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Abstract. In order to anticipate a future trends in the development of the

novel coronavirus COVID-19 epidemic started early at march 13, in the french
overseas department Mayotte, we consider in this paper a modified determinis-

tic and stochastic epidemic model. The model divides the total population into

several possible states or compartment : susceptible (S), exposed (E) infected
and being under an incubation period, infected (I) being infectious, simple

or mild removed RM , severe removed (including hospitalized) RS and death

cases (D). The adding of the two new compartment RM and RS are driven by
data which together replace the original R compartment in the classical SEIR

model.

We first fit the constant transmission rate parameter to the epidemic data in
Mayotte during an early exponential growth phase using an algorithm with a

package of the software R and based on a Maximum Likewood estimator. This

allows us to predict the epidemic without any control in order to understand
how the control measure and public policies designed are having the desired

impact of controlling the epidemic. To do this, we introduce a temporally
varying decreasing transmission rate parameter with a control or quarantine

parameter q. Then we pointed out some values of q to maintain control which
is critical in Mayotte given the fragility of its health infrastructure and the
significant fraction of the population without access to water.

Key words and phrases: SEIR compartmental model; Coronavirus, Mathemat-
ical model, Reproductive number, Epidemiology.

1. Introduction

A novel coronavirus COVID-19 spread from the capital of the Hubei province in
China to the rest of the country, then to most of the world and particularly the
french overseas department Mayotte. Following the emergence of this novel coron-
avirus and its spread outside of China, Europe is now experiencing large epidemics.
In response, France and many European countries have implemented unprecedented
non-pharmaceutical interventions including case isolation of symptomatic individ-
uals and their contacts, the closure of schools and universities, banning of mass
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2 MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE

gatherings and some public events, and most recently, widescale social distancing
including local and national lockdowns of populations with all but essential internal
travel banned. Also in response to the rising numbers of cases and deaths, and to
maintain the capacity of health systems to treat as many severe cases as possible,
France like European countries and other continents, have implemented some pro-
cess measures to control the epidemic including in his overseas department outside
the metropolitan France. The epidemic began slightly later in France, from Feb-
ruary. To prevent further spread of COVID-19, all travel into Mayotte for tourism
and family visits was prohibited from Friday, March 20. Only essential travel for
selected individuals, such as residents returning home, professionals from essential
services, and patients with health conditions was allowed to entry. Local authorities
have advised all travelers arriving from the mainland France or areas affected by
COVID-19 to self-isolate at home for 14 days and avoid contact with others. In
addition, the government has urged the public to observe good personal hygiene,
such as regular hand washing. Individuals who develop respiratory symptoms, such
as cough, fever, and difficulty breathing, within 14 days of arrival into Mayotte are
advised not to visit the doctor or emergency room directly, but to contact the
SAMU (French Emergency Medical Services) immediately by dialing 15. Further
international infected travellers of the virus was expected until March 29 ; but from
March 30 the government has decided to cancel all flights both departure and ar-
rival in Mayotte.

Many mathematical models of the COVID-19 coronavirus epidemic in China, USA,
Italy and France have been developed, and some of these are listed in th following
papers [?, ?, ?, ?, ?, ?, ?, ?, ?]. Mathematical models can be defined as a method
of emulating real life situations with mathematical equations to expect their future
behavior. In epidemiology, mathematical models are relevant tools in analyzing the
spread and control of infectious diseases.
Based on the development and epidemiological characteristics of COVID-19 infec-
tion, a modified SEIR model is appropriate to study the dynamic of this disease.
The population is partitioned into susceptible (S), exposed (E) infected and being
under an incubation period, infected (I) being infectious, simple or mild removed
RM , severe removed (including hospitalized) RS and death cases (D).
It is well known that one of the most useful parameters concerning infectious dis-
eases is called basic reproduction number. It can be specific to each strain of
an epidemic model. Estimating the basic reproduction numbers for COVID-19
presents challenges due to the high proportion of infectious not detected by health
systems and regular changes in testing policies, resulting in different proportions
of infections being detected over time and between countries. Most countries so
far only have the capacity to test a small proportion of suspected cases and tests
are reserved for severely ill patients or for high-risk groups (e.g. contacts of cases
appeared in Mulhouse,France). Looking at case data, therefore, gives a systemat-
ically biased view of trends. However, in France and other contries in Europe the
basic reproduction numbers for COVID-19 is betwen 2 and 3 at the begining of the
epidemic with an average around 2.5.

In our case, firstly we fit the basic reproduction number for COVID-19 to data in
Mayotte at the begining of the epidemic in Mayotte. After that, we focused on
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MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE 3

the effects of the France government imposed public policies designed to contain
this epidemic in his overseas department Mayotte. We found that the effective date
compared to the prediction of the data without any control measure appears few
days after.
Thus we assume that from this effective date where the control measure started,
the transmission rate parameter β is time-depending and exponentially or log-
exponentially decreasing with a control c or quarantine parameter q assume to be
independent of the recovery rate since the COVID-19 is not actually curable.
Our model can thus be used to project the time-line of the model forward in time.
We propose various scenarios on this control to show how the impact of strict re-
spect of the government measure can lead to have a control on the capacity of the
main hospital in Mayotte to manage severe cases according to the maximal number
of staff and places available.

The government takes measures to track and quarantine people who have close
contact with conrmed cases; it is quite obvious in theory but difficult in practice.
In this paper we avoid to put in the model a compartment which account individ-
uals through quarantine of infected individuals. We only show how controling the
paramter q in the decreasing transmission because of the quarantine measure and
public policies can lead to stop the epidemic.
The novelty of our paper compared to others mathematicals methods and model
is based on our new model (??) applied to real data collected in Mayotte with
initial conditions such that the initial exposed population with an infected indi-
vidual which relies on the population density. We also consider different kind of
parametrization of he transmission parameter assume to be a slowly varying de-
creasing piecewise deterministic function. This paper is organized as follows. Sec-
tion 2 deals with some preliminaries and basis aspects of the deterministic SEIR
model intended to clarify the computations and simulations. In section 3, we give
a short description of Mayotte and the epidemic data. We present the numerical
simulations of the epidemic including real data and predicted data in section 4.
Section 5 deals with the stochastic modified model with various simulations and
discussions about the relevance of stochastic model in small populations. Finally,
we present in the appendix the deterministic method for computing R0 and a prob-
abilistic extension of our seir model based the some early works of Etienne Pardoux
and Tom Britton in [?].

