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Abstract

Predicting future infections for covid-19 is essential in planning healthcare system as
well as deciding on relaxed or strengthened preventive measures. Here a quick and
simple estimation-prediction method for an urban area is presented, a method which
only uses the observed initial doubling time and Ry, and prediction is performed
without or with preventive measures put in place. The method is applied to the urban
area of Stockholm, and predictions indicate that the peak of infections happened in
mid-April and infections start settling towards end of May.

Introduction

The covid-19 is currently spreading at rapid pace in most countries of Europe, resulting in
high number of case fatalities and healthcare systems being overwhelmed. We here present a
quick and simple method for predicting the progress of the epidemic in a community which is
fairly well-mixed, an urban region being a typical example. The simplicity of the method
makes model assumptions more transparent and it is easier to study which parameters are
most influential to the predictions and studying how they affect predictions. The simple
method should preferably be complemented with more complex and realistic modelling,
perhaps on a national scale [1,2].

Method summary

The methodology is described in detail in the supplementary material; here is a very short
description. The initial doubling time d and the basic reproduction number R, are used to
parametrize the General epidemic model [3]. Calibration to calendar time is done using the
observed number of case fatalities, together with estimates of the time between infection to
death, and the infection fatality risk. Finally, predictions are made assuming no change of
behaviour, as well as for the situation where preventive measures are put in place at one
specific time-point. The overall effect of the preventive measures is assumed to be known, or
else estimated from the observed increased doubling time after preventive measures are put in
place.

Ilustration: Predicting the outbreak in Stockholm

We illustrate our methods on the Stockholm region in Sweden. Greater Stockholm urban area
has around N=2 million people, and the initial doubling time of cumulative case fatalities was
around d=3.5 days before preventive measures were put in place [4], and we assume that
Ry=2.5 this being a common value [5]. A number of (mainly but not exclusively voluntary)
preventive measures were put in place around the date t,= March 16. We assume the typical

time between infection and death equals sp=21 days. These preventive measures will start _
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effect is uncertain, but a new longer effective doubling time of dg.=14 days seems to be a
reasonable estimate based on case fatalities between April 9 and April 23 where the total
number has close to doubled [4]. To calibrate the relative time to calendar time we use that
the cumulative number of case fatalities on March 31, before effect of preventive measures,
equals 150. We emphasize that the quantities are by no means precisely estimated, so results
contain a lot of uncertainty and are mainly an illustration of the method.

These quantities are used to generate an epidemic and also to calibrate it to calendar time, as
described in the supplementary material. Once the calibration is performed it is possible to
predict future infections in the outbreak, both with and without preventive measures of
different magnitudes. The results are summarized in Figure 1 and Figure 2 below. Figure 1
reports the daily incidence of new infections for the different scenarios.

Figure 1 approximately here

Caption: Plot of the predicted daily number of new infections over time in Stockholm region,
without and with preventive measures of different magnitude.

As described in the Supplementary material a better approximation, taking heterogeneities
into account, is to flatten the curve by 25% and to shift it to the right 1.5 weeks (the left part 1
week and the right part 2 weeks). If this is taken into account, and we assume the new
doubling time equals dg=14 days (green curve), suggests that the peak of transmission
happened around April 11, 75% of all infections will have happened by May 7 and 90% of all
infections will have happened May 28 (assuming preventive measures remain). Needless to
say, there is of course uncertainty in these time points — the true time points may occur one or
even two weeks earlier or later. Comparing the different scenarios we see that the dates do not
change dramatically for different scenarios except for the yellow curve corresponding to
severe lock-down. The main difference between the other curves is the overall height, and
that the right tail is heavier the more effective preventive measures are. Had the preventive
measures happened earlier in relation to the outbreak, as for example was the case with other
parts of Sweden, the peak heights would have been lower and shifted further forward in time.

Figure 2 shows the cumulative numbers of infected (with overall percentages to the right) for
the different scenarios.

Figure 2 approximately here

Caption: Plot of the predicted cumulative number infected over time in Stockholm region,
both without and with preventive measures of different magnitude. Note that the two
preventive measures with largest magnitude do not reach close to herd immunity.

