVID-19	-no long term
		0		12.5% in the	patients and	follow up,
		(500 mg on		control group	effect	-No intention
		day 1, 250 mg		(p= 0.001)	reinforced	to treat
		on days 2–5)			azithromycin	analysis,
						-No clinical
						endpoint.
Gautret	Pilot	200mg of HCQ	-PCR RNA	Nasopharynge	Beneficial	-Non
et al, ²⁶	uncontrolled	P.O TDS for 10	Tested positive	al viral load	evidence of	comparative
France;	non	days +	COVID-19	83% negative	HCQ with	observational
2020	comparative	Azithromycin	patients	at Day7, and	azithromycin	study
Travel	Observation	P.O 500mg day		93% at Day 8,	in COVID-19	- only mild
Medicine	al follow-up	1 followed by	-mild illness	Viral culture	patients,	illness
and	study	250mg/day		negativity	early	included
Infectiou		next 4 days		97.5% at Day5	reduction in	-No mention
S	N=80				contagiousne	of safety
Diseases	IN-OU				SS	profile

Unpublished studies from preprint repositories

We searched preprint servers for pre-proof, unpublished, approval awaited studies and articles. Since these studies are yet to be peer-reviewed we have briefly summarized their findings along with the limitations and lacunae. (Table 3)

Table 3: Summary of unpublished studies reporting the use of hydroxychloroquine in treatment of COVID-19 patients

Authors	Study	Intervention/	Inclusion	Outcomes	Conclusion	Limitations/
country,	design	treatment	criteria			lacunae
year,	Sample size					
Reposit	(treatment/					
ory/Jour	control)					
nal						
Chen Z et	Randomized	Standard care	-PCR RNA	Time taken for	Use of HCQ	-Small
al.,	control trial	+ HCQ P.O	Tested	clinical	could	sample size -
China	N=62	400mg/day for	positive	recovery, the	significantly	selection bias
2020	14-02	5 days	for COVID-	body	shorten TTCR	(only mild
			19,	temperature	and promote	illness
MedRxiv			with	recovery time	the absorption	included)
			SaO2/SPO2	and the cough	of pneumonia.	-confounding
			ratio > 93%	remission time		bias
			or	were		

			PaO2/FIO2	significantly		-Safety
			ratio > 300	shortened in		profile not
				the HCQ		detailed
			-mild illness	treatment		
				group		
Molina	Prospective	600mg/day of	PCR RNA	Nasopharynge	No evidence of	-Weak
et al.,	uncontrolled	HCQ for 10	Tested	al swabs in	a strong	design,
France;	single arm	days +	positive	8/10 patients	antiviral	-Small
2020	study	Azithromycin	COVID-19	were still	activity or	sample size
M´edeci	N= 11	500mg day 1	patients with	positive for	clinical benefit	-weak
ne et		followed by	severe illness	SARS-CoV2	of the	endpoints
Maladie		250mg/day	and co-	RNA at days 5	combination of	-selection
s		next 4 days	morbidities	to 6 after	HCQ and	bias
Infectie				treatment	azithromycin in	-brief report,
uses.				initiation	severe ill	-no mention
uses.					COVID-19	of safety
					patients	profile.
Chorin et	Retrospectiv	Hydroxychloro	Patients with	30% of	QTc prolonged	Retrospectiv
al.,	е	quine +	positive	patients QTc	maximally	e study
USA	observationa	Azithromycin	SARS-CoV-2	increased by	from baseline	-Small
2020	l cohort	(to observe the	disease	> 40ms. In	between days	sample size
	safety study	change in QT		11% of	3 and 4	Brief report
MedRxiv	N= 84	interval)		patients QTc	representing	-Inclusion/
					high risk group	exclusion

				increased to	for	criteria not
				>500 ms,	arrhythmias	mentioned
Magagno	Retrospectiv	Hydroxychloro	Confirmed		No evidence	Retrospectiv
	-					
li et al.,	е	quine alone	SARS-CoV-2		that use of	e study
USA	observationa	(HCQ) vs.	infection		HCQ alone or	-selection
2020	l cohort	Hydroxychloro			HCQ/AZ	bias (all
	study	quine +			reduced the	patients
MedRxiv	N= 368	Azithromycin			risk of	above 65 yrs)
		along with			mechanical	-confounding
		standard care			ventilation in	bias
		(HCQ+ AZ)			patients	
					hospitalized	
					with Covid-19.	
					HCQ alone had	
					increased	
					association of	
					overall	
					mortality.	

