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Abstract

We propose a Bayesian model for projecting first-wave COVID-19 deaths
in all 50 U.S. states. Our model’s projections are based on data derived
from mobile-phone GPS traces, which allows us to estimate how social-
distancing behavior is “flattening the curve” in each state. In a two-week
look-ahead test of out-of-sample forecasting accuracy, our model signifi-
cantly outperforms the widely used model from the Institute for Health
Metrics and Evaluation (IHME), achieving 42% lower prediction error: 13.2
deaths per day average error across all U.S. states, versus 22.8 deaths per
day average error for the IHME model. Our model also provides an accu-
rate, if slightly conservative, assessment of forecasting accuracy: in the same
look-ahead test, 98% of data points fell within the model’s 95% credible in-
tervals. Our model’s projections are updated daily at https://covid-19.
tacc.utexas.edu/projections/.

1 Introduction

On March 26, 2020, the Institute for Health Metrics and Evaluation (IHME) at the
University of Washington released a website that forecasts coronavirus disease
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(COVID-19) healthcare demand and mortality for all states in the United States.
After being cited during a White House briefing on COVID-19 modeling efforts,
their forecasting model, described in a preprint on medRxiv [IHME et al., 2020],
has received an enormous amount of attention from both the general popula-
tion and scientific community. IHME has since updated the model several times
resulting in considerable revisions to the COVID-19 forecasts.

The IHME approach departs from classic epidemiological modeling. Rather
than using systems of equations to project the person-to-person transmission of
the virus, the model postulates that COVID-19 deaths will rise exponentially and
then decline in a pattern that roughly resembles a bell curve (i.e., normal distri-
bution). The model assumes that the shape of the curve will be curtailed by so-
cial distancing measures. Key inputs driving this component of the IHME model
include the reported dates of state-wide shelter-in-place orders and shapes of
COVID-19 epidemiological curves observed in Chinese and European cities fol-
lowing the implementation of similar measures.

In light of the popular appeal of the IHME model and considerable scrutiny
from the scientific community, we have developed an alternative curve-fitting
method for forecasting COVID-19 mortality throughout the US. Our model is
similar in spirit to the IHME model, but different in two important details.

1. For each US state, we use local data from mobile-phone GPS traces made
available by SafeGraph to quantify the changing impact of social-distancing
measures on “flattening the curve.” SafeGraph is a data company that ag-
gregates anonymized location data from numerous applications in order
to provide insights about physical places. To enhance privacy, SafeGraph
excludes census block group information if fewer than five devices visited
an establishment in a month from a given census block group.

2. We reformulated the approach in a generalized linear model framework to
correct a statistical flaw that leads to the underestimation of uncertainty in
the IHME forecasts.

The incorporation of real-time geolocation data and several key modifications
yields projections that differ noticeably from the IHME model, especially re-
garding uncertainty when projecting COVID-19 deaths several weeks into the
future.

2 Model overview

At a high level, our model shares some key properties of the IHME model.

Similarity 1: a statistical curve-fitting approach. Ours is not an epidemiologi-
cal model, in the sense that we do not try to model disease transmission,
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nor do we use or attempt to estimate underlying epidemiological param-
eters like the basic reproductive rate or attack rate. Rather, our model is
purely statistical: we are fitting a curve and a probabilistic error model to
observed death rates in a state, and we are extrapolating from that curve.
The advantage of this approach is that it does not require estimates of crit-
ical epidemiological parameters, some of which remain elusive. The dis-
advantage is that it cannot project longer-term epidemiological dynamics
beyond the initial wave of mitigated transmission. For this reason, we do
not use the model to make projections beyond a moderate (2-3 week) hori-
zon.

Similarity 2: time-evolving Gaussian curves. The family of curves we use for
expected deaths over time is identical to that of the IHME model. Specif-
ically, we assume that expected daily death rates can be locally approxi-
mated by a three-parameter curve that is proportional to a Gaussian ker-
nel. This approximation is local in the sense that the curve’s three parame-
ters are allowed to evolve in time as a function of state-level covariates.
Just as in the IHME model, this results in fitted death-rate curves that,
when plotted over time, can differ substantially from the shape of a sin-
gle Gaussian. While epidemic curves do not resemble Gaussian curves,
time-evolving Gaussian curves do provide a good fit to observed COVID-19
state-level death rates.