2. Preliminaries and basis aspects of the deterministic SEIR model

A deterministic susceptible-exposed-infectious-recovered (SEIR) model for infec-
tious diseases is developed here with the aim to make experimental simulations in
next sections. Because the classical model assumes that the infected person’s incu-
bation period is not infectious, this assumption is quite different from the infection
characteristics of the new coronavirus infection. Therefore we will use a revised
SEIR model to analyse and predict the trend of the outbreak. The model meets
the following assumption.

(H1) The mortality rate µ induced by the disease is considered. This rate has
been normalized compared to metropolitan France and according to the
local reality in Mayotte.
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4 MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE

(H2) The transmission method is person-to-person and after a short infectious
period individual becomes permanently immune.

(H3) Once exposed, individuals go through a latent period 1
λ of approximately

6 days after which they become infectious for a period 1
γ1

that is estimated

to be 8 days for slight or mild infectious cases and for a period 1
γ2

for severe

infectious cases that is estimated to be 21 days.

(H4) We assume that there exists a proportion p for slight or mild infections.

The model divides the total population into six categories :

• Susceptibles S not yet infected but a risk of being infected
• Exposed E infected but not yet be infectious, in a latent period; Infectious
• Confirmed I to be infectious (with infectious capacity and not yet be quar-

antined) and contain reported and unreported cases.
• Removed with mild infections RM , Removed RS with severe infections and
Death death cases.

Define S(t) E(t), I(t), RM (t), RS(t) andD(t) as the number of susceptible, exposed,
infectious, removed with mild infections, severe infections including hospitalization
and death cases in the population at time t, respectively.
Consider a time interval [t, t+ dt] where the small change dt represents the length
between the two points at which measurements are taken. Let β denote the disease
transmission coefficient. This can be though as the rate at which each infectious
individual makes potentially infections contacts with each other individual, where
a potential infectious contacts will transmit the disease if the contact is made by an
infectious individual with a susceptible individual. It is the product of the contact
rate and the probability of infection given a contact per unit time.
The number of new infections in the time interval [t, t+ dt] is

β
S(t)I(t)

N
dt,

where N is the total population size at the beginning date t0 of the epidemic.
Given initial conditions S(0) = N , initial average of exposed individuals E0 > 0
and I(0) = I0 > 0, the model consists of the following system of ordinary differential
equations: 

dI(t) = λE(t)dt− pγ1I(t)dt− (1− p)γ2I(t)dt,

dS(t) = −β S(t)I(t)N dt,

dE(t) = β S(t)I(t)N dt− λE(t)dt,
dRM (t) = pγ1I(t)dt
dRS(t) = (1− p)γ2I(t)− µRS(t)dt
dD(t) = µRS(t)

(1)

The total population size is denoted by

N(t) = S(t) + E(t) + I(t) +RM (t) +RM (t) +D(t) and satisfies
dN(t)

dt
= 0,

so that the population size remains constant.

Remark 2.1. It is worth to mentionned that the initial average of exposed individ-
uals in front of an infectious individuals E0 is not E(0).
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MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE 5

Susceptibles (S)

Exposed (E)

Infectious (I)

Mild Retired (R_M) Severe Retired (R_S)

Dead 

β SI/N

λ

µ

p*γ1 (1-p)*γ2

Figure 1. Compartments of the SEIR model

One can also look, by this model, to keep track of the cumulative number of Covid-
19 cases from the time of onset of symptoms for C(t) which is not a compartent
and defined as follows :

dC(t) = λE(t)dt.
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6 MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE

With contact tracing, a proportion of individuals exposed to the virus is quaran-
tined.

Remark 2.2. One can assume that some international infectious travelers indi-
viduals y(t) negligible in front of the total population size S(t) (S(t) + y(t) ∼ S(t))
but not negligible in front of Infectious individuals I(t) subsequently travel at time
t and are eventually detected in their destination to Mayotte.

Susceptibles (S)

Exposed (E)

Infectious (I)

Mild Retired    
(R_M)

Severe Retired 
(R_S)

Dead 

β SI/N

λ

µ

p*γ1 (1-p)*γ2

Infectious  
international 
travelers to 

Mayotte

β Sy/N

�1

Figure 2. Compartments of the SEIR model including infectious travellers

Hence this leads to the new equations of the model :

dI(t) = λE(t)dt− pγ1I(t)dt− (1− p)γ2I(t)dt,

dS(t) = −β S(t)(I(t)+y(t))N dt,

dE(t) = β S(t)(I(t)+y(t))N dt− λE(t)dt,
dRM (t) = pγ1I(t)dt
dRS(t) = (1− p)γ2I(t)− µRS(t)dt
dD(t) = µRS(t)

(2)
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MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE 7

The dynamic of new exposed travellers y(t) can be thought as follows :

dy(t) = αdt

where α is the average number of imported exposed individuals.

The following table lists the parameters of the model we’ll use for numerical simu-
lation and estimates. These estimates are often wide due to wide variations from
one infection to another. Only the parameter β will be estimated.

Description Mean value Intervall and Reference
Incubation period λ−1 6 [5, 6] : ARS-Mayotte (2020)
infectious period for mild cases
γ−1s

8 ARS-Mayotte (2020)

γ−1h : infectious period for hospi-
talized cases

21 ARS-Mayotte (2020)

β : Basic reproduction number Estimated Package R0
θ : Case fatality rate (CFR) for
hospitalized infections

θ = 0.15 [0.135; 0.165] : Sant Publique France

µ : mortalit rate amoung severe
infection

µ = γg
θ

1−θ SpF

c : fraction of R0 reduced by
public health policies

variable formula (Manou-Abi)

E(0): average of contact cases 15 [15, 16] ARS-Mayotte 2020
p : proportion of infections that
do not require hospitalization

0.8 [0.8; 0.95] Santé Publique France

Remark 2.3. In the above model, we only consider constant-valued parameters.
However, many of these quantities actually vary with time. For instance in the
absence of vaccination and lack of effective treatment, the only way to influence
the disease development is to act on the basic reproduction number R0 through for
instance β; that is to decrease the value of this parameter. One can then thing
naturally about a decreasing time varying transmission coefficient β(t) that allows
the effect of control interventions so that to explore how the effective reproduction
number R0(t) decrease in time.