Assessment of methodological quality and rating of evidence generated by clinical studies

We used GRADE framework approach (Figure 2) to assess the methodological quality of published and unpublished clinical studies of HCQ in COVID-19. The Oxford center for evidence based medicine (CEBM) levels of evidence was used to assess and rate the quality of evidence. Individual outcomes, overall outcome and clinical relevance were applied to rate the strength and quality of evidence. (Table 4)

Figure 2: Approach to rating of quality of evidence using GRADE methodology

STEP 1 – Initial level of Confidence rating				
Study design	Initial confidence			
RCT	High Confidence			
Other type (non RCT,	Low Confidence			
observational)				

STEP 2 – Lowering or Raising Confidence					
Reasons for cons	sidering the change				
Lower if	Lower if Higher if				
Risk of bias	Large effect				
Inconsistency	Dose Response				
Indirectness					
Imprecision					
Publication bias					

STEP 3- Final Level of Confidence Rating
Confidence in estimate of effect across
considerations
HIGH
++++
LOW
+++
LOW
++
VERY LOW
+

Table 4: Summary of assessment of quality and strength of evidence of clinical studies

Study	Study	Risk of	Inconsistency	Indirectness	Imprecision	Level of Evidence
	design	Bias				quality/strength
						rating
Chen J	RCT	Serious	Not serious	Not serious	Very serious	CEBM level: 2b
et al. ²⁴						GRADE level: Very Low (+)
Gautret	Non RCT	Very	Serious	Serious	Serious	CEBM level: 2b
et al. ²⁵		serious				GRADE level: Very Low (+)
Gautret	Observatio	Very	serious	Serious	Serious	CEBM level: 2b
et al. ²⁶	nal study	serious				GRADE level: Very Low (+)
Chen Z	RCT	Serious	Not serious	Serious	Not serious	CEBM level: 2b
et al.						GRADE level: Low (++)
(pre-						
print)						
Molina	Non RCT	Very	Not serious	Serious	Serious	CEBM level: 3b
et al.		serious				GRADE level: Very Low (+)
(pre-						
print)						

Chorin	Observatio	Very	Very serious	Not serious	Serious	CEBM level: 3b
et al.	nal study	serious				GRADE level: Very Low (+)
(pre-						
print)						
Magagn	Observatio	Very	Not serious	Not serious	Serious	CEBM level: 3b
oli et al.,	nal study	serious				GRADE level: Very Low (+)
(pre-						very Low (1)
print)						

Summary of Ongoing Clinical trial data from clinical trial registry databases

Many of the ongoing RCTs conducted are studying the effect of HCQ compared to placebo (NCT04342221, NCT04333654, NCT04332991, NCT04331834), few of the RCTs have parallel design arms of HCQ and azithromycin (NCT04341727, NCT04341207, NCT04334382). Some RCTs have robust trial designs with quadruple masking and strong endpoints (NCT04333654, NCT04332991, NCT04331834). Few RCTs are in advance phases of clinical trials (NCT04316377, NCT04341493) and some studies have large sample size to measure the effect with higher strength of confidence (NCT04328012, NCT04328467). There are studies which are considering the safety endpoints in the main outcome measures (ChiCTR2000029868). Some RCTs are also testing antiretroviral drugs like lopinavir/ritonavir, emtricitabine/tenofovir along with HCQ arm (NCT04328012, NCT04334928). Other studies are interested in tocilizumab (NCT04332094) and

umefenovir/arbidol (ChiCTR2000029803) along with HCQ. Few of the studies are being conducted in severely ill patients (NCT04325893, ChiCTR2000029898) and some in mild infections of COVID-19 (NCT04307693, ChiCTR2000029899). Most of the studies are registered to be conducted in United States and China, others being conducted in Spain (NCT04331834, NCT04332094), Norway (NCT04316377), France (NCT04325893, NCT04341207), Germany (NCT04342221), Denmark (NCT04322396), Brazil (NCT04322123, NCT04321278), Mexico (NCT04341493) and Republic of Korea (NCT04307693). Few earlier studies registered in China (in Feb 2020) are nearing their completion in April end or early May 2020, their results can be expected in near future (ChiCTR2000029898, ChiCTR2000029899, ChiCTR2000029992). Additional details regarding the ongoing trials can be obtained from Supplementary Table 1.

