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Abstract:  25 

 26 

 Landscape changes have complex effects on malaria transmission, disrupting social and 27 

ecological systems determining the spatial distribution of risk. Within Southeast Asia, forested 28 

landscapes are associated with both increased malaria transmission and reduced healthcare access. 29 

Here, we adapt an ecological modelling framework to identify how local environmental factors influence 30 

the spatial distributions of malaria infections, diagnostic sensitivity and detection probabilities in the 31 

Philippines. Using convenience sampling of health facility attendees and Bayesian latent process models, 32 

we demonstrate how risk-based surveillance incorporating forest data increases the probability of 33 

detecting malaria foci over three-fold and enables estimation of underlying distributions of malaria 34 

infections. We show the sensitivity of routine diagnostics varies spatially, with the decreased sensitivity 35 

in closed canopy forest areas limiting the utility of passive reporting to identify spatial patterns of 36 

transmission. By adjusting for diagnostic sensitivity and targeting spatial coverage of health systems, we 37 

develop a model approach for how to use landscape data within disease surveillance systems. Together, 38 

this illustrates the essential role of environmental data in designing risk-based surveillance to provide an 39 

operationally feasible and cost-effective method to characterise malaria transmission while accounting 40 

for imperfect detection.  41 

 42 

Background: 43 

 44 

Malaria transmission is highly variable spatially, driven by the geographical distribution of human 45 

populations, mosquito vectors and the environments in which these populations interact (1). 46 

Surveillance systems aim to identify these high-risk locations and populations in order to effectively 47 

plan, implement and evaluate control policies and measures. As control programmes reduce incidence 48 
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and transmission decreases, spatial heterogeneity becomes more pronounced, necessitating 49 

increasingly higher resolution data to detect foci of infection (2). This becomes increasingly critical in 50 

rapidly changing environments, where changing human populations and vector habitats may cause 51 

significant shifts in transmission patterns (3). However, despite extensive research linking landscape 52 

with malaria transmission, landcover data rarely informs malaria surveillance systems.  53 

 54 

For passive surveillance systems relying on reported malaria case data, understanding spatial 55 

distributions of risk is further challenged by underreporting due to health-seeking behaviour or 56 

asymptomatic infections present in the community. Increasing evidence suggests the proportion of 57 

asymptomatic malaria infections not detectable by standard diagnostics increases in low transmission 58 

settings, resulting in large numbers of infections not detected by passive surveillance systems (4, 5). 59 

These asymptomatic infections are commonly seen in older age groups, with potentially different risk 60 

factors and spatial distributions from clinical malaria cases (6, 7). Population-based community surveys 61 

remain the gold standard for assessing spatial patterns of infection; however, these sampling 62 

approaches are highly resource intensive and may require very large sample sizes in low transmission 63 

settings. Alternatively, more operationally feasible surveys of easy access groups, such as health facility 64 

attendees or school children, are used to increase probability of detecting infections within the 65 

community (e.g. (8-11)). However, both approaches targeting clinical cases and easy access groups are 66 

inherently biased and do not fully capture the spatial distribution of infections.  67 

 68 

Within ecology, estimates of species distribution or abundance are similarly challenged by imperfect 69 

detection and spatially biased observation processes (12). Occupancy models are widely used to 70 

estimate the probability that a species occupies a geographic location within a specified time period 71 

while accounting for possible non-detection (13). This method partitions observation processes 72 
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determining detection probability and biological processes determining occupancy probability, each 73 

associated with potentially overlapping spatial and environmental covariates. This makes the simple 74 

assumption that a species cannot be detected if it is not present; however, if present, the species may or 75 

may not be detected during sampling. In addition to allowing estimation of true occupancy states as a 76 

latent variable, this method allows quantification of uncertainty in the observation process under 77 

different sampling scenarios (14-16).  78 

 79 

 Here, we combine occupancy models with practical health facility surveys and molecular 80 

diagnostics to evaluate the spatial coverage of surveillance approaches and their ability to detect 81 

locations with recent malaria transmission. By estimating a spatially explicit sensitivity of different 82 

diagnostic methods, we illustrate how environmental data can be used to develop operationally feasible 83 

risk-based surveillance systems to increase the probability of detecting areas of infection while 84 

rationalising scarce resources. This provides an adaptable framework to integrate convenience sampling 85 

approaches into existing disease surveillance systems to target control measures and characterise 86 

spatial and environmental drivers of infection from opportunistically collected data.  87 