According to this remark, the previous system of ordinary differential equations
becomes: 

dI(t) = λE(t)dt− pγsI(t)dt− (1− p)γhI(t)dt,

dS(t) = −β(t)S(t)I(t)N dt,

dE(t) = β(t)S(t)I(t)N dt− λE(t)dt,
dRM (t) = pγsI(t)dt
dRS(t) = (1− p)γhI(t)− µRS(t)dt
dD(t) = µRS(t)

(3)

This is a realistic model that can be used by epidemiologists to study the dynamics
of the diseases and the effects of control interventions. The basic reproduction
number R0 is defined as the average number of secondary cases generated by a
primary case over his/her infectious period when introduced into a large population
of susceptibles individuals [?]. Note that the constant R0 thus measures the initial
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8 MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE

growth rate of the epidemic and for the model above it can be shown (see the next
section) that

R0 =
β

pγ1 + (1− p)γ2
.

Furthermore Chowell et al. [?] define the time-dependent effective reproductive
number

R0(t) =
β(t)

γ

S(t)

N

of secondary cases per infections cases at time t. One can see that if S(t) ∼ N it

follows that R0(t) ∼ β(t)
γ is a function proportional to the time varying transmission

coefficient β(t). The time point at which R0(t) assumes values smaller that 1
indicates when control measures have becomes effective in controlling the epidemic.
The intervention strategies to control the spread of Covid include surveillance,
placement of suspected cases in quarantine for two weeks (the maximum estimated
length of the incubation period), education of hospital personnel and community
members on the use of strict barrier nursing techniques (i.e. protective clothing and
equipment, patient management), and the rapid burial or cremation of patients who
die from the disease. Reducing exposure is one of the effective measures to control
the spread of disease. The public raises awareness of precaution and takes fewer
trips or wears a mask in the presence of a disease outbreak.
In order to account for the control intervention we assume, in our model, that the
transmission rate function β(t) is a decreasing piecewise linear continuous function
up to the time point t0 when the control measures are introduced. Assumes that a
fraction c ∈ [0, 1) of new infections is reduced during a period T = t− t0. Then we
can write :

β(t) = (1− c)β ∀t ∈ [t0, t0 + T ] (4)

= β(1− c)n = βeln(1−c)
n

, quad∀t ∈ [t0, t0 + nT ], (5)

= βe−nq n ≥ 1, ∀t ∈ [t0, t0 + nT ], (6)

where q = − ln(1− c) ≥ 0 is a kind of quarantine control parameter.
Thus, we assume in this paper that β(t) takes the following form :

β(t) = βe−nq n ≥ 1, ∀t ∈ [t0, t0 + nt], (7)

where n equal to the period where the control parameter relied for example one
can assume that the percentage of a control measure is maintened about a 7-day
period. This will be the approach we use for simulations in the paper.
Note that such kind of parametrization of β(t) was already consider in [?] and [?].
Let us point out that the geometry of the likelihood function can not permit iden-
tification of this quarantine parameter q as its estimator is correlated to β.

Our way for the transmission rate is a more parsimonious parametrization and it
does not affect γ the recovery rate unless the disease is curable, which is not the
case for Covid-19 actually. Now, let us discussed about the importance of c and q.

• If c = 0 (q = 0) one can see that β(t) = β which means that 0% of new
infections are reduced so that there is no effort to contain new infections
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MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE 9

which mean that the control intervention failed.

• Note that in the time interval [0, t − t0] if we consider q = 0.2 (c ∼ 0.18)
and β = 0.422 (see the next section for more details ont his value) this is
equivalent to a higher level of control measures since this mean that after
time T the control measure started, approximately 80% of new interventions
are reduced. One can then thing on 1 − p as the percentage of succefull
intervention measures during the major public policies process introduced
to avoid new infections.
• If a fraction c of new infections is reduced during every period T = t − t∗

then the epidemic will go to extinction after nT time where n is the interger
part of

− ln(γ)

cT
.

In the spirit of the above parametrization, we will consider according to observation
in real data where we think that there is a slight increasing in a sequence of change
times t1, ...tK and followed by a slowly varying exponential decrease, a piecewise
linear continuous transmission coefficient β(t) in the form :

β(t) = β

K∑
k=1

hktIt≤tk + β
∑
n≥1

βe−q(1+0.14n2)
√

log(n)I[tn+1,tn+2]

where β = β(0) at the begining of the epidemic and n = 1, 2.... denoting the change
of one week to another.

3. About the french overseas department Mayotte and epidemic Data

Mayotte, is an island and overseas department of France located in the northern
Mozambique Channel in the Indian Ocean and the coast of Southeast Africa, be-
tween northwestern Madagascar and northeastern Mozambique. It is also located
between the two southeasternmost islands of the Comoros archipelago. Mayotte is
made up of one main island (also called Grande Terre), one smaller island called
Petite Terre which lies about 1.5 miles east of the main island and islets. The
capital, Mamoudzou, is located on the eastern coast of the main island and in the
neighbouring smaller island of Petite-Terre, the Dzaoudzi International Airport is
located. The territory is also known as Maore, the native name of its main island,
especially by advocates of its inclusion in the Union of the Comoros. Mayotte has
a total land area of about 144 square miles or 374 square kilometres (sq. km),
and with its almost 285000 people according to official estimates, is very densely
populated at 747 inhabitants per sq.km. Mayotte is the poorest department of
France. However, many immigrants from other Mozambique Channel nations enter
Mayotte illegally, as it is one of the most prosperous regions in the area.

From 1976 into the 21st century, Mayotte had a special status with France as a
territorial collectivity, conceived as being midway between an overseas territory and
an overseas department. Its status was changed to a departmental collectivity in
2001 and then to overseas department in 2011. Mayotte is represented in the French
National Assembly by a deputy and in the French Senate by two senators. It is
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10 MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE

administered by a French-appointed prefect and an elected Departmental Coun-
cil. The judiciary is modeled on the French system. Although, as a department,
Mayotte is now an integral part of France, and despite being in France, the vast
majority of Mayottes population do not speak French as a first language, but a
majority of the people 14 years and older report in the census that they can speak
French (with varying levels of fluency). The majority language is Shimaore, a lan-
guage related closely to those found in the neighbouring Comoros islands. Kibushi,
a Malagasy language, is the second most widely spoken. Both have been influenced
by Shimaore and the vast majority of the population is Muslim.