In Europe, the Discovery project (NCT04315948) study has commenced in late march 2020 and with recruitment of 3100 patients. The four treatments set to be evaluated in the discovery project as per WHO recommendations are Remdesivir, Lopinavir/ Ritonavir, IFN β -1a, Hydroxychloroquine/Chloroquine. The first set of results is expected to be available in 3 to 4 weeks of time. The estimated study completion date has been set in March 2023.²⁷

Discussion

As on 25th April 2020, COVID-19 pandemic has caused nearly two and half million infections and more than 180,000 deaths growing up in alarming rate. Specific pharmacotherapy is the highest need of the world. Hydroxycholoroquine with relatively better safety profile than choloroquine and possible better antiviral efficacy¹⁹ offers a compelling hope. We systematically searched various databases and clinical trial registries to evaluate the evidence.

During the previous outbreak of SARS, an *in vitro* study demonstrated the anti-corona viral effect of HCQ and choloroquine.²¹ More recently Chinese researchers conducted in-vitro studies in cell lines and demonstrated the potential antiviral activity of HCQ against SARS-CoV2 as compared to chloroquine. 19,20 It is relevant to note that these studies were the basis of initial opinions and general consensus statements given by various panels across the world during the early stages of the pandemic. We found out that there is scarcity of well conducted and adequately reported human studies of HCQ use in COVID-19. This is in agreement with the other authors with similar findings of lack of literature in this regard.²⁸⁻³¹ Literature also lacks studies conducted in healthcare workers for either prophylaxis or treatment. Gao et al reported more than 100 patients with COVID-19 pneumonia showed clinical improvement and changes in image findings on chloroquine administration.²² It is pertinent to note that this letter was the brief report of ongoing many trials in various locations in China, neither it mentioned any specific data regarding interventions, study design, study population and outcome measures, nor any adverse events were discussed. Chen et al in a RCT involving 30 COVID-19 patients did not find any significant difference between treatment and control group in both nasopharyngeal swab negativity and duration of illness.²⁴ This study was an open label trial with small sample size and had high risk of confounding and selection bias, the authors agreed that primary end point was weak and more robust end points with larger sample size is required to establish the effects.

Gautret et al²⁵ in a non-randomized clinical trial in 36 COVID-19 patients, reported viral load reduction by HCQ and its reinforcement by azithromycin. This study had major limitations in the form of small sample size, absence of randomization and masking, lack of intention to treat analysis and long term follow up, there was no clinical endpoint as outcome measure. A follow

up study by Gautret et al in 80 COVID-19 patients reported 97.5% of respiratory samples were negative for virus cultures at Day 5. This study too involved only mild illness patients and did not report adverse effect profile and being an uncontrolled observational study, the strength of evidence tends to be low.²⁶

We assessed the methodological quality and certainty of evidence of both published and unpublished clinical studies in existing literature and found that overall quality of available evidence ranges from 'very low' to 'low'; the Oxford CEBM rating used showed the quality of studies to be mostly at 3b level and couple studies at 2b level. (Table 4)

We also searched, identified and analyzed clinical trial databases to explore the ongoing active clinical trials (Supplementary Table 1) and found out relevant 27 clinical trials. Few trials among these are in advanced phases. Earlier registered Chinese clinical trials are expected to report the results in near future and robust designed RCTs elsewhere in the world are expected to produce their interim findings shortly henceforth.

It is appropriate to note that none of the available studies of HCQ in COVID-19 have emphasized on the adverse effects and toxicity profile of the drugs in treated patients. Even though HCQ has relatively better safety profile than chloroquine, owing to its prolonged pharmacokinetics (537 hours half-life) and gradual elimination, HCQ has potential to cause various adverse events viz. gastrointestinal upset,³² retinal toxicity,³³ fulminant hepatic failure,³⁴ severe cutaneous adverse reactions.³⁵ An important adverse effect of HCQ is cardiac conduction defects and ventricular arrhythmias. QT prolongation and arrhythmias can be precipitated by concomitant use of azithromycin.³⁶ Small but absolute risk of cardiovascular death is seen to be associated significantly with azithromycin as compared to fluoroquinolones.³⁷ Overdose or poisoning of HCQ

is difficult to treat, caution is warranted in patients with hepatic and renal dysfunction, and regular ECG monitoring is advised in patients with cardiovascular diseases and in electrolyte imbalances.³⁸ Irrational use in general population without credible evidence may pose greater risk than benefit.