As described above the increase in the curve should be shifted to the right to fit better reality.
As for the end of the curves they should be lowered by 15%. Without preventive measures,
taking this correction into account, we see that approximately 77% would get infected. And
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for our main prediction, the green curve predicts that 47% will get infected (assuming
preventive measures remain). An important observation is that in the first two scenarios, the
final fraction infected exceeds the critical immunity level v_c=1-1/ R=60% [3]. This implies
that in these two situations the community has reached herd immunity and is hence protected
from additional outbreaks when preventive measures are relaxed (assuming infection induce
complete immunity!). The blue curve (when deflated by 15%) is just below herd immunity,
and the two latter scenarios, our main prediction with new doubling time of dg=14 days, and
the situation where preventive measures give R;=0.80, the final fraction infected is clearly
below herd immunity. Fewer infected is of course a big gain. However, since the
corresponding fractions lie below herd immunity, the community is at risk for additional
outbreaks if all preventive measures are relaxed. This is particularly the case for the last
scenario where only 15% get infected during the outbreak. We emphasize that our method is
an approximation equipped with several uncertainties which are discussed more in the
Supplementary material.

The Swedish Public Health Agency recently predicted infections of covid-19 in the
Stockholm region [6]. There it was predicted that the fraction infected by May 1 will be 26\%.
The green curve in our analysis gives a very similar prediction: shifting the curve 2 weeks
forward corresponds to observing the green curve April 17, and after reducing by 15%, the
green curve predicts 27% infected. Our prediction may also be compared with earlier
published estimates for Sweden [7] where it was predicted that by March 28, 3.1% of the
Swedish population would be infected (with credibility bound 0.85%-8.4%). Our best
prediction (as described above) would be to look one week earlier, so March 21, and the
green curve of Figure 2 multiplied but 0.85, which gives 10.5% infected. We note that our
prediction is for Stockholm which had the vast majority of all infections in the beginning of
the outbreak. And, since the Stockholm region makes up 20% of the country population,
10.5% infected in Stockholm could very well agree with 3.1% (or slightly more) in all of
Sweden.

Conclusions and Discussion

We have demonstrated a quick and simple method to estimate and predict an on-going
epidemic outbreak both with and without preventive measures put in place. As input data we
use the basic reproduction number R, and the doubling time during the early stage of the
epidemic, and its new doubling time after preventive measures are put in place. The method
also uses the reported cumulative number of deaths at a given time, the typical time between
infection and death sp, and the infection fatality risk f, in order to time-calibrate the model to
calendar time. The method is most sensitive to the doubling times, to some extent also to Ry,
but less sensitive to the latter quantities which are often equipped with high uncertainty. The
main purpose of the present paper is to use it as a complement to more advanced models on a
national scale, models where it is often less clear which parameters have biggest influence on
the conclusions.

In the current paper the focus has been on predicting the number of infected over time.
Clearly, the burden on the healthcare system, measured by hospitalized patients or case
fatalities, is more important. When predicting these quantities, an age-structured model is
advantageous since the risk for severe symptoms and death increases with age. There is
however high uncertainty in what fraction of all infected that will require healthcare and that
will die for different age-groups, as well as the overall infection fatality risk f. For example,
current estimates of f (not to be mixed up with case fatality risk, cfr) vary between 0.2% up to
1% (e.g. [8], [9]). Clearly, any prediction of the number of fatalities will be equipped with
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very large uncertainty due to uncertainty in f, let alone all other uncertainties, and this big
uncertainty is most often not acknowledged by instead picking just one published estimate of

fl
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Supplementary material: Basic estimation-prediction

techniques for Covid-19, and a prediction for
Stockholm

April 28, 2020

1 Introduction

We here give a) the details for the estimation-prediction method mentioned in the main
paper, b) some more details on the illustration prediction of Stockholm, and c¢) some
additional discussion points. The method is applicable for a community which is fairly
well-mixed, an urban region being a typical example.

We focus on predicting of the main phase of the epidemic, and not on the very beginning or
end (when very few are infectious implying that randomness plays a crucial role). For this
reason we use a deterministic epidemic model. More specifically we use the General epi-
demic model [4] because it allows for more heterogeneity in how many infectious contacts
different infected have, and when in time these happen, in comparison to generation-time
models such as the Reed-Frost model [4]. The model hence allows for heterogeneity in
terms of infections, but all individuals are equally susceptible and mix homogeneously.