As concerned the land, note that a volcanic mountain range forms a north-south
chain on Mayotte island, with summits from about 1, 600 to 2, 000 feet (500 to
600 metres) in elevation. Protected waters for shipping and fishing are created by
surrounding coral reefs some distance from the shore. Mayotte age structure is as
follows : 46.6% of the population is under age 15, 51% of the population between
15 and 64 years old and 2.4% of the population is older than 65. As we can see the
Mayotte population is young. This type of age structure is common for developing
countries with high birth and death rates. Relatively short life expectancy, as well
as low level of education and poor health care.

Figure 3. A map of Mayotte
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3.1. Epidemic Data process in Mayotte. Mayottes Regional Health Agency
and local authorities confirms the first case of new coronavirus infection on march
14 but reported on march 13, an imported case. He was an individual who traveled
from the metropolitan France and back to Mayotte three days ago. Subsequently,
two others imported case was reported few days later but arrived at the same mo-
ment like the first one. According to this information we choose the initial number
of infected people I(0) = 3.
But 5 others imported case was confirmed on march 20. After that 8 others im-
ported on March 26. Again three others imported cases were confirmed from march
27. Thus a total of 17 imported cases were confirmed two week days later.
One can thus think that almost 1 imported case is introduced per day after march
13 until march 28. But since March 29, the authorities of Mayotte department
and France have decided to close and cancel all flights to and from Mayotte, which
therefore limits the introduction of new imported cases but cannot prevent the
spread of the virus.
In this case and according to Remark ??, we can assume that among susceptibles
individuals a negligible fraction of international infectious individuals subsequently
travel and are detected in their destination to Mayotte. Thus, according to the
model (??) one may take y(t) = t as a variable number y(t) of infectious interna-
tional travellers to Mayotte at time t. Clearly, this is reasonable according to the
epidemic history data in Mayotte. Hence for t ∈ [t0, tc], this leads to the following
new equations of the model :

dI(t) = λE(t)dt− pγsI(t)dt− (1− p)γhI(t)dt,

dS(t) = −β S(t)(I(t)+y(t))N dt,

dE(t) = β S(t)(I(t)+y(t))N dt− λE(t)dt,
dRM (t) = pγsI(t)dt
dRS(t) = (1− p)γhI(t)− µRS(t)dt
dD(t) = µRS(t)

(8)

where t0 = march13 and tc = march29. But for t ≥ tc+1 we assume that y(t) = 0.

We obtain information and data from the regional french agency of health called
ARS of Mayotte where the second author of this paper works.

Dates imported cases
from march 13 3
from march 14 to 27 + 14
from march 28 to
nowadays

+ 0.

The regional french agency of health (ARS) of Mayotte according with the French
Public Heath (SpF) started to release a daily bulletin about COVID-19 infections
in Mayotte. According to ARS Mayotte and SpF, the probable contact number
with a confirmed case is around 15 − 16 so we take for our model E0 = 15 at the
begining of the epidemic.

Dates Average of contacts with a confirmed case at the begining
from march 13 to 20 15-16
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12 MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE

More informations can be found at the following website of the Mayotte local au-
thorities : http://www.mayotte.gouv.fr and www.mayotte.ars.sante.fr in Coron-
avirus COVID-19 : Point de situation. The following table presents the data ob-
served in Mayotte.

Note that data information includes the cumulative number of reported (confirmed),
imported, hospitalized cases including critical cases. For more informations about
the collection of the data, we refer the reader to the following website of the May-
otte local authorities : http://www.mayotte.gouv.fr or www.mayotte.ars.sante.fr in
Coronavirus COVID-19 Point de situation.

It should be noted that in fact it is the data from the previous day which is presented
the next day.

Date march 13-14 march 15 march 16 march 17 march 18 march 19 march 20
Confirmed
cases

1 1 1 2 3 4 6

incidence
cases

1 0 0 1 1 1 2

imported
cases

1 1 2 2 3 3 3

hospitalized
cases

0 0 0 0 0 0 1

critical cases 0 0 0 0 0 0 1
cured cases 0 0 0 0 0 0 0
death cases 0 0 0 0 0 0 0

Table 1. Covid cases in Mayotte from march 13 to 19

Date march 21 march 22 march 23 march 24 march 25 march 26 march 27
Confirmed
cases

9 11 21 30 35 42 50

incidence
cases

3 2 10 9 5 7 8

imported
cases

8 9 10 11 12 13 14

hospitalized
cases

1 1 0 3 3 4 3

critical cases 1 1 2 3 3 2 2
cured cases 0 0 0 0 0 1 4
death cases 0 0 0 0 0 0 0

Table 2. Covid cases in Mayotte from march 20 to 26
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Date march 28 march 29 march 30 march 31 april 1 april 2 april 3
Confirmed
cases

63 74 82 94 101 116 128

incidence
cases

13 11 8 12 7 15 12

imported
cases

17 17 17 17 17 17 17

hospitalized
cases

3 8 10 10 11 13 14

critical cases 2 2 3 2 2 3 3
cured cases 4 8 10 10 10 10 13
death cases 0 0 0 1 1 2 2

Table 3. Covid cases in Mayotte from march 27 to april 3

Date april 4 april 5 april 6 april 7 april 8 april 9 april 10
Confirmed
cases

134 147 164 171 184 186 191

incidence
cases

6 13 17 7 13 2 5

imported
cases

17 17 17 17 17 17 17

hospitalized
cases

18 18 17 17 16 15 17

critical cases 3 3 3 3 3 4 4
cured cases 14 14 15 22 23 38 50
death cases 2 2 2 2 2 2 2

Table 4. Covid cases in Mayotte from april 4 to 10

Date april 11 april 12 april 13 april 14 april 15 april 16 april 17
Confirmed
cases

196 203 207 217 221 233 245

incidence
cases

5 7 4 10 4 12 12

hospitalized
cases

20 20 22 20 15 18 22

critical cases 3 3 3 3 3 4 6
cured cases 59 67 69 69 77 94 117
death cases 3 3 3 3 3 3 4

Table 5. Covid cases in Mayotte from april 11 to 17

4. Illustration and Numerical Simulations of the epidemic COVID-19
in Mayotte

The following picture illustrate real numbers of cumulative confirmed, cured, hos-
pitalized and death cases from march 13 to april 17.
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14 MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE

Figure 4. Covid19 in Mayotte: cumulative confirmed, cured, hos-
pitalized and death cases from march 13 to april 14.