Similarity 3: regression on social-distancing covariates to inform projections.
As in the IHME analysis, our regression model connects each state’s death-
rate curve to covariates that describe social distancing within each state.
Changes in each state’s social-distancing covariates can “flatten the curve”
by changing the peak death rate, the timing of that peak, and the deceler-
ation in death rate near the peak. The strength of this approach is that it
can leverage readily available data on social distancing without requiring
a mechanistic transmission model.

However, our model differs from the IHME model in at least three key ways,
which collectively result in different forecasting behavior.

Difference 1: real-time daily social-distancing data. We use data on Americans’
actual social-distancing behavior, derived from GPS traces from tens of
millions of mobile phones across the country. This data source quantifies
two main types of distancing behavior: 1) changes in visitation patterns
to public places like restaurants, bars, schools, parks, pharmacies, grocery
stores, etc.; and 2) time spent at home versus at work. The IHME model, by
contrast, uses a much coarser measure of social distancing: the timing of
state-level policy implementations like school closures and stay-at-home
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orders. But the mobile-phone data reveals substantial differences among
states in the timing and extent of peoples’ actual distancing behavior, even
for states with nominally similar policies. In Texas, for example, many
large cities issued their own stay-at-home orders before the state did, af-
fecting the movement patterns of many millions of people days before a
statewide policy was in place—a fact that is clearly visible in the data. Our
measures capture this substantial state-level and temporal variation that is
obscured by regressing only on policies.

Difference 2: U.S. data only. The IHME model assumes that data on death rates
and social distancing policies in other countries (specifically China, at least
in the original formulation of the model) can inform U.S. state-level fore-
casts. For a variety of reasons, we find this assumption problematic. Our
forecasts therefore rely solely on U.S. data, with state-level parameters
shrunk toward a common mean in a hierarchical Bayesian model.

Difference 3: valid uncertainty quantification. We address a problem with the
IHME model by relying on a fundamentally different statistical assump-
tion about model errors. Briefly: the IHME model fits cumulative death
rates using a least-squares-like procedure on the log scale and applying
standard large-sample statistical theory to get confidence intervals. For
this procedure to result in valid uncertainty quantification, one must as-
sume that successive model errors are independent. But in the IHME fit-
ting procedure, this assumption is violated: today’s cumulative death rate
is yesterday’s plus an increment, so the two must be correlated. Our model
repairs this problem by fitting daily (noncumulative) death rates using a
mixed-effects negative-binomial generalized linear model.

3 Model details: a negative-binomial mixed-effects
GLM for daily COVID-19 deaths

3.1 Model structure

We let i index the geographic area; in our analysis this is U.S. states, but it could
be at any level of spatial resolution (e.g. country, city, etc). To make our results
comparable to the IHME model, let t denote the number of days elapsed since
a threshold death rate of 3 per 10 million residents was reached in a given area.
Thus t doesn’t represent calendar days, but rather a notion of “epidemic days.”

Let yit denote observed number of deaths in area i at time t. Let ỹit denote
per-capita death rate. The IHME model assumes that the expected daily death
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Figure 1: The IHME model’s April 5 projections ten days ahead for Italy and
Spain (blue lines). The actual data (black dots) fall noticeably outside the model’s
95% error bars (shaded blue region), illustrating the model’s underestimate of
forecasting uncertainty, even in countries whose peak daily death rates seem to
be well characterized by the data.

rate λit can be locally approximated by a curve proportional to a Gaussian ker-
nel:

E(yit) = λi(t) = κit · exp
{
−ωit

2
· (t− µit)

2
}

(1)

This leads to the following interpretation of the parameters:

• κ is the maximum daily expected death rate

• µ is the day on which the expected death rate achieves its maximum

• ω is a steepness parameter: higher ω means the death rate rises more
rapidly as t approaches µ, and also falls more rapidly on the far side of
µ. Specifically, the slope at the inflection point of the death-rate curve is
κ
√

ω.