As input to our prediction model we use the observed doubling time d during the initial
(random) phase of the epidemic and the basic reproduction number Ry. Estimation of d
is straightforward (e.g. [1]) and many estimates of Ry for covid-19 can be found in the
literature, most of them lying in the range 2.2-2.8 (e.g. [9], [8]). We start by describing
the different steps in the methodology, including also how to time-calibrate the model to
calendar time, and then apply our method by predicting the Covid-19 outbreak in the
Stockholm region.

2 Methods

We now present our estimation-prediction procedure. We start by predicting the be-
haviour of the outbreak based on knowing the basic reproduction number Ry and the
doubling time d in the initial phase of the epidemic. We then time-calibrate the model in
the sense of estimating where in the epidemic outbreak we are on a given date t; by using
cumulative case fatalities and knowledge of the typical time between infection and death
sp. Finally, we predict the time calibrated epidemic outbreak under the assumption that
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a set of preventive measures are put in place a given date ¢, during the early phase of
the epidemic outbreak. This is done either assuming the overall reduction in spreading
is known, or else by assuming that the increased doubling time after prevention, d,,, is
observed.

2.1 Prediction based on Rj; and initial doubling time d

As input for our prediction we use the observed doubling time d during the initial growth
rate and the basic reproduction number Rj, both valid before any preventive measures
were put in place. The doubling time can for example be estimated from the empirical
doubling time of case fatalities as described in [1]. The doubling time relates to the
exponential growth rate 7 of the epidemic by the relation €’ = 2, so r = In(2)/d. The
basic reproduction number can be estimated using other data sources, for example using
contact tracing giving information about the (random) generation time G and its mean
g = E(G) (this is however not trivial, cf. [2], [12]). Here we assume the initial doubling
time d and the basic reproduction number Ry to be known.

We assume the epidemic progresses according to the General epidemic model (GEM) [4].
For this model, the mean generation time relates to r and Ry by the relation [11]

Ry=1+rg. (1)

We hence have that the mean generation time equals g = (Ry — 1)/r. The GEM has two
model parameters: the rate of infectious contact A that infectious individuals have, and the
rate of recovery v (e.g. [4]). The basic reproduction number for GEM equals A/~ (the rate
of infectious contacts multiplied by the mean duration of the infectious period 1/7. The
rate of infecting someone s time units after infection is Ae ™%, and since the mean number
of contacts equals Ry = A/7, it follows that G has density fo(s) = Ae™*/(A/7y) = ye ".
It hence follows that G is exponential with parameter v with mean F(G) = 1/~.

From our input data, d and Ry, we hence conclude that g = (Ry — 1)d/In(2) and hence
that v = 1n(2)/(d(Ry — 1)).

The contact rate A can also be obtained from our input values Ry and d from the fact that
Ry = A/ for the GEM [4]. We immediately have that A\ = Ryy = (Ro/(Ro—1))(In(2)/d).

Once we have calibrated our parameters A and v to Ry and the observed initial doubling
time d we simply use the GEM to predict the epidemic (assuming no preventive measure
are put in place). Suppose the community size is N (assumed large) and that we start
with a small fraction (but fairly large number) infected and the rest being susceptible, for
example ig = 50 sy = N — 50, where s; and i; denote the number of susceptible and the
number of infectious individuals respectively (the index t is hence relative to the start of
the epidemic and not calendar time). The transitions of the GEM are given by

St+1 = St — )\Stit/N (2)
it+1 = Z.t -+ )\Stl't/N - ’}/Zt (3)
The interpretation is that each infectious individual at time ¢ has on average \ infectious

contacts per day, and with probability s;/N each such contact results infection. Those
susceptibles who get infected move to the infectious state. The other transition is for an
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infectious individual to stop being infectious and recovering and becoming immune (a few
also die). The number of individuals who have recovered (also including the few who die)
equals N — s; —7;. This system can be iterated forward sequentially until the first time 7'
when the number of infectious individuals drops below 1: i < 1 (it never reaches exactly
0 but asymptotes to 0). The number of individuals who have been infected by t equals
N — s;.

By solving the iterative system it is easy to plot the number of infectives ¢; and the number
of infected N — s; over time, as well as the daily incidence s;_1 — s;.