4.1. Estimation of the basic reproduction number R0 in the begining of
the epidemic. The Reproduction number R0 may be estimated at different times
during an epidemic. Some importants review found that the estimated mean R0

for COVID-19 is in [2, 3] with a median of2.5 which is considerably higher than the
SARS estimate or the influenza.
These estimates of R0 depend on the estimation method used as well as the valid-
ity of the underlying assumptions. Due to insufficient data and short onset time,
current estimates of R0 for COV ID − 19 are possibly biased. However, as more
data are accumulated, estimation error can be expected to decrease.
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Methods for estimating the basic reproduction number at the beginning of the out-
break and the time-dependent reproduction number of secondary cases at any time
during the outbreak, are usually bases on the following methods, but all required
some hypotheses in order to apply the methods.

For instance, the Maximum Likewood (ML) that we are interested in this paper as
an estimator according to [?] and [?] propose extensions and options implemented
in the software R. Others methods like Exponential growth rate (EG) and Sequen-
tial Bayesian method also exists.

Note that the ML methods require the user to select the time period over which
growth is exponential and to determine the serial intervall meaning the duration
between symptoms onset of the primary cases and symptoms onset of the secondary
cases in a transmission chain.

In the case of Covid− 19 in Mayotte, the epidemic curve can be analyzed the first
week from the case on march 15 to march 21 where over consecutive time units and
a generation time interval with mean 2 days and standard deviation 0.5 day. To
estimate the early dynamics of Covid − 19 transmission in Mayotte, we fitted the
value of the serial interval with a gamma distribution with mean 2 and standard
deviation 0.5.
By using the R0 Package, we estimate that the basic reproduction number for the
epidemic in Mayotte

R0 = 2.44, with 95%C.I

We presented the code using the R0 Package in the following lines.

library(R0) # Loading package

# epidemic curve can be input as a list of dates

epid = c("03-15", "03-16", "03-17","03-18", "03-19","03-20","03-21")

generation time = gamma distribution with mean $2$ and st. deviation $0.5$ time units

mGT = generation.time ("gamma", c(2, 0.5))

# outbreak during the 2020 Coronavirus in Mayotte

Mayotte.2020=c(0,1,1,1,2,3,2 )

data(Mayotte.2020)

est.R0.ML(Mayotte.2020, mGT, begin=1, end=7, range=c(0,3))

# Reproduction number estimate using Maximum Likelihood method

res=est.R0.ML(Mayotte.2019, mGT, begin=1, end=7, range=c(0,3)

plot(res)

Table 6. Typical session code for the basic reproduction number

4.2. Prediction of the Covid-19 in Mayotte. Now, we are able to apply the
preceding compartmental model for the prediction of the Covid − 19 in Mayotte.
According to our assumptions on the infectious period we have

β = 0.422 from march 15 to march 21, with 95%C.I
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16 MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE

Assume that there was any intervention control, of course this is not true beacause
from march 16, the french government imposed public policies designed to con-
tain this epidemic in all departments including overseas department, for instance
in Mayotte. The following table illustrative cumulative confirmed compared to
predicted data with our mathematical model.

Dates march 13 march 20 march 27 april 3 april 10
Confirmed cases 1 9 50 128 196
Predicted without control
measure

1 13 43 109 292

Predicted severe cases
cases

1.5 5 12 22 34

Confirmed death cases 0 0 0 2 2
Predicted death cases 0 0 0 [[1,2]] 3

Table 7. Reported Covid and predicted cases in Mayotte from
march 13 to april 10

Remark 4.1. Note that during in this period the model predict that at most two
hospitalized individual will died. This was the case at april 10 in Mayotte.

Discussion:
Comparing model predictions with observed confirmed cases reported in Mayotte,
we found that, from april 3 to 10 the model predicted almost two times higher cases
than those were reported . Thus, we deduce that the control measures and public
policies really started around April 1 instead of March 16 the official date.
The following picture illustrate the number of cumulative predictions cases in May-
otte as weel as the pic and the end of the epidemic without any control measure.
Discussion:
Without any control measure, we can see that the pic will be attained around June
25 an the extinction of the epidemic can be esperate at the end of august.

Remark 4.2. Note also that the cancelation of travel restrictions on the peak time
and peak value has an effect on the peak time and peak value.

5. Prediction when varying the quarantine control parameter q

Now let us assume that from march 20, the transmission rate parameter is time-
depending, does not affect the recovery rate unless the disease is curable, which is
not the case for Covid-19 actually and exponentially decreasing as described in ??
with a control quarantine paramter q. This should be actually the case since the
control measure started at this time.

β(n) =
∑
n≥1

βe−0.7nqI[n;n+1[,

with n = 1 means march 20 and n = 2 means march 27 and so one.
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Figure 5. Predictions cases of Covid19 in Mayotte from march
26 to april 10 without any public policies.

The following table show the evolution of the epidemic when the control paramter
q = 0.2 under the following time varying function
Discussion:
Under control measure with a control paramter q = 0.2, one observed that the pic
is attained later around July 17 with a maximum of infectious people less that the
one with no control measure.

Discussion: Now, let us remark that at this stage with the exponential decreasing
parameter β if q = 0.5 every 7 days one can observe a rapide extinction of the
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18 MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE

Figure 6. Predictions cases of Covid19 in Mayotte without any
public control.

epidemic but with q = 0.05 or q = 0.07 every 7 days the extinction come later. At
this stage, we hink that a different parametrization need to be introduced. So one
would like to imagine a slowly varying parameter in the form

β(t) = βe−q
√

log(t), t ≥ 1.