 88 

 Using rolling cross-sectional health facility-based surveys in which all attendees regardless of 89 

patient status or symptoms were screened for malaria using routine and molecular diagnostics, with 90 

residences geolocated in real-time using tablet-based applications, we apply this approach to describe 91 

the spatial distribution of malaria infections in Rizal, Palawan, The Philippines (Figure 1 (11)). While the 92 

Philippines has made substantial progress towards malaria elimination, with 50 provinces declared 93 

malaria free, Palawan contributes over 95% of malaria cases nationally, including 2718 cases from the 94 

municipality of Rizal in 2018 (17). Deforestation rates have increased markedly within Rizal; of the 24% 95 

decrease in forest cover between 2000 – 2018, over 50% of deforestation occurred after 2015, largely 96 
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driven by agricultural expansion (18). Within this region, malaria risks are strongly associated with 97 

proximity to forested areas due to both vector ecology and occupational risks (19). Described as 98 

“frontier malaria,” factors associated with increased malaria risks, such as proximity to forest edges and 99 

recent deforestation, are also associated with reduced healthcare access, resulting in potentially 100 

complex interactions between detection bias and infection risks (20).  101 

 102 

 Our results illustrate that enhanced health facility-based surveys increase the probability of 103 

detecting locations with malaria infections by markedly increasing the spatial coverage of the 104 

surveillance system in addition to simply increasing the numbers of individuals screened. By comparing 105 

locations of infections detected by routine diagnostics (microscopy and/ or rapid diagnostic tests (RDTs)) 106 

with sub-patent infections only detectable by molecular methods, we show the sensitivity of routine 107 

diagnostics decreases in highly forested areas, with many locations of malaria transmission only 108 

detectable by molecular methods. We demonstrate how these findings can be used to develop 109 

operationally feasible and cost-effective environmentally targeted risk-based surveillance methods and 110 

prioritise locations with high probabilities of infection not captured by existing surveillance systems.  111 

 112 

Figure 1. Study area and forest cover in 2017  113 

 114 

 115 

Results:  116 

 117 

Impact of survey method on detection probability 118 

 119 

 We conducted monthly rolling cross-sectional surveys at 27 health facilities across Rizal, 120 

Palawan over a one-year period (Figure S1). All consenting individuals, regardless of symptoms or 121 
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patient status, were screened for malaria using microscopy or RDTs and polymerase chain reaction (PCR) 122 

as described by (21). As multiple malaria species are present in this area and over 75% of infections were 123 

with Plasmodium falciparum, we classified malaria as positive for any Plasmodium species. Using this 124 

data, we initially compared two surveillance approaches: 1. Standard - passive case detection (PCD), 125 

including febrile patients screened using routine diagnostics (RDTs or microscopy) as per current 126 

national surveillance guidelines; 2. Enhanced – standard PCD plus screening all health facility attendees 127 

with both routine and molecular methods.  128 

 129 

Between June 2016 – June 2017, 5767 individuals were enrolled in this study, including 1914 130 

(33.2%) febrile patients screened for malaria by existing passive surveillance systems (21). Of these, 801 131 

individuals (13.9%) were positive for malaria by molecular methods and 498 were positive by RDT or 132 

microscopy. We geolocated all residences in Rizal (n=7313), identifying individuals screened by PCD from 133 

698 unique locations while enhanced surveillance screened individuals from 2201 locations (Table S2). 134 

Malaria infections were detected at 352 household locations using enhanced surveillance and 117 135 

locations by standard PCD.  136 

 137 

 As control measures are targeted based on reported locations with malaria infection and over 138 

80% of infected locations had only one infected individual detected, we chose to model whether malaria 139 

infection was present or absent in a specific location (occupancy) rather than incidence. Detection 140 

probabilities, the probability of screening at least one individual from a location during the study period, 141 

varied geographically, with travel time to the nearest health facility negatively associated with detection 142 

probability by both PCD and enhanced surveillance methods (Table 1). Enhanced surveillance increased 143 

detection probabilities over three-fold compared to standard PCD (mean probability 3.34, 95%BCI: 1.03 144 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 12, 2020. ; https://doi.org/10.1101/2020.04.15.20065656doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.15.20065656
http://creativecommons.org/licenses/by-nd/4.0/


