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Abstract. In order to anticipate a future trends in the development of the
novel coronavirus COVID-19 epidemic starting early at march 13, in the french

overseas department Mayotte, we study in this paper a deterministic and sto-

chastic epidemic model through several possible states: susceptible, exposed,
infected including symptomatics and asymptomatics cases, simple or mild re-

moved, severe removed (including hospitalized) and death cases.

We first fit the constant transmission rate parameter to the epidemic data in
Mayotte during an early exponential growth phase using an algorithm with a

package R0 and based on the ML method. Thus, after the intervention and

control measures imposed by the gouvernement, we introduce a simple tem-
porally varying and exponentially decreasing transmission rate with a control
parameter. This allows us to understand wheter these interventions are having

the desired impact of controlling the epidemic by pointing out some percent-
ages to maintain control which is critical in Mayotte given the fragility of its

health infrastructure and the significant fraction of the population without
access to water.

Key words and phrases: SEIR compartmental model; Coronavirus, Mathemat-
ical model, Reproductive number, Epidemiology

1. Introduction

A novel coronavirus Covid − 19 spread from the capital of the Hubei province in
China to the rest of the country, then to most of the world and in particular the
french overseas department Mayotte. Following the emergence of this novel coron-
avirus and its spread outside of China, Europe is now experiencing large epidemics.
In response, France and many European countries have implemented unprecedented

1

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 17, 2020. ; https://doi.org/10.1101/2020.04.15.20062752doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.04.15.20062752
http://creativecommons.org/licenses/by-nd/4.0/


2 MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE

non-pharmaceutical interventions including case isolation of symptomatic individ-
uals and their contacts, the closure of schools and universities, banning of mass
gatherings and some public events, and most recently, widescale social distancing
including local and national lockdowns of populations with all but essential inter-
nal travel banned. Also in response to the rising numbers of cases and deaths,
and to maintain the capacity of health systems to treat as many severe cases as
possible, France like European countries and other continents, have implemented
some process measures to control the epidemic including his overseas department
outside the metropolitan France. The epidemic began slightly later in France, from
February. To prevent further spread of Covid − 19, all travel into Mayotte for
tourism and family visits was prohibited from Friday, March 20. Only essential
travel for selected individuals, such as residents returning home, professionals from
essential services, and patients with health conditions was allowed to entry. Local
authorities have advised all travelers arriving