But since we already observed that the control measures and public policies really
started around April 1 instead of March 16 the official date, we will assume that
there was an increasing of the transmission parameter β(t) during the second week
(from March 20 to 26 and from March 26 to April 3) and after that the decrease
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Figure 7. Predictions cases of Covid19 in Mayotte with a control
paramter q = 0.2.

phase started
Now we assume in the rest of the prediction scenarios that there was a slowly
varying in transmission on the form

β(n) = 1.285βI[t0,t1] + 1.125βI[t1,t2] +
∑
n≥1

βe−q(1+0.14n2)
√

log(n)I[tn+1,tn+2]

where β = β(0) at the begining and

t0 = March 20; t1 = March 26; t2 = April 2;
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20 MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE

Figure 8. Predictions cases of Covid19 in Mayotte with various
control parameter

and n = 1, 2.... denoting the change of one week to another.

Let us see what becomes the simulation with a specific choosen quantine parameter
q = 0.1 compared with reported Covid-19 cases in Mayotte. To examine the possi-
ble impact of enhanced interventions on disease infections, we plotted the number
of cumulative infected individuals I(t) and the predicted cumulative number of re-
ported cases with varying the quarantine parameter q. This analysis shows that
incresing the parameter persistently decreases the peak value but may either delay
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or bring forward the peak, as shown in the above pictures.

Remark 5.1. Note that, enhancing quarantine and isolation following contact trac-
ing and reducing the contact rate can signicantly lower the peak and reduce the
cumulative number of predicted reported

0

100

200

300

400

March 13 April 3 April 24 May 15 May 27

Confirmed cases Prediction with q=0.1

Figure 9. Predictions cases of Covid19 in Mayotte with the new
control parameter

5.1. Discussion about the relevance about stochastic models. At this stage,
let us point out the fact that a stochastic pertubation is necessary since in general,
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22 MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE

susceptible individual does not have the same probability of being infected and
depends on many factors depending on the behavior of individuals which changes
over the course of the epidemic for instance the confinement will changes the habit.
Therefore suppose that some stochastic environmental factor acts simultaneously
on each individual in the population so that β changes to a a stochastic process
(β(t))t≥0 such that

β(t)dt = βdt+ σdB(t), ∀t ≥ t∗,
where B is a standard brownian motion. Hence the number of potential infectious
contacts that a single infected individual makes with another individual during a
period dt is normally distributed with mean βdt and variance σ2dt. Hence

E(β(t)dt) = βdt, V ar(β(t)) = σ2dt.

As V ar(β(t)) → 0 when dt → 0, this is reasonable model for biologist and it is a
well-established way of introducing stochastic environmental noise into biologically
realistic population dynamic models. To motivate the above assumption on β, let
us we argue as follows. Suppose that thenumbers of potentially infectious contacts
between an infectious individual and another individual in successive time intervals
[t, t+T ),[t+T, t+2T ), ..., [t+(n1)T, t+nT ) are independent identically distributed
random variables and that n is very large. By the Central limit Theorem, the total
number of potentially infectious contacts made in [t, t + nT ) has approximately a
normal distribution with mean nx0 and nσ2

0 , where x0 and σ2
0 are, respectively,

the mean and variance of the underlying distribution in each of the separate time
intervals of length T . Hence it is reasonable to assume that the total number of
potentially infectious contacts has a normal distribution whose mean and variance
scale as the total length of the time interval as in our assumptions. Therefore we
replace β(t) in (??) by

β(t)dt = βdt+ σ(t)dB(t), ∀t ≥ t∗
where B is a standard brownian motion and σ is the diffusion paramter that allows
the effect of random control measures.

Imitating the arguments of proof in [], we can show that under the above assumption
on β, that the underline SDE rewrittes as follows admits a positive solution.

dI(t) = λE(t)dt− pγsI(t)dt− (1− p)γhI(t)dt,

dS(t) = −β(t)S(t)I(t)N dt− σ(t)S(t)I(t)N dB(t),

dE(t) = β(t)S(t)I(t)N dt+ σ(t)S(t)I(t)N dB(t)− λE(t)dt,
dRM (t) = pγsI(t)dt
dRS(t) = (1− p)γhI(t)− µRS(t)dt
dD(t) = µRS(t)

(9)

We will performed this section later by adding some relevant pictures according to
the value of the diffusion coeficient σ.

5.2. Conclusion. Finally, let us mention virus mutations that can have a strong
influence on the disease progression andtreatment. At the moment, there are no
available data on mutations of coronavirus, it may take some time to have confir-
mation of this aspect. After the universities and schools were closed (March 16) the
peak of infection does not seem to be reached, and exponential growth continues.
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Similar situation is observed in others european nation. This can be an indication
that these measures are not sufficient or that they are not respected by local people.

6. Appendix

6.1. Methods for computing R0. The basic reproduction number R0 is defined
as the average number of secondary cases generated by a primary case over his/her
infectious period when introduced into a large population of susceptibles individu-
als [?]. The constant R0 thus measures the initial growth rate of the epidemic. A
typical first step in analysing a system of differential equations is finding the equi-
libra. At equilibrium we do not mean that individuals are fixed within particular
compartments, but rather the rate of individuals entering and leaving a compart-
ment is excatly balanced. This is equivalent to setting the right hand size of our
equations, i.e. the rate of change of individuals into and out of each compartment
equal to zero. In epidemiology, models generally have two important equilibria:

• the disease-free equilibrium (DFE) and the endemic equilibrium. The DFE
requires that there are no infected individuals in the population, or in the
case of SIR model I∗ = 0, when the star designates an equilibrium solu-
tion. In contrast the endemic equilibrium corresponds to the state in which
infected individuals persist indefinitely such that I∗ > 0.

Finding equilibria is only the first step to understanding long-term behavior in a
system. We must also determine which of the behavior are typically realized. This
involves determining the stability of the equilibria and will show us whether we will
approach the equilibria or more away from it, assuming we have started near by.
Now coming back to the method for computing R0, there is a rich mathematical
theory that describe how this quantity can be computed for a long range of SEIR-
type models. Let us introduce a commonly used method for finding R0 : the next
generation matrix method. of [?]. A nice feature of the next generation matrix
method is that it only requires use of the DFE which is often easy to compute. In
the SEIR model the DFE is given by

(S∗, E∗, I∗, R∗M ;R∗S) = (N, 0, 0, 0).