– 8.27) in addition to markedly increasing spatial coverage of surveillance, particularly in rural 145 

populations living in forested areas (Figure 2A, 2B).  146 

 147 

Figure 2. Posterior probability of infection under different sampling scenarios adjusted for detection 148 

probabilities: A. detection probability using routine passive case detection; B. detection probability using 149 

health facility-based surveys; C. probability of infection estimated from passive case detection using 150 

routine diagnostics; D. probability of infection estimated from active case detection using molecular 151 

diagnostics 152 

 153 

 154 

 155 

 156 

 157 

 158 

Spatial distribution of infection 159 

 160 

Incorporating these detection probabilities into hierarchical occupancy models revealed a much 161 

wider spatial distribution of malaria detected by enhanced surveillance compared to PCD alone, 162 

identifying areas of infection not captured by existing surveillance systems (Figure 2C, 2D). We identified 163 

a range of differing spatial and environmental risk factors for infections detected by different diagnostic 164 

methods; however, all infections were associated with proximity to closed canopy forests in more rural 165 

populations (Table 1). For joint models for each surveillance scenario, incorporating a shared spatial 166 

random effect between detection and infection probability improved model performance, suggesting a 167 

common spatial process driving healthcare access and disease risks (Table S3).  168 

 169 
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Table 1. Posterior estimates of fixed effects and spatial range for joint models of A. standard PCD and B. 170 

enhanced surveillance 171 

 172 

A. 173 

 Mean SD 95% BCI 

Probability of detection    

Distance to roads 0.226 0.125 -0.020, 0.227 

Travel time to clinic -0.317 0.120 -0.561, -0.090 

Distance to forest -0.112 0.053 -0.217, -0.009 

Spatial range (km) 8.140 2.500 4.319, 14.050 

Probability of infection    

Distance from roads 0.094 0.101 -0.109, 0.287  

Population density -0.603 0.145 -0.894, -0.322 

Precipitation of wetness month 0.212 0.107 -0.006, 0.420 

Distance from closed canopy forest -0.222 0.156 -0.537, 0.078 

Spatial range (km) 1.752 1.096 0.493, 4.643 

Scaling parameter for shared spatial effect 0.590 0.163 0.282, 0.921 

** All covariates mean-centred and scaled  174 

 175 

B. 176 

 Mean SD 95% BCI 

Probability of detection    

Population density -0.533 0.085 -0.701, -0.368 

Travel time to clinic -0.511 0.107 -0.729, -0.309 

Aspect 0.094 0.039 0.017, 0.171 

Spatial range (km) 15.804 6.130 7.212, 30.957 

Probability of infection    

Distance from roads 0.285 0.071 0.145, 0.423 

Upslope area 0.181 0.111 -0.038, 0.399 

Topographic wetness index -0.243 0.120 -0.481, -0.011 

Temperature annual range 0.236 0.098 0.043, 0.428 

Distance from closed canopy forest -0.326 0.111 -0.548, -0.112 

Spatial range (km) 0.897 0.232 0.532, 1.438 

Scaling parameter for shared spatial effect 1.216 0.177 0.887, 1.179 

** All covariates mean-centred and scaled  177 

 178 

 179 

 To explore the factors determining these differing distributions of infections, we estimated the 180 

probability of patent malaria detectable by RDT or microscopy in all malaria infections we identified. 181 

Malaria infected individuals were identified from 435 locations and over one third of infected individuals 182 

(37.8%, 95% CI: 34.5-41.3%) could only be detected by molecular methods. Subpatent malaria was 183 

substantially more common in forested areas with the odds of patent infections increasing 1.23 (95%BCI 184 
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1.03-1.47) with every kilometre distant from closed canopy forested areas (Table 2). Using data from all 185 

residence locations identified within Rizal, we predicted a location-specific probability of patent malaria, 186 

equivalent to the sensitivity of routine diagnostics (RDT and/or microscopy) (Figure S2).  187 