2.2 Time calibration based on initial case fatality data

In the previous subsection an epidemic model was fitted to the observed initial doubling
time d and the known basic reproduction number Ry. An important remaining task is to
identify where in this outbreak the epidemic is at calendar time ¢; ("today”) (cf. [1]). We
hence want to know which relative time ¢ since the start of the epidemic that corresponds
to the calendar time ¢;. In order to do so we use the observed total number of case
fatalities up to calendar time ¢;, denoted A(¢;). We further need approximate knowledge
of two quantities: the typical duration sp between getting infected and dying (for those
who die) and the infection fatality ratio f being defined as the probality that an individual
who gets infected dies. For covid-19 sp ~ 21 days but estimates of f vary in the range
0.2% — 1% (e.g. [13], [12]). Fortunately it turns out that the time calibration is not too
sensitive to these numbers.

Given A(t), sp and f we know that the A(#;) who have died by ¢; were all infected by
t; — sp. But these "to-die” infected individuals only make up a fraction f of all who were
infected by t; — sp, so the number of infected individuals at calendar time ¢; — sp equals
A(t1)/f. This means that we calibrate calendar time to time relative to the start of the
epidemic by equating ¢; — sp to the relative value ¢* for which N — s« = A(t1)/ f.

Given this time calibration between relative and calendar time, t* = t; — sp, the estimated
number of infected people at present time equals #;«,5,, and e.g. the predicted number of
infectious individuals three weeks later (calendar time t; + 21) equals 445,421

2.3 Prediction with preventive measures put in place

Suppose that a set of preventive measures are put in place at some calendar time ¢, still
assumed to be in the early phase of the epidemic. Here we assume that this affects the
rate of infectious contacts but not the (mean) generation time g = 1/7. Most preventive
measures agree with this: school closure, self-isolation, closing (or reduced activities) of
restaurants, bars, cinemas. There are also some preventions which aim at reducing g,
such as contact tracing followed by isolation, but here we restrict ourselves to preventions
reducing A\. We assume that the new preventive measures have the overall effect of
reducing A by a factor p, so that the new effective rate of contact equals Ag = A\(1 — p),
and the new effective reproduction number equals Rp = (1 — p)Ro. For covid-19 there is
currently no available vaccine, but for situations where there is it is also possible to include
vaccination of a fraction of the community as a preventive measure. In this case, the factor
p also includes effects from vaccination. If for example a fraction v are vaccinated with

3
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a vaccine giving perfect immunity then this results in p = v if this is the only preventive
measure.

In applications it is close to impossible to know the overall magnitude of the preventive
measures p when a set of preventive measure are put in place jointly. In [1] it is shown how
to estimate p by observing the change in the doubling time once the preventive measures
have influenced e.g. fatality rates. Applying Equation (3) in [1] it follows that

g (111(2) 1n(2)> g

Ry, \d  dg )R

p=(r—rg)

Above r is the exponential growth rate before preventive measures and rg is the growth
rate after preventive measures have affected case fatality rates, and similarly for the
doubling times d and dg.

The preventive measure hence induce a lower growth rate rg = In(2)/dg. We assume
the same mean generation time g = 1/7, and since rg = Ag — v it follows that the new
contact rate A\g = rg+-. The new reproduction number equals Rg = 1+7rpg = 1+71g/7.

To sum up, if Ry and r = In(2)/d are known from before preventive measures, and
preventive measures are put in place on day ¢, resulting in a new longer doubling time dg,
then the time calibrated prediction model should change from A = (In(2)/d)Ry/(Ro — 1)
to Ag = (In(2)/dg) + 7.

2.4 An improved approximation

The method is developed for an urban area because the underlying methodology assumes
a homogeneous community. Even for an urban area there are many heterogeneities, both
in terms of susceptibility and infectivity, but in particular with respect to how people
interact. The effect of such heterogeneities is that the outbreak is slower, the peak is
delayed and lower, and fewer people get infected. The magnitude of these effects depend
on the particular community, and a thourough investigation would require a much more
advanced model, which the current method wants to avoid. For this reason we suggest
to use the following corrections to make our current simple model fit better to real life
epidemics in an urban area.

Modification: Shift the curve of new infections (corresponding to Fig 1) 1-2 weeks
forward in time: the left part of the curve can be shifted 1 week, the peak 1.5 weeks
and the right part 2 weeks. Reduce the size of the peak by 25%, and finally, reduce the
fraction getting infected at the end of the outbreak (Fig 2) by 15%.