Set

γ = pγs + (1− p)γh; µ = 0.

After determining the DFE, we must create a sub-model that only considers the
”disease” compartments, a subset of the equations in the modified SEIR model.
The disease compartment are those that include individuals that are in any stage
of infection which, for the SEIR model, includes both the exposed and infections
individuals namely equations :{

dE(t) = β S(t)I(t)N dt− λE(t)dt
dI(t) = λE(t)dt− γI(t)dt

(10)

Set

−→x =

(
dE
dt
dI
dt

)
(11)

and we can write the disease compartment in the form
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d−→x
dt

= F(−→x )− V(−→x )

d−→x
dt

=

(
β S(t)I(t)N
0

)
−
(
λE(t)
−λE(t)dt+ γI(t)

)
.

Here F(−→x ) contains any terms that directly lead to new infections entering each
compartment j (here j = 2 because disease compartments are E and I) and −→x a
vector of the j disease compartments.
Notice that the second element of F is zero because no new infections enter the
compartment I rather their transition from to the E into I.

V(−→x ) = V−(−→x )− V+(−→x )

where V−(−→x ) contains all of the outputs and V+(−→x ) contains all the inputs from
each disease class. This includes term such as mortality or transition between class.

V+(−→x ) =

(
0
λE(t)

)
V−(−→x ) =

(
λE(t)
γI(t)

)
.

The Jacobian matrix of our equivalent sub-model equations evaluated at the DFE
is given by

J(S∗, E∗, I∗, R∗) =

[
∂E
∂E

∂E
∂I

∂I
∂E

∂I
∂I

]
(N,0,0,0)

=

[
−λ β S

N
λ −γ

]
(N,0,0,0)

=

[
−λ β
λ −γ

]
.

As a result, we can factor out the vector −→x on the right hand size, leaving us with(
dE
dt
dI
dt

)
==

[
0 β
0 0

]
−
[
λ 0
−λ γ

](
E
I

)
(12)

so that
d−→x
dt

= (F − V )−→x .

From linear stability analysis we know that the DFE is equivalent to the real part
of all eigen values of F − V being less than zero.

R0 = ρ(FV −1) < 1

means that the DFE is stable where ρ is the spectral radius of FV −1.

FV −1 =

[β
γ

β
γ

0 0

]
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so that

R0 = ρ(FV −1) =
β

γ
=

β

pγs + (1− p)γh
.

6.2. Towards a generalized continuous time Markov SEIR model. The
analogous stochastic model (continuous timeMarkov chain) is constructed by con-
sidering the following events : exposure E, infection I and removal (mild or severe)R.
The transition rates are defined as

Event Effect Transition rate

Exposed E (S,E,I,R) → (S 1, E + 1, I, R) β(t)SIN
Infectious I (S,E,I,R) → (S, E-1, I + 1, R) λE
All Removed (S,E,I,R) → (S, E, I-1, R + 1) (pγs + (1− p)γh)I

When an infection occurs, the number of suscptibles decreases by 1 and the number
of exposed increases by 1; when the latency period γ = (pγs + (1− p)γh) ends, the
number of number of exposed decreases by 1 and the number of infectives increases
by 1; and finally when there is a recovery, the number of infectives decreases by 1,
and finally when there is a recovery, the number of infectives decreases by 1 and
the number of recovered increases by 1.

increments distributed exponentially :
Now, to understand the following probabilistic modelisation, assumes first that the
latency period λ and the duration of infection γ satisfies an exponential distribution
E ∼ E(λ), I ∼ E(γ) whe the mean retired rate γ = pγs + (1 − p)γh. In that case,
the above three types of events happen as follows :

• Infection of a susceptible (such an event decreases S(t) by one, and increases
I(t) by one, so the event happen at rate :

β
S(t)I(t)

N

• Exposed (contact) of a susceptible with an infective (such an event increases
E(t) by one, and decreases S(t) by one, so the event happen at rate :

λE(t)

• Removed of an infective with mild infection RM (such an event decreases
I(t) by one and increases RM (t) by 1 so the event) happen at rate

pγsI(t)

• Retired RS with severe infection (such an event decreases I(t) by one and
increases RS(t) by 1 so the event) happen at rate

(1− p)γhI(t)

Hence we have the following equations with Ps,e, Pe,i, Pi,rs, Pi,rh Prh,d standard
mutually independent poisson processes :
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S(t)− S(0) = −Ps,e
(
β
N

∫ t
0
S(u)I(u)du

)
E(t)− E(0) = Ps,e

(
β
N

∫ t
0
S(u)I(u)du

)
− Pe,i

(
λ
N

∫ t
0
E(u)du

)
I(t)− I(0) = Pe,i

(
λ
N

∫ t
0
E(u)du

)
− Pi,rs

(
pγs

∫ t
0
I(u)du

)
− Pi,rh

(
(1− p)γh

∫ t
0
I(u)du

)
RM (t)−RM (0) = Pi,rs

(
pγs

∫ t
0
I(u)du

)
RS(t)−RS(0) = Pi,rh

(
(1− p)γh

∫ t
0
I(u)du

)
− Prh,d

(
µ
∫ t
0
RS(u)du

)
(13)

Note that one can clearly forget about the last equation since If we set

N(t) = S(t) + E(t) + I(t) +RM (t) +RD(t) +D(t) = N.

Now define

SN (t) = N−1S(t), IN (t) = N−1I(t), EN (t) = N−1E(t), RNM (t) = N−1RM (t)

RNS (t) = N−1RS(t), DN (t) = N−1D(t).

We have

SN (t)− SN (0) = − 1
N Ps,e

(
Nβ

∫ t
0
SN (u)IN (u)du

)
EN (t)− EN (0) = 1

N Ps,e

(
βN

∫ t
0
SN (u)IN (u)du

)
− 1

N Pe,i

(
λN

∫ t
0
EN (u)du

)
IN (t)− IN (0) = 1

N Pe,i

(
λN

∫ t
0
EN (u)du

)
− 1

N Pi,rs

(
pγsN

∫ t
0
IN (u)du

)
− 1
N Pi,rh

(
(1− p)γhN

∫ t
0
IN (u)du

)
RNM (t)−RNM (0) = 1

N Pi,rs

(
pγsN

∫ t
0
IN (u)du

)
RNS (t)−RNS (0) = 1

N Pi,rh

(
(1− p)γhN

∫ t
0
IN (u)du

)
− 1

N Prh,d

(
µN

∫ t
0
RNS (u)du

)
DN (t)−DN (0) = 1

N Prh,d

(
µN

∫ t
0
RNS (u)du

)
.