 188 

Table 2. Posterior estimates of fixed effects for malaria positive households detected by routine 189 

diagnostics (RDT and microscopy) compared to molecular methods 190 

 Mean SD 95% BCI 

Distance from closed canopy forest* 0.225 0.112 0.036, 0.476 

Annual precipitation*  -0.318 0.121 -0.620, -0.145 

Precipitation of wettest month* 

Population density
2
* 

0.256 

0.093 

0.085 

0.087 

0.091, 0.422 

-0.078, 0.263 

* Mean-centred and scaled 191 

 192 

Evaluating surveillance systems 193 

 194 

 As our primary aim was to identify all locations of malaria infection, we evaluated surveillance 195 

approaches against estimates of true infection status using molecular diagnostics and all available 196 

spatial data. Accounting for spatial bias of collection data, we estimated 11.4% (95%BCI: 4.6%-21.9%) of 197 

all locations in Rizal had malaria infections during the sampling period. While no surveillance method 198 

identified all areas of infection perfectly, enhanced surveillance using molecular methods identified 199 

38.7% (95% BCI: 33.6-43.8%) of infected locations while PCD only identified 5.7% (95% BCI: 0.1 – 11.9%). 200 

Including molecular diagnostics in PCD only slightly improved the probability of detecting infections 201 

while conducting health facilities using only routine diagnostics increased the number of infected 202 

locations identified slightly more (Figure 3A, Figure S4). We additionally identified 247 locations with a 203 

very low (<0.05% probability) of detection by any health facility-based surveillance.  204 

 205 

 Based on distributions of malaria infections and probability of detection by routine diagnostics, 206 

we additionally explored the use of environmentally-stratified risk-based surveillance approaches. We 207 
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defined high-risk areas based on distances from closed canopy forest (Figure S3). Evaluating costs of 208 

each surveillance system relative to baseline costs of standard PCD (Methods, SI), we estimated the total 209 

cost per location with malaria infection identified (Figure 3B). As the cost per infection detected was 210 

most sensitive to inclusion of molecular diagnostics, we defined a risk-based surveillance approach using 211 

health facility surveys in all areas and only applying molecular diagnostics to locations within 100m of 212 

closed canopy forest areas (Table 3, Figure S5). This risk-based surveillance approach almost halved the 213 

cost of detecting a location of infection compared to enhanced surveillance, from USD 603.10 (95% BCI: 214 

530.02 – 690.82) to USD 370.00 (95% BCI: 313.18- 444.04) while detecting almost as many locations of 215 

infections. 216 

 217 

Table 3. Surveillance methods assessed 218 

 219 

 Survey method Diagnostic method Total cost 

(USD)  Passive case 

detection 

Health facility 

surveys 

Routine (RDT/ 

microscopy) 

Molecular  

1: Standard PCD  X  X  -  

2: Enhanced surveillance X X X X 193,547.70

3: PCD + molecular X  X X 56,654.40 

4: Health facility surveys + routine X X X  22,844.50 

5: Risk-based surveys + diagnostics X Risk zone only X Risk zone only  

 220 

Figure 3. Evaluation of surveillance methods described in Table 3 by A. estimated numbers of locations 221 

with malaria infections not detected, and B. estimated additional costs per location with malaria 222 

infections detected (relative to standard PCD) 223 

 224 

 225 

 226 

Discussion 227 

 228 

 The spatial distribution of malaria is driven by a complex interplay of environmental and social 229 

factors influencing both disease transmission and identification by health systems. Statistical methods 230 
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enabling examination of processes driving infection and detection provide an invaluable tool to evaluate 231 

the roles of environmental factors and develop targeted surveillance approaches. Here, we demonstrate 232 

a convenience sampling approach using health facility surveys markedly increases spatial coverage of 233 

surveillance systems; incorporating these surveys with satellite-derived remote sensing data allows 234 

estimation of the underlying distribution of infection not captured by passive surveillance. We 235 

additionally show higher proportions of subpatent malaria infections in forested areas, highlighting the 236 

limited utility of routine diagnostics within these regions. Applying these findings, we develop a cost-237 

effective and operationally feasible risk-based surveillance approach using environmental data and 238 

illustrate how landscape data can be incorporated into disease surveillance systems.  239 

 240 

 Despite extensive research identifying proximity to forests as risk factors for malaria infection in 241 

Southeast Asia (e.g. (3, 22-27)), landscape data are not routinely used to design or inform surveillance 242 

systems. Malaria control programmes typically conduct community-based active case detection in 243 

response to reported malaria cases (2); however, we show this may miss a substantial proportion of 244 

active malaria foci due to biases in health-seeking behaviour and increased prevalence of subpatent 245 

malaria within higher transmission areas. Although mechanisms driving this relationship between forest 246 

cover and subpatent malaria are not known, patent malaria infections are more common in children in 247 

this area and settlements in closer proximity to forests may have different demographic compositions 248 