To best of our knowledge, this systematic review is the most comprehensive exploration and analysis of existing literature in this topic till date. Our systematic review has limitations in its rigor due to the inadequate, inconsistent data and heterogeneity of studies available. The rapidly expanding knowledge base of COVID-19 poses the possibility that some studies remain uncaptured. However, we have tried our best to mitigate this by allowing broad, flexible search terms and by including many databases and preprint repositories, while remaining focused on the research question. In this background, we believe that expert opinions and clinical consensus statements given by various international authorities for the use of HCQ either as prophylaxis to high risk individuals ¹⁵ and healthcare professionals ¹⁶ or as emergency treatment of COVID-19 patients ^{17,18} lack strong evidence base.

Conclusion

The in-vitro cell culture based data of viral inhibition does not suffice for the use of hydroxychloroquine in the patients with COVID-19. Current literature shows scant and low level evidence in clinical studies. At this stage it is reasonable to suggest against the use hydroxychloroquine as prophylaxis both in general population as well as health care workers. Considering the toxicity profile, chances of overdoses and poisoning can pose serious health threats if hydroxychloroquine is used widely. Ongoing well designed clinical trials are expected

to provide explicit answer on safety and efficacy in near future. It is warranted against the widespread use of hydroxychloroquine in COVID-19 until robust evidence becomes available.

References

- 1. WHO COVID-19 situation report 95. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200424-sitrep-95-covid-19.pdf?sfvrsn=e8065831 4
- 2. Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug DiscovTher. 2020;14(1):58-60.
- 3. Lu CC, Chen MY, Chang YL. Potential therapeutic agents against COVID-19: What we know so far. J Chin Med Assoc. 2020 Apr 1. doi: 10.1097/JCMA.000000000000318. [Epub ahead of print]
- 4. Rosa SGV, Santos WC. Clinical trials on drug repositioning for COVID 19 treatment.

 RevPanamSaludPublica. 2020 Mar 20;44:e40.
- FDA Approved Drug Products: chloroquine phosphate Oral Tablets.
 https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/083082s050lbl.pdf.
- FDA Approved Drug Products: Hydroxychloroquine Oral Tablets.
 https://www.accessdata.fda.gov/drugsatfda docs/label/2019/009768Orig1s051lbl.pdf.
- 7. Ferner RE, Aronson JK. Chloroquine and hydroxychloroquine in covid-19. BMJ. 2020 Apr 8;369:m1432.

- 8. Gupta N, Agrawal S, Ish P. Chloroquine in COVID-19: the evidence. Monaldi Arch Chest Dis. 2020 Mar 31;90(1).
- 9. Salata C, Calistri A, Parolin C, Baritussio A, Palù G. Antiviral activity of cationic amphiphilic drugs. Expert Rev Anti Infect Ther2017;15:483-92.
- 10. Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19?. Int J Antimicrob Agents. 2020 Mar 11;:105938. doi: 10.1016/j.ijantimicag.2020.105938. [Epub ahead of print] PubMed PMID: 32171740.
- 11. Tan YW, Yam WK, Sun J, Chu JJH. An evaluation of chloroquine as a broad-acting antiviral against hand, foot and mouth disease. Antiviral Res 2018;149:143–9.
- 12. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) *in vitro*. Cell Res 2020;30:269–71.Yao X et al., 2020.
- 13. Zhou D, Dai SM, Tong Q. COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J AntimicrobChemother. 2020 Mar 20;. doi: 10.1093/jac/dkaa114. [Epub ahead of print] PubMed PMID: 32196083.
- 14. ZhonghuaJie He Hu Xi ZaZhi. [Expert consensus on chloroquine phosphate for the treatment of novel coronavirus pneumonia]. 2020 Mar 12;43(3):185-188. doi: 10.3760/cma.j.issn.1001-0939.2020.03.009.
- 15. FDA: Emergency Use Authorization of Medical Products and Related Authorities. https://www.fda.gov/media/97321/download

- 16. Indian Council for Medical Research. Recommendation for empiric use of hydroxychloroquine for prophylaxis of SARS-CoV-2 infection. https://icmr.nic.in/sites/default/files/upload_documents/HCQ_Recommendation_22March final MM V2.pdf. Accessed 3 April 2020
- 17. FDA: Emergency Use Authorization Information. https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-framework/emergency-use-authorization
- 18. Lenzer J. Covid-19: US gives emergency approval to hydroxychloroquine despite lack of evidence. BMJ 2020;369:m1335. 10.1136/bmj.m1335 32238355.
- 19. Yao X, Ye F, Zhang M, et al. *In vitro* antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndromecoronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020. doi:10.1093/cid/ciaa237. [Epub ahead of print: 9 Mar 2020]
- 20. Liu, J., Cao, R., Xu, M. et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov 6, 16 (2020). https://doi.org/10.1038/s41421-020-0156-0.
- 21. Biot C, Daher W, Chavain N, et al. Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J Med Chem. 2006. 49(9): 2845-9.