3 Predicting the outbreak in Stockholm

We illustrate our methods on the Stockholm region in Sweden. Greater Stockholm urban
area has around N = 2 million people, and the initial doubling time of cumulative case
fatalities was around d = 3.5 days before preventive measures were put in place [7], and
we assume that Ry = 2.5 this being a common estimate [9]. A number of (mainly but not
exclusively voluntary) preventive measures were put in place around the date ¢, = March
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16. We assume the typical time between infection and death (for those who die from
covid-19) equals sp = 21 days. These preventive measures will start affecting fatality
rates around ¢, +sp = April 6. This analysis is performed April 26, with reliable fatality
data up to about April 23. The number of case fatalities have just about doubled between
April 9 and April 23 [7], so we estimate the effective doubling time to dg = 14. To calibrate
the relative time to calendar time we finally assume that the cumulative number of case
fatalities on March 31, before effects of preventive measures, equals A(March 31) = 150.
We emphasize that the quantities are by no means precisely estimated, so results contain
a lot of uncertainty.

To start, the evolution of the epidemic outbreak is simulated using the system defined
above with A = (In(2)/3.5)%2.5/1.5 = 0.330. The rate of recovery equals v = A—In(2)/d =
0.132. Finally, the new contact rate Ag induced by the new bigger doubling time dp = 14
equals A\g = (In(2)/dg) + v = 0.182. As a consequence, the iterative prediction model
should have A = 0.330 replaced by A\g = 0.182 on March 16 and onwards. As a side
remark we note that this change of doubling time from 3.5 days to 14 days corresponds to
changing Ry = 2.5 to Rg = 1 + (In(2)/dg) /vy = 1.27 giving the magnitude of preventive
effects of p = 1 — Rg/Ry = 0.49 so close to 50% overall reduction in contact rates.
Since the estimate dp = 14 days of the new doubling time (after preventive measures)
is uncertain we do similar calculations had the new doubling time instead been 6 and 9
days respectively, and also for the situation where the preventive measures reduces Rg to
0.8 implying that it directly starts decaying.

Finally the time calibration. For this we set the infection fatality risk to f = 0.3% as a
guess. As mentioned above it will not change the time calibration more than a week if the
true fatality risk is 0.1% or 1%. The 150 case fatalities by March 31 would hence imply
that the number of infected three weeks earlier, March 10, equals 200/0.003 = 50 000.
We therefore calibrate March 10 to the relative day ¢ at which the cumulative number of
infected equals 50 000 (or as close to as possible). This turns out to be on day ¢t = 31 of the
epidemic. The estimate that 50 000 were infected in Stockholm by March 10 might seem
high, since most of the transmission is believed to have been imported in late February
when many families returned from skiing in the Italian alps, but the number infected less
than two weeks earlier should not have exceeded 1000 people or so. However, there were
many flights to Stockholm from Milan as well as China during all of february, most likely
bringing transmission into Sweden also earlier, so it is not unreasonable that the number
of infected by March 10 could be at least close to 50 000.

Once the calibration is performed it is possible to predict relevant quantities of the out-
break, both with and without preventive measures of different magnitudes. The results
are summarized in Figure 1 and Figure 2 below. Figure 1 reports the daily incidence of
new infections for the different scenarios. Recall the suggested approximation improve-
ments of Section 2.4. For example, had no preventive measures taken place (black curve)
the peak day when most infections would have taken place is April 7 (March 28 + 10
days), and this day around 59 000 people would have been infected (79 000 multiplied
by 0.75). For our main prediction (green curve) the peak day of transmission is April
11 (April 1 + 10 days). The first peak March 15, just before preventive measures were
put in place, is partly an artefact from the model assuming all preventive measures were
initiated on one single day. The height of the green peak is dramatically lower than the
black curve. Instead of 59 000 people infected on the peak day the green curve has 14 000
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Figure 1: Plot of the daily number of new infections over time, with preventive measures,
and for a variety of magnitude of preventive measures.

infected.

Comparing the different scenarios, without preventions and with preventions of different
magnitude, it is seen that the peak is reduced the higher magnitude of preventive mea-
sures, and slightly shifted forward in time. Had the preventive measures happened earlier
in relation to the outbreak, as for example was the case with other parts of Sweden, the
peak heights would have been lower and further shifted forward in time.

Figure 2 shows the cumulative numbers of infected (with overall percentages to the right)
for the different scenarios. Using the improved approximation it can be seen that for the
main prediction (green curve) 75% of all infections have taken place by May 7 and 90%
of all infections will have ocurred by May 28 (assuming preventive measures remain).