(e.g. logging and plantation camps) (21). Previous studies have also suggested a role for immunity in 249 

high transmission areas, with individuals repeatedly exposed to malaria commonly having lower parasite 250 

densities (4). Despite lower parasite densities, these subpatent infections can lead to infections in 251 

mosquitoes and may have a critical role in sustaining transmission in elimination settings, highlighting 252 

the importance of identifying and treating these individuals (28).  253 

 254 
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 While screening entire populations may be prohibitively costly and intensive, the increasing 255 

availability of satellite-based remote sensing data provides new opportunities to use environmental data 256 

to target surveillance activities (29). Surveillance systems for malaria, as well as for other low incidence 257 

or emerging diseases, are challenged by the need to identify relatively rare events with shifting spatial 258 

patterns. Widely used in veterinary epidemiology, risk-based surveillance uses known risk factors to 259 

focus intensive surveillance activities on the populations where rare events are most likely to occur (30). 260 

Integrating remote-sensing derived environmental data into this approach provides an adaptable 261 

framework which can be easily updated in changing landscapes. Further, quantifying the detection 262 

probabilities associated with these surveillance approaches allows estimation of biases in data and 263 

identification of populations not captured by opportunistic sampling and can be used to plan active case 264 

detection. For this example, using health facility surveys, this enables evaluation of spatial patterns of 265 

health seeking behaviour as well as populations outside health system coverage. Screening all 266 

individuals attending health facilities, including those accompanying patients or for nonfebrile illnesses, 267 

vastly increases the spatial coverage of surveillance. The improved performance of models including a 268 

common spatial term for both infection and detection suggests processes determining healthcare 269 

coverage also influence infection risks, demonstrating the multiple utilities of measuring health seeking 270 

behaviour in this context.  271 

 272 

 Within this study, remote sensing data was used not only as covariates but also to define the 273 

populations at risk. The application of machine learning approaches to identify building footprints from 274 

very high resolution satellite imagery has produced increasingly accurate estimates of household 275 

distributions and allows estimation of spatial distribution of the populations (31). Development of 276 

tablet-based methods including population data and satellite imagery enabled near real-time 277 

identification of the residences of health facility attendees in a rural population with no formal 278 
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addresses and limited internet connectivity (11). These tools and datasets can be further expanded to 279 

create accessible interfaces for local health workers to use environmental and spatial data and 280 

incorporate risk-based decision pathways on screening procedures and diagnostic tests based on 281 

household locations and travel history. This approach can also be easily modified to include multiple 282 

diseases with different underlying environmental risk factors and updated to include new environmental 283 

data, such as near real time deforestation alerts (32). Despite advances in using meteorological data to 284 

forecast vector-borne disease epidemics, landscape data is rarely used operationally and may provide 285 

more actionable information within rapidly changing environments. While we have focused on malaria, 286 

this is additionally relevant for targeting risk-based surveillance of emerging diseases, such as by 287 

detecting rare spillover events in changing habitats.  288 

 289 

 Despite the utility of these methods, there were several limitations to this study. As this study 290 

was designed to identify spatial locations of malaria infections within the sampling year, we did not 291 

explore temporal patterns of infection or health seeking behaviours. However, the modelling approach 292 

used is easily extendable to incorporate dynamic state-space models of changes in infection over time 293 

(12). If health facility surveys were collected over longer periods of time, this could additionally be 294 

expanded to incorporate seasonally varying meteorological data to further refine risk stratifications. 295 

While populations at risk were defined using multiple datasets, this is likely to have limited coverage of 296 

highly mobile indigenous populations not residing in permanent structures. Future work could explore 297 

the utility of satellite imagery to identify these populations, such as through monitoring of forest 298 

disturbance or modelling movement patterns. Within this study, the numbers of infections with 299 

different Plasmodium species precluded species-specific analyses. As all species are transmitted by the 300 

same mosquito vectors, environmental risk factors are expected to be similar; however, future work 301 

could examine differences between spatial distribution by malaria species. Additionally, while molecular 302 
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approaches for malaria are not easily applied in rural settings, new diagnostics, such as lateral flow 303 

assays and serological tests, may facilitate point of contact testing in the future (33, 34).  304 