- 22. Gao J, Tian Z, Yang X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 2020; 14(1): 72–. DOI: https://doi.org/10.5582/ bst.2020.01047.
- 23. Chinese Clinical Guidance for COVID-19 Pneumonia Diagnosis and Treatment (7th edition)

 [Internet]. China National Health Commision; 2020. Available from:

 http://kjfy.meetingchina.org/msite/news/show/cn/3337.html#
- 24. Chen J, Liu D, Liu L, et al. A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19). Journal of ZheJiang University (Medical Sciences) 2020; 49(1).
- 25. Gautret P, Lagier J-C, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 105949: 105949. DOI: https://doi.org/10.1016/j.ijantimicag.2020.105949.
- 26. Gautret P, Lagier JC, Parola P, et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study. Travel Med Infect Dis. 2020;101663. doi:10.1016/j.tmaid.2020.101663[Epub ahead of print].
- 27. Vanden Eynde JJ1. COVID-19: A Brief Overview of the Discovery Clinical Trial. Pharmaceuticals (Basel). 2020 Apr 10;13(4). pii: E65. doi: 10.3390/ph13040065.

- 28. Pacheco RL, Riera R. Hydroxychloroquine and chloroquine for COVID-19 infection. Rapid systematic review. J ÉvidBasedHealthc. 2020;2(1):xx-xx. doi: 10.17267/2675-021Xevidence. v2i1.2843.
- 29. Singh AK, Singh A, Shaikh A, Singh R, Misra A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes MetabSyndr. 2020;14(3):241–246. doi:10.1016/j.dsx.2020.03.011
- 30. Ferner RE, Aronson JK. Choloroquine and Hydroxychloroquine in COVID-19. BMJ 2020;369:m1432. doi: 10.1136/bmj.m1432.
- 31. Sinha N, Balayla G. Hydroxychloroquine and covid-19. Postgrad Med J. 2020. doi:10.1136/postgradmedj-2020-137785 [Epub ahead of print, 2020 Apr 15].
- 32. Srinivasa A, Tosounidou S, Gordon C. Increased incidence of gastrointestinal side effects in patients taking hydroxychloroquine: a brand-related issue? J Rheumatol 2017; 44(3):398.
- 33. Mavrikakis M, Papazoglou S, Sfikakis PP, et al. Retinal toxicity in long term hydroxychloroquine treatment. Ann Rheum Dis 1996; 55(3): 187–189.
- 34. Makin AJ, Wendon J, Fitt S, Portmann BC, Williams R. Fulminant hepatic failure secondary to hydroxychloroquine. Gut 1994;35:569-70.
- 35. Murphy M, Carmichael AJ. Fatal toxic epidermal necrolysis associated with hydroxychloroquine. ClinExpDermatol2001;26:457-8.

- 36. Chen CY1, Wang FL, Lin CC. Chronic hydroxychloroquine use associated with QT prolongation and refractory ventricular arrhythmia. Clin Toxicol (Phila). 2006;44(2):173-5.
- 37. Ray WA, Murray KT, Hall K, Arbogast PG, Stein CM. Azithromycin and risk of cardiovascular death. N Engl J Med 2012; 366:1881-18.
- 38. Bauman JL1, Tisdale JE2. Chloroquine and Hydroxychloroquine in the Era of SARS CoV2: Caution on Their Cardiac Toxicity. Pharmacotherapy. 2020 Apr 13. doi: 10.1002/phar.2387.