Equation (1) expresses the most general form of the IHME model, where
θit = (κit, µit, ωit) changes from area to area and day to day. This is highly
overparametrized; it is necessary to enforce some type of shrinkage on these
parameters in order to make the model identifiable. We address model over-
parametrization in a similar way to the original IHME analysis (i.e. via a hierar-
chical model). But we use very different data based on mobile-phone GPS traces
that quantify actual distancing behavior, rather than the timing of state-level
social-distancing policies (e.g. school closures, stay-at-home orders, etc.).
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The IHME model-fitting process. We note that the IHME model parameter-
izes its Gaussian curves in a slightly different way, but the underlying family is
identical to Equation (1), in the sense that there is a bijection between our pa-
rameterization and theirs. Briefly, the IHME model assumes that the cumulative
death rate is proportional to Gaussian CDF, and they fit the three model param-
eters by optimizing a penalized least-squares objective on the log-cumulative-
deaths scale, interpreting the result as a Bayesian maximum a posteriori (MAP)
estimate under an assumed prior. More specifically, let Ni be the population in
state i and define rit = N−1

i ∑s<t yit be the per-capita cumulative death rate in
state i. The IHME model assumes that

log rit = log
{∫ t

0
λi(t) ds

}
+ εi . (2)

The model is fit by a penalized nonlinear least-squares procedure, encouraging
the parameters of each state’s λi(t) curve to be shrunk towards a common con-
ditional mean, given social-distancing covariates. They interpret the result as a
hierarchical Bayesian MAP estimate under an assumed prior, and use the in-
verse Hessian matrix at the MAP estimate as plug-in estimate of the posterior
covariance matrix for the model parameters.

In the Appendix, we describe why this procedure does not result in valid
confidence intervals. Briefly, it ignores the problems of heteroscedasticity and
intra-day correlation in model errors associated with fitting to cumulative data.
Together these have major consequences for uncertainty quantification. Figure 1
briefly illustrates the problems that can arise: it shows the IHME projections for
Italy and Spain on April 5 looking ten days ahead, together with 95% prediction
intervals. The actual data fall noticeably outside the model’s claimed range of
uncertainty. This is especially worrisome, given that peak daily death rates in
Italy and Spain seem to be well-characterized by the data itself through April
16th, versus the situation in many U.S. states that have yet to reach their peak,
where we must rely on a model to extrapolate the location of the peak.

An April 8 technical report by Marchant et. al points to similar problems
with the IHME’s U.S. projections [Marchant et al., 2020]. They found that, in
evaluating the model’s U.S. projections made on April 1, only 27% of the actual
data points on the subsequent day actually fell within the 95% confidence bands.

Luckily, this is an easily correctable problem, by placing the model in Equa-
tion (1) into the framework of generalized linear modeling. This allows for better
uncertainty quantification, as we describe in the next section.

6

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 26, 2020. ; https://doi.org/10.1101/2020.04.16.20068163doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.16.20068163


3.2 Our fitting approach

Observe that if we move to the log scale, Equation (1) becomes:

log λit = log κi − 0.5ωi(t− µi)
2 ≡ βi0 + βi1t + βi2t2

for some β vector. Keeping in mind that λit is the expected value for a count
outcome (daily deaths yit), we recognize this as the expression for the linear
predictor in a generalized linear model (GLM) with a log link function, as might
arise in a Poisson or negative-binomial regression model for y. On the right-hand
side, we have a locally quadratic regression on t, the number of elapsed days
since deaths crossed the threshold value of 3 per 10 million. Moreover, there
is a simple relationship between the regression coefficients β and the original
parameters of the curve:

ω
µ
κ

 =


−2β2

β1
2β2

exp
{

β0 −
β2

1
2β2

}


Thus to fit the model, we estimate a hierarchical negative binomial regression
model with mean λ and overdispersion parameter r, as follows:

yit ∼ NegBin(λit, r) (3)

log λit = log Ni + βit,0 + βit,1t + βit,2t2 (4)

(βit,0, βit,1, βit,2)
T = µ + Γxit + ηi (5)

ηi ∼ N(0, Σ) , (6)

where E(yit) = λit and Var(yit) = λit(1 + λit/r). Here we have included an
offset for the logarithm of Ni, the population in area i, so that the linear predic-
tor can be interpreted as the log per-capita death rate. Here xit is a vector of
social-distancing predictors that are allowed to “flatten the curve” by changing
its shape, via the second-stage regression. The negative binomial model natu-
rally handles the heteroscedasticity and overdispersion that we observe in the
data. In addition to the polynomial terms in the first-stage regression model for
log λ, we also include a fixed effect for weekend days, to account for the ob-
served under-reporting bias on weekends.

One note: we have phrased this model as a raw polynomial. But we actu-
ally fit the model using orthogonal polynomials to stabilize estimation; one may
convert between the raw and orthogonal parameterizations easily.

We fit the model using Markov Chain Monte Carlo, sampling from the pos-
terior distribution of all model parameters. We use weakly informative priors
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on the fixed effects β, the second-stage regression coefficients Γ, and the covari-
ance matrix Σ of the random effects. We also explored the possibility of using
more informative priors based on daily death rates from European countries.
But this had almost no effect on the fit of the model. Model fitting was carried
out using the rstanarm package in R [Goodrich et al., 2020]. Forward-looking
model projections are based on draws from the posterior predictive distribution.
Because of the way that our covariates are constructed (see below), most of the
x values for these forward-looking projections correspond to social-distancing
behavior that has already been observed. However, at a longer horizon some ex-
trapolation of x is necessary to generate projections; here we assume that social-
distancing behavior in a state remains unchanged from the average behavior
over the seven most recent days of available data.

3.3 Social-distancing predictors

To define the social-distancing predictors xit, we take a weighted averages of
past social-distancing metrics made available to us by SafeGraph. The metrics
considered as predictors include daily time series per location for:

• the median duration of time that people in a given area spend at home,
as well as the number of people in an area exhibiting ”full-time work”
behavior, at their normal place of work;[SafeGraph, 2020b]

• and total per capita visitation counts for various points of interest aggre-
gated by category, including grocery stores, hospitals, parks, restaurants,
bars, colleges, etc.; [SafeGraph, 2020a]

These data are derived from GPS traces of tens of millions of mobile phones
nationwide. ”Home” and ”work” locations for a device were inferred by Safe-
Graph based on daytime and overnight locations over an extended period of
time. The data were provided to us in an aggregated format; no device-level
data or individual GPS traces were accessible by the research team. Figure 2
shows a selection of these social-distancing measures over time in both New
York and Texas.

We denote these D distancing metrics sit,1, . . . , sit,D, observed each day in
each state. To construct useful covariates out of this information, we proceed
as follows. For each distancing metric sj, define a corresponding lagged version
s̃j as follows:

s̃it,j =
L

∑
l=1

wlsi,t−l,j

where w = (w1, . . . , wL) is a fixed vector of backward looking weights. We con-
struct two sets of predictors in this manner. The first uses a weight vector w(1)

8

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 26, 2020. ; https://doi.org/10.1101/2020.04.16.20068163doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.16.20068163


Figure 2: SafeGraph social-distancing data in New York versus Texas. The social-
distancing predictors we use in our model quantify visitation patterns to various
points of interest, using GPS traces derived from mobile phones. The vertical
axis is standardized so that 0 represents a pre-pandemic baseline, and -0.5 in-
dicates a 50% decrease in visitations relative to that baseline. The vertical lines
in each panel represent the day in which the state death rate reached 3 per 10
million residents. One can see that social distancing in Texas began substantially
before this threshold day was reached, but much nearer this day in New York.
Note: the museums category also includes public parks.
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tuned based on prior knowledge of the distribution of lags between infection
with COVID-19 and death. Specifically, w(1) is a Gaussian kernel centered 23.5
days in the past, with a standard deviation of 6 days. This is based on published
estimates of time from contraction to illness onset [Lauer et al., 2020] and on time
from illness onset to death [Zhou et al., 2020]. The second uses a weight vector
w(2) with equal weights over the previous most recent 7 days. Using both sets of
weights in our model allows the shape of the curve to adapt not just to the level
of social distancing, but to changes over the past month.