Another important observation is that in the first two scenarios, the final fraction in-
fected exceeds the critical immunity level vo = 1 — 1/Ry = 0.6 [4], and the blue curve
(multiplied by 0.85) reaches very close to herd immunity. This implies that in these
three situations the community has reached herd immunity and is hence protected from
additional outbreaks when preventive measures are relaxed (assuming infection induce
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Figure 2: Plot of the cumulative number infected over time. Note that the two preventive
measures with largest magnitude do not reach herd immunity.

complete immunity!). For the latter two scenarios, our main prediction with a new dou-
bling time of dg = 14 days, and the situation where preventive measures give R = 0.80,
the final fraction infected are both below 50% which of course is positive compared to the
upper three curves. However, since the corresponding fractions lie below herd immunity,
the community is at risk for additional outbreaks if all preventive measures are relaxed.
This is particularly the case for the last scenario where about 15% are infected during the
first outbreak.

Needless to say, there are several uncertainties in the presented predictions. One uncer-
tainty is the time calibration which is affected by the choice sp = 21 (typical time between
infection and death) and the infection fatality risk f = 0.3%. However, changing sp say
4 days up or down only shifts the time calibration by the same number of days, and
changing f to 0.1% or 1% only moves the time calibration by less than a week forward or
backward.

The initial doubling time d = 3.5, and even more so the new doubling time after preven-
tion, play a more significant role, more so than changing Ry = 2.5 by 10% up or down.
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If the initial doubling time instead was set to d = 4 this would have slowed down the
entire epidemic by about a week. The big effect of having different doubling times after
preventive measures are put in place, corresponding to different magnitude of preventive
measures, is illustrated by the alternative predictive curves in the figures.

4 Additional comments

The underlying epidemic model was the simple SIR General epidemic model. This model
only allows for heterogeneity in terms of infectiousness (when and how many to infect),
but not in terms of susceptibility or mixing-patterns. To include such heterogeneities
is of course important and often done (e.g. [5],[3]). The purpose of the present paper
is however to keep things simple enough in order to make procedures more transparent.
Another feature in the model that would make it more realistic is to include a latent state
before becoming infectious by instead using SEIR models [4].

When comparing effects of prevention one can either compare the reduction in final num-
ber getting infected, and/or the size of the incidence peak since this is when health burden
is most problematic for the health care system. As an illustration, assuming Stockholm
follows the green curve, the final number getting infected is reduced from 78% (with no
preventive measures) to 47%, a reduction of 40%. The peak height is reduced from 59 000
infected on the peak day to 17 000 on peak day, a reduction of about 70%. To compare the
number of infections at a given time point during the outbreak is however not a sensible
comparison, since the more preventive scenarios have their infections shifted to the right
(cf. [6]). As an illustration, comparing the black and green curve of Figure 2 near the
peak (e.g. looking at April 1) the fraction infected in the black curve equals 59%, and
in the green curve 22%, which indicates that the number of infected is reduced by about
62%. There will however be more infections to come in the preventive curve, and at the
end of the outbreak the reduction is 40%.

There are several papers doing more advanced and realistic modelling /prediction (e.g. [3],
[6], [10]). However, our estimation-prediction methodology is much simpler and straight-
forward to implement, and we feel it is a useful complement to the more advanced methods
referred to. As a consequence, it is much more transparent to see how the few model as-
sumptions affect the results, and it is easy to vary the few parameters to see their effect
on predictions. We hope the method will increase understanding about which parameter-
uncertainties that have biggest impact on predictions, and which parameter-uncertainties
that are less influential. Finally, we expect this simple method to give predictions being
quite similar to the more complicated models, and if they don’t there is strong reasons to
investigate why this is not the case.

There are of course also obvious advantages with more realistic models containing e.g. age-
structure, households, work places, symptom response and different preventive measures.
Spatial aspects are less important since we consider one city-urban area. More advanced
models will give better fit if correct parameter estimates are used, and also more questions
can be addressed, such as infection risk in different age-groups, which means of spread
is most common, and the effectiveness of different preventive measures as well as when
making statements about case fatalities and hospitalization. The general effect of making
a more realistic model with more heterogeneities is that slightly fewer will get infected
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and that the peak height is slightly lowered and shifted a week or two later.
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