Supplementary table 1 Ongoing Clinical trial data from clinical trial registry databases

Trial Reg SI. Title Intervention Comparator Study **Populatio** Place/ Expecte Main number outcome(s) d Design Country no Timeline 01 Hydroxychloroquin NCT043422 Hydroxychloroqui Placebo Phase 3 Effect of N= 220 Germany Starte for COVID-19 ne Sulfate 21 RCT, HCQ on in Mar 29, 18 Yrs to 2020 vivo viral Study quadruple 99 Yrs masking clearance (Adult, End-Older Mar Adult) All 2021 sex NCT043417 02 Hydroxychloroqui N= 500 USA Open Hours to Start-27 ne Sulfate label RCT, recovery, Apr 4, Hydroxychloroquin 18 Yrs parallel Time fever 2020 e, Azithromycin in (Adult, design resolution the Treatment of Older End- Apr Azithromycin SARS CoV-2 Adult) All 1 2021 Infection (WU352) sex Chloroquine sulfate

03	Hydroxychloroquin e vs Nitazoxanide in Patients With COVID-19 Study	NCT043414 93	Nitazoxanide 500 mg Hydroxychloroqui ne	-	Phase 4 RCT, single masking, parallel design	Mechanical ventilation requiremen t	N= 86 5 Yrs and older (child Adult, Older Adult) All sex	Mexico	Start- Apr 6, 2020 End- Aug 30, 2020
04	Epidemiology of SARS-CoV-2 and Mortality to Covid19 Disease in French Cancer Patients Study	NCT043412 07	Hydroxychloroqui ne Azithromycin	-	Phase 2 , non randomis ed Open label trial	Prevalence and the 3- months incidence of SARS-CoV-2 in cancer patients	N= 1000 18 Yrs and older(Adu lt, Older Adult) Both sex	France	Start- Apr 3, 2020 End- Apr2022
05	Hydroxychloroquin e vs. Azithromycin for Outpatients in Utah With COVID- 19 Study	NCT043343 82	Hydroxychloroqui ne Azithromycin	-	Phase 3 Open label, parallel design RCT	Hospitalizati on within 14 days of enrolment, Duration of COVID-19- attributable symptoms	N= 1550 45 Yrs and older(Adu lt, Older Adult) All sex	USA	Start- Apr 2, 2020 End- Dec 31 2021

06	Hydroxychloroquin	NCT043336	Hydroxychloroqui	Placebo	Phase 1	Change	N= 210	USA	Start-
	e in Outpatient Adults With COVID- 19 Study	54	ne SAR321068		parallel design, quadruple masking	from baseline to Day 3 in nasopharyn geal SARS- CoV-2 viral load	18 Yrs and older(Adu lt, Older Adult) All sex		Mar 31, 2020 End- May 2020
07	Outcomes Related to COVID-19 Treated With Hydroxychloroquin e Among In- patients With Symptomatic Disease Study	NCT043329 91	Hydroxychloroqui ne	Placebo	Phase 3 RCT, parallel design, quadruple masking	COVID Ordinal Outcomes Scale on Day 15, all-location, all-cause mortality assessed on day 15	N= 510 18 Yrs and older(Adu It, Older Adult) All sex	USA	Start- Apr, 2020 End- Apr 2021

08	Clinical Trial of Combined Use of Hydroxychloroquin e, Azithromycin, and Tocilizumab for the Treatment of COVID-19 Study	NCT043320 94	Tocilizumab Hydroxychloroqui ne Azithromycin	-	Phase 2Open label, parallel design RCT	In-hospital mortality Need for mechanical ventilation in ICU	N= 276 18 Yrs and older(Adu lt, Older Adult) All sex	Spain	Start- Apr, 2020 End- Sep 2020
09	Pre-Exposure Prophylaxis With Hydroxychloroquin e for HighRisk Healthcare Workers During the COVID-19 Pandemic Study	NCT043318 34	Hydroxychloroqui ne	Placebo	Phase 3 RCT, parallel design, quadruple masking	Confirmed cases of a COVID-19, SARS-CoV-2 seroconvers ion	N= 440 18 Yrs and older(Adu lt, Older Adult) All sex	Spain	Start- Apr 3, 2020 End-Oct 3, 2020
10	Hydroxychloroquin e vs. Azithromycin for Hospitalized Patients With Suspected or Confirmed COVID- 19 Study	NCT043298 32	Hydroxychloroqui ne Azithromycin	-	Phase 2 open label, parallel design RCT	COVID Ordinal Outcomes Scale at 14 days Hospital- free days at 28 days	N= 300 18 Yrs and older(Adu It, Older Adult All sex	USA	Start- Mar 30, 2020 End- Dec 31, 2020