 305 

 Even with these limitations, this provides a novel and adaptable surveillance approach for 306 

environmentally driven diseases and demonstrates the role of landscapes in driving malaria infection 307 

and detection within this region. Incorporation of forest data enables identification of cost-effective risk-308 

based surveillance approaches which increase probabilities of detecting malaria infections and can be 309 

applied to support elimination efforts. Additionally, the process-based ecological modelling method 310 

used provides a flexible framework to quantify detection probabilities and estimate the true spatial 311 

distribution of infection using biased data from convenience-based sampling approaches.  312 

 313 

Methods: 314 

Survey approaches 315 

  316 

We conducted cross-sectional health facility-based surveys at 27 facilities, including at one 317 

Regional Health Unit (RHU), 9 Barangay Health Stations (BHS) and 17 RDT centres based in community 318 

health worker households, established to increase access to malaria diagnosis and treatment (Figure S1). 319 

For one week every month between June 2016 – June 2017, all individuals attending the health facility, 320 

regardless of symptoms or patient status, were asked to participate in this survey. For consenting 321 

individuals, malaria status was assessed using either microscopy or rapid diagnostic tests (RDTs), with 322 

finger-prick blood samples collected on Whatman 3MM filter paper for subsequent polymerase chain 323 

reaction (PCR) (21). We classified malaria as positive for any Plasmodium species as 75% of identified 324 

species were P. falciparum and all malaria species are transmitted by common vectors in this area. 325 
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Household locations were identified on offline maps and basic demographic information was recorded 326 

using GeoODK on Android tablets (11).  327 

 328 

Spatial and environmental covariates 329 

 330 

To define the locations of all households within Rizal, we extracted information on household 331 

structure locations from the Facebook High Resolution Settlement Layer, a 30m resolution satellite-332 

based remote sensing derived dataset on all inhabited structures (35). This dataset was combined with 333 

all reported households identified by survey participants and geolocated households from the 2015 334 

Philippine census (36). We resampled all datasets to 50m resolution and removed duplicate locations to 335 

account for spatial resolution of datasets and inaccuracies of reported household locations. To estimate 336 

detection probabilities, we classified households included by a surveillance scenario if one or more 337 

individuals were sampled. Similarly, households were classified as infected if one or more individuals 338 

were identified as infected by diagnostics used by the surveillance approach.  339 

 340 

 Plausible covariates used to model detection or infection probabilities were assembled (Table 341 

S1). Handheld GPS devices (Garmin, USA) were used to record locations of all sampled clinics and roads 342 

within the region. Travel time to the nearest sampled clinic was calculated as accumulated cost from 343 

friction surfaces extracted from (37). Additional environmental and spatial covariates included 344 

population density (38), Euclidean distance from roads and bioclimatic variables (39). Elevation and 345 

topographic measures, including topographic wetness index (TWI), upslope area and aspect, were 346 

calculated from the ASTER Global Digital Elevation Model (40). Forest cover was classified as over 50% 347 

canopy cover based on (18) and Euclidean distance was calculated to the forest edge, recent 348 

deforestation within the past year and historical deforestation within the previous five years. We 349 
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additionally included closed canopy forest, defined as canopy cover over 90% with a minimum area of 350 

0.5ha (41).  351 

 352 

Occupancy modelling 353 

 354 

Covariates were extracted for all identified household locations and Pearson correlation analysis 355 

was used to assess multicollinearity between variables. To select variables for inclusion, nonspatial 356 

binomial generalised linear models were fit separately for detection probabilities and infection 357 

probabilities for each surveillance scenario using backwards stepwise model selection with a five-point 358 

threshold for improvement in deviance information criteria (DIC) to minimise overfitting (42). Residual 359 

spatial autocorrelation was assessed using Moran’s I and performance assessed by area under the 360 

receiver operating curve (AUC). Weakly informative priors of Normal (0, 1/0.01) were used for all 361 

intercepts and coefficients. All models were implemented in Integrated Nested Laplace (INLA), with 362 

10,000 posterior samples generated from the approximated posterior distribution to include uncertainty 363 

in these estimates (43). Final models had an AUC of 85% for both surveillance approaches.  364 

 365 

 We modelled the distribution of infections under each surveillance scenario separately using 366 

occupancy models in which the probability of detecting an infection (yi) in location i is dependent on the 367 

probability of detection (pi) and presence of infection (ωi) (13), modelled as: 368 