To construct predictors x for our regression model, we apply principal com-
ponents analysis (PCA) to two groups of predictors corresponding to the two
weight kernels w(1) and w(2) respectively. For w(1) (23.5 days centered Gaussian
kernel) we use the first 3 components. For w(2) (7-day running average) we use
only the first principal component. It is sensible to allocate more predictors from
the 23.5 days lagged kernel group since it is motivated by previous research and
the known dynamics of contagion. In practice, adding the 7-day running aver-
age improves the forecasting performance.

4 Results

We update our model results daily and post them at https://covid-19.tacc.
utexas.edu/projections/.

To assess forecasting accuracy, we fit our model using data up through April
3rd. We then compared our model’s projections over the next 13 days with those
of the IHME model. Figure 3 shows the projections for Texas, California and
New York compared with the atual observed deaths in the forecasted period.
Our 95% Bayesian credible intervals contain 98.4% of the data points across all
states in the heldout data. Similarly, Figure 4 shows the forecasts for the same
period for the smaller states. The figure shows that our model remains well
calibrated even with few highly dispersed observations. Overall, our model sig-
nificantly outperforms the IHME model in out-of-sample accuracy, achieving
42% lower 13-day-ahead prediction error: 13.2 deaths per day mean absolute er-
ror across all U.S. states, versus 22.8 deaths per day mean absolute error for the
IHME model.

A Uncertainty quantification in the original IHME
model

In the IHME model, the choice of using penalized-least-squares fit on the log-
cumulative-deaths scale has major consequences for statistical inference. In par-
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Figure 3: Out-of-sample projections 13 days ahead (log-scale) for Louisiana,
Massachusetts, New York, and Texas. The figure shows a comparison of the pro-
jections using data up through April 3rd for the 13 days days up through April
16th. We chose 13 days rather than 14 days ahead because the IHME forecasts
were publicly available from April 3 but not April 2. Credibility intervals of 95%
are shown in gray.

ticular, the authors use the inverse-Hessian matrix at the MAP estimate in or-
der to produce uncertainty estimates. This uncertainty quantification procedure,
however, implicitly assumes that successive observations are independent. In-
deed, without this assumption, it is not generally true that the inverse-Hessian
at the MAP provides a valid large-sample estimate for the covariance matrix of
an estimator, Bayesian or otherwise. This important technical condition simply
cannot be true on the scale used for fitting the IHME model, for the simple reason
that the data used for fitting are cumulative: if today’s prediction for cumulative
death rate is too high, then tomorrow’s prediction is more likely to be too high
as well.

This is easily verified by a simple calculation. The covariance of two succes-
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Figure 4: 13 day forecast of COVID-19 deaths (log-scale) for a selection of states
with fewer overall deaths. The figure shows a comparison of the forecasts using
data up to April 3rd for the following days up to April 16th. Credibility intervals
of 95% are shown in gray.

sive cumulative death rates rit is:

cov(ri,t, ri,t+1) = cov(ri,t, ri,t + yi,t+1)

= var(rit) + cov(ri,t, yi,t+1)

= N−2var

(
∑
s<t

yit

)
+ cov(ri,t, yi,t+1)

This covariance cannot be zero unless cov(ri,t, yi,t+1) is negative, and of suffi-
cient magnitude to exactly cancel out the first (positive) term—which is highly
implausible. Moving to the logarithmic scale does not repair the basic fallacy of
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assuming independent errors. This likely accounts for much of the understate-
ment in uncertainty seen in Figure 1.
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