11	Pre-exposure Prophylaxis for SARS-Coronavirus-2	NCT043284 67	Hydroxychloroqui ne	Placebo	Phase 3 RCT, parallel design, quadruple masking	COVID-19- free survival Incidence of confirmed SARS-CoV-2 detection	N= 3500 18 Yrs and older(Adu It, Older Adult All sex	USA	Start- Apr 2020 End- Aug 2020
12	COVID MED Trial - Comparison Of Therapeutics for Hospitalized Patients Infected With SARSCoV-2	NCT043280 12	Lopinavir/ ritonavir Hydroxychloroqui neSulfate Losartan	Placebo	Phase 2 Phase 3 RCT, parallel design, quadruple masking	National Institute of Allergy and Infectious Diseases COVID-19 Ordinal Severity Scale (NCOSS)	N= 4000 18 Yrs and older(Adu It, Older Adult All sex	USA	Start- Apr 6, 2020 End-Jan 1, 2021

13	Hydroxychloroquin	NCT043258	Hydroxychloroqui	Placebo	Phase 3	Number of	N= 1300	France	Start-
13	Hydroxychloroquin e Versus Placebo in COVID-19 Patients at Risk for Severe Disease	NCT043258 93	Hydroxychloroqui ne	Placebo	Phase 3 RCT, parallel design, doublema sking	Number of death from any cause, or the need for intubation and mechanical ventilation during the 14 days following	N= 1300 18 Yrs and older(Adu lt, Older Adult All sex	France	Start- Apr 2020 End- Sep 2020
14	Proactive Prophylaxis With Azithromycin and Chloroquine in Hospitalized Patients With COVID-19	NCT043223 96	Azithromycin Hydroxychloroqui ne	Placebo	Phase 2 RCT, parallel design, quadruple masking	inclusion and start of treatment Number of days alive and discharged from hospital within 14 days	N= 226 Child, Adult, Older Adult All sex	Denmark	Start- Apr 2020 End-Oct 2020

15	Safety and Efficacy of Hydroxychloroquin e Associated With Azythromycin in SARSCov-2 Virus	NCT043221 23	Hydroxychloroqui ne Oral Product Hydroxychloroqui ne + azithromycin	-	Phase 3 open label RCT, parallel design	Evaluation of the clinical status Ordinal scale in 7 days	N= 630 18 Yrs and older(Adu It, Older Adult	Brazil	Start- Apr 6, 2020 End- Aug 2020
16	Safety and Efficacy of Hydroxychloroquin e Associated With Azithromycin in SARSCoV2 Virus (Coalition Covid-19 Brasil II)	NCT043212 78	Hydroxychloroqui ne + azithromycin Hydroxychloroqui ne	-	Phase 3 open label RCT, parallel design	Evaluation of the clinical status All-cause mortality	All sex N= 440 18 Yrs and older(Adu lt, Older Adult All sex	Brazil	Start- Mar 28 , 2020 End- Aug 30, 2020
17	Norwegian Coronavirus Disease 2019	NCT043163 77	Hydroxychloroqui nesulfate		Phase 4 open label RCT, parallel design	Rate of decline in SARSCoV-2 viral load	N= 202 18 Yrs and older(Adu lt, Older Adult All sex	Norway	Start- Mar 25 , 2020 End- Apr 1, 2021

18	Post-exposure Prophylaxis / Preemptive Therapy for SARSCoronavirus-2	NCT043086 68	Hydroxychloroqui ne	Placebo	Phase 3 RCT, parallel design, quadruple masking	Incidence of COVID19 Disease among asymptoma tic at trial entry	N= 3000 18 Yrs and older(Adu It, Older Adult All sex	USA	Start- Mar 17 , 2020 End- Apr 21, 2021
19	Comparison of Lopinavir/ Ritonavir or Hydroxychloroquin e in Patients With Mild Coronavirus Disease (COVID-19)	NCT043076 93	Lopinavir/ ritonavir Hydroxychloroqui neSulfate	-	Phase 2 open label RCT, parallel design	Viral load Viral load change Time to clinical improveme nt (TTCI)	N= 150 16 to 99 Yrs (Adult, Older Adult All sex	Republic of Korea	Start- Mar, 2020 End- May, 2021
20	Randomized Clinical Trial for the Prevention of SARSCoV-2 Infection (COVID- 19) in Healthcare Personnel	NCT043349 28	Emtricitabine/ tenofovirdisoprox il Hydroxychloroqui ne	Placebo	Phase 3 RCT, parallel design, Doublema sking	Number of confirmed symptomati c infections of SARS- CoV-2 (COVID-19)	N= 4000 18 Yrs and older(Adu It, Older Adult All sex	Spain	Start- Apr 1 2020 End- June 30 2021