 369 

��  ~ � 0, �� �  0
Bernoulli����, �� �  1� 

 370 

Where the linear predictor determining the probability of detection is modelled as: 371 

 372 
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logit���� �  �� � ��� � ��   
 373 

Where �� represents the intercept, ��� represents a vector of covariate effects and ��  is the spatial 374 

effect modelled as a Matern covariance function using the stochastic partial differential equations 375 

approach to represent the spatial process by Gaussian Markov random fields as implemented in INLA 376 

(43, 44). The process determining the true state of malaria presence ω is determined by the true 377 

probability of infection ψ: 378 

��  ~ Bernoulli����  
 379 

With the linear predictor for the Bernoulli model specified as: 380 

 381 

logit���
� �  �� � ��� �   � �  !�� 

 382 

Where �� represents the intercept, ��� represents a vector of covariate effects and  �  represents the 383 

spatial effect, modelled as described above. As processes influencing probability of detection 384 

(healthcare access) additionally may impact infection, we include a shared spatial component !��with 385 

scaling parameter Z (45). 386 

 387 

Patent malaria distribution 388 

 389 

 To explore factors affecting the distribution of locations of patent malaria infections (detected 390 

by RDT or microscopy) compared to all infections, we subset all malaria infected locations. For Jj malaria 391 

infected individuals identified in each location, the number of patent infections observed (mi) is 392 

modelled as: 393 
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"�  ~ Binomial�%� , &�� 

 394 

With the linear predictor determining the probability of patent infections (si) modelled as: 395 

 396 

logit�&�� �  '� � ��(  
 397 

Where '� represents the intercept and ��( represents a vector of covariate effects. Using data from all 398 

locations included in the study site, we then predicted a location specific sensitivity of routine 399 

diagnostics. Based on these results, we used environmental data to define an area with higher 400 

probabilities of malaria infections only detectable by molecular diagnostics.  401 

 402 

Evaluation of surveillance systems 403 

 404 

 We modelled the true probability of infection from the infection process model using data from 405 

all available diagnostics. To compare surveillance methods with different survey and diagnostic 406 

methods, we estimated the number of infected locations not detected as: 407 

) ���1 * ��� �  �����1 *  &��
�

���

 

Where pi is the probability of detection using different survey methods and si represents diagnostic 408 

sensitivity, with PCR considered the gold standard. We additionally included risk-based surveillance 409 

methods, using health facility surveys and molecular diagnostics in high risk areas defined by proximity 410 

to closed canopy forest. All derived quantities were estimated using 10,000 posterior samples. 411 

 412 
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To evaluate the cost effectiveness of different surveillance approaches, we estimated the 413 

additional costs to health systems of including different survey and diagnostic approaches (Table S4). 414 

This excluded capital costs and costs already covered by existing health systems (e.g. RDT and 415 

microscopy diagnostics for febrile patients). Health facility survey costs included additional payments to 416 

personnel, training, equipment, RDT and microscopy for non-febrile participants, sample collection and 417 

molecular diagnostics for all attendees and salary for a technician to support data management and 418 

sample analysis. The costs of molecular diagnostics included DNA extraction and PCR reagents, assuming 419 

all DNA extraction was completed using Chelex with 10% of samples verified using a commercial Qiagen 420 

kit. To account for varying numbers of samples screened from each location, we estimated the mean 421 

cost of molecular diagnostics per location as the total cost of molecular diagnostics divided by the total 422 

number of locations included. We evaluated these against the estimated number of locations correctly 423 

identified as a measure of cost effectiveness. All analysis was completed in R statistical programming 424 

language (v 3.6), with maps visualised in R or ArcGIS (ESRI, Redlands, USA).  425 

 426 

Ethics approval 427 

This study was approached by the Institutional Review Board of the Research Institute for Tropical 428 

Medicine, Department of Health Philippines (IRB:2016-04) and the Research Ethics Committee of the 429 

London School of Hygiene and Tropical Medicine (11597). Written informed consent was obtained from 430 

all participants or parents or guardians and assent obtained from children under 18.    431 

 432 

Data availability 433 

Data is available upon reasonable request and with permission of ethics committees in the Philippines 434 

and United Kingdom. All R code needed to conduct these analyses will be available at 435 

https://github.com/kfornace 436 
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  438 
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