(14)
The above model equations assumes that β, γs, γh and λ are constant. But as
explained above a temporally varying parameter is relevant in order to explained
stochastic or deterministic fluctuations in β so we consider β(t) and the model
equations can be read as follows.

SN (t)− SN (0) = − 1
N Ps,e

(
N
∫ t
0
β(u)SN (u)IN (u)du

)
EN (t)− EN (0) = 1

N Ps,e

(
N
∫ t
0
β(u)SN (u)IN (u)du

)
− 1

N Pe,i

(
λN

∫ t
0
EN (u)du

)
IN (t)− IN (0) = 1

N Pe,i

(
λN

∫ t
0
EN (u)du

)
− 1

N Pi,rs

(
pγsN

∫ t
0
IN (u)du

)
− 1
N Pi,rh

(
(1− p)γhN

∫ t
0
IN (u)du

)
RNS (t)−RNS (0) = 1

N Pi,rh

(
(1− p)γhN

∫ t
0
IN (u)du

)
− 1

N Prh,d

(
µN

∫ t
0
RNS (u)du

)
RNM (t)−RNM (0) = 1

N Pi,rs

(
pγsN

∫ t
0
IN (u)du

)
DN (t)−DN (0) = 1

N Prh,d

(
µN

∫ t
0
RNS (u)du

)
.

(15)
Note that here again the population is closed :
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N(t) = N, ∀t ≥ 0,

and the above stochastic model can reads as follows :

ZNt = xN +
∑5
j=1

hk

N Pj
(
Nβj(u, Z

N
u )du

)
N =

∑6
k=1 Z

N,i
n

(16)

where
ZNt = (SN (t), EN (t), IN (t), RN (t), HN (t))
xN = (SN (0), EN (0), IN (0), RNM (0), RNS (0)) ∈ R5

h1 = (−1, 0, 0, 0, 0)
h2 = (1,−1, 0, 0, 0)
h3 = (0, 1,−1,−1, 0)
h4 = (0, 0, 0, 1,−1)
h5 = (0, 0, 1, 0, 0)

(17)

and

β1(u, z) = (β(u)SN (u)IN (u), 0, 0, 0, 0)
β2(u, z) = (β(u)SN (u)IN (u), λEN (u), 0, 0, 0)
β3(u, z) = (0, λEN (u), pγsI

N (u), (1− p)γhIN (u)
β4(u, z) = (0, 0, 0, N(1− p)γhIN (u), µRNS (u))
β5(u, z) = (0, 0, pγsI

N (u), 0, 0)
z(t) = (SN (t), EN (t), IN (t), RNM (t), RNS (t)) ∈ R5

(18)

The Pj are standard mutually independent poisson processes defined above.

Note that we forgot about the last equation in D(t) since it is not relevant in the
study of the previous model equations since it can be deduced easily.

In order to estabilished some relevant results let us recall the following Large Num-
bers for Poisson processes.

Proposition 6.1. Let (P (t))t≥0 be Poisson process with rate λ. Then

t−1P (t)→ λ, a.s t→ +∞.

Imitating the arguments in Theorem 2.2.7 in [?], we can established the following
Theorem.

Theorem 6.1. Law of Large Numbers Assume that

b(t, x) =
5∑
j=1

hjβj(t, x)

is a locally Lipschitz function in x, locally uniformly in time t such that

sup
j

sup
0≤t≤T

sup
|x|≤K

βj(t, x) <∞

and the unique solution of the ODE

dz(t)

dt
= b(t, z(t)), z(0) = z0

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 24, 2020. ; https://doi.org/10.1101/2020.04.15.20062752doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.15.20062752
http://creativecommons.org/licenses/by-nd/4.0/


28 MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE

does not explose in finite time. Let ZNt denote the solution of the above Stochastic
Differential Equation. Then ZNt converges almost surely and locally uniformly in t
to 

di(t) = λe(t)dt− pγsi(t)dt− (1− p)γhi(t)dt,
ds(t) = −β(t)s(t)i(t)dt,
de(t) = β(t)s(t)i(t)dt− λe(t)dt,
drm(t) = pγsi(t)dt
drs(t) = (1− p)γhi(t)− µh(t)dt

(19)

which is exactly our deterministic model normalized with N with s = S/N , i = I/N ,
e = E/N rm = RM/N , rs = RS/N and z = (s, e, i, rm, rh).

Now, since the above stochastic model converges to our deterministic diffential
system model, it is natural to look at fluctuations of the difference between the
stochastic epidemic process and its deterministic limit.
In this way, we introduce the following rescaled difference between ZNt and z(t) :

V Nt =
√
N(ZNt − z(t)).

Define the continuous time martingales

Mj(t) = Pj(t)− t.

We have

ZNt = xN +

∫ t

0

b(u, ZNu )du+
5∑
j=1

hk
N
Mj

(
Nβj(u, Z

N
u )du

)
.

Now, consider the following 5-dimensional process whose j-th component is defined
as

MN
j (t) =

1

N
Mj

(
N

∫ t

0

βj(u, Z
N
u )du

)
.

We wish to show that V Nt converges in law to a Gaussian process. It is clear that

V Nt =
√
N(xN − x) +

√
N

∫ t

0

(b(u, ZNu )− b(u, z(u))du+
5∑
j=1

hjM
N
j (t).

Now let us established the main result of this section. The proof is contained in
Theorem 2.3.2 in [?].

Theorem 6.2. Central Limit Theorem Under the assumption of the previous the-
orem, assume furthermore that the function b is locally of class C1 in x, locally
uniformly in t. Then as N → +∞ the above rescaled process (V Nt )t≥0 converges in
law to a Gaussian process V defined by the following stochastic differential equation.

Vt =

∫ t

0

∇xb(s, z(s))Vsds+
5∑
j=1

hj

∫ t

0

√
βj(s, z(s))dBj(s), t ≥ 0,

where (B1, B2, B3, B4, B5) are mutually independent Brownian motion.
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