21	A prospective, open label, randomized, control trial for chloroquine or hydroxychloroquin e in patients with mild and common novel coronavirus pulmonary (COVID-19)	ChiCTR2000 030054	Hydroxychloroqui ne sulfate 0.2g bid x 14 days The first dose of chloroquine phosphate 1gx2 days, and the third day 0.5gx12 days	Standard of care	Prospecti ve open label RCT	Clinical recovery time Time to 2019-nCoV RT-PCR negativity in upper and lower respiratory tract specimens	N= 100 18 to 75 Yrs All sex	China	Start- Feb 22 2020 End- May 5 2020
22	A prospective, randomized, open label, controlled trial for chloroquine and hydroxychloroquin e in patients with severe novel coronavirus pneumonia (COVID-19)	ChiCTR2000 029992	Chloroquine phosphate1.0gx2 days for the first dose, 0.5gx12 day from the third day Hydroxychloroqui ne sulfate 0.2g bid x 14 days	Standard of care	open labefl RCT	Clinical recovery time. Changes in viral load of upper and lower respiratory tract samples compared with the baseline	N= 100 18 to 75 Yrs All sex	China	Start- Feb 17 2020 End- May 5 2020

23	Evaluation the	ChiCTR2000	Hydroxychloroqui	-	open	Time to	N= 100	China	Start-
	Efficacy and Safety	029899	nesulfate		label RCT,	Clinical			Feb 17
	of				parallel	recovery	18 Yrs		2020
	Hydroxychloroquin		Day1: first dose: 6		design		and		
	eSulfate in		tablets (0.1g/tablet),				above		
	Comparison with		second dose: 6			All-cause	All sex		End- Apr
	Phosphate		tablets			mortality of	7 III 3 CX		30 2020
	Chloroquine in Mild		(0.1g/tablet)			28-days			00 2020
	and Common		after 6h ; Day2-						
	Patients with Novel		5: 2 tablets (
	Coronavirus		0.1g/tablet), BID						
	Pneumonia		Chlanamina						
	(COVID-19): a		Chloroquine phosphate						
	Randomized, Open-		priospriate						
	label, Parallel,		Day1-3 : 500mg,						
	Controlled Trial		BID Day4-5:						
			250mg, BID						

24	Evaluation the Efficacy and Safety of Hydroxychloroquin eSulfate in Comparison with Phosphate Chloroquine in Severe Patients with Novel Coronavirus Pneumonia (COVID-19): a Randomized, Open- Label, Parallel, Controlled Trial	ChiCTR2000 029898	Hydroxychloroqui nesulfate Day1: first dose: 6 tablets (0.1g/tablet) , second dose: 6 tablets (0.1g/tablet) after 6h ; Day2- 5: 2 tablets (0.1g/tablet), BID Chloroquine phosphate Day1-3 : 500mg, BID Day4-5: 250mg, BID		open label RCT, parallel design	Time to Clinical recovery All-cause mortality of 28-days	N= 100 18 Yrs to 75yrs All sex	China	Start- Feb 17 2020 End- Apr 30 2020
25	Hydroxychloroquin e treating novel coronavirus pneumonia (COVID-19): a randomized controlled, open label, multicenter trial	ChiCTR2000 029868	Hydroxychloroqui ne sulfate	Standard of care	open label multicent er RCT,	Viral nucleic acids Adverse events	N= 360 18 yrs and above All sex	China	Start- Feb 6 2020 End- June 30 2020

26	A prospective, randomized, openlabel, controlled clinical study to evaluate the preventive effect of hydroxychloroquin e on close contacts after exposure to the Novel Coronavirus Pneumonia (COVID-19)	ChiCTR2000 029803	Hydroxychloroqui ne, small and high dose 2 arms Abidol small and high dose 2 arms	-	Prospecti ve open label RCT	Number of patients who have progressed to suspected or confirmed within 24 days of exposure to new coronavirus	N= 320 18 yrs to 60 yrs All sex Four arms total with 80 patients each	China	Start- Feb 20 2020 End- Feb 20, 2021
27	Therapeutic effect of hydroxychloroquin e on novel coronavirus pneumonia (COVID-19)	ChiCTR2000 029559	Hydroxychloroqui ne 0.1g oral 2 times/ day Hydroxychloroqui ne 0.2g oral 2 times/ day	Placebo	Prospecti ve placebo controlled RCT	The time when the nucleic acid of the novel coronavirus turns negative	N= 300 30 yrs to 65 yrs All sex Three arms total with 100 patients each	China	Start- Jan 31 2020 End- Feb 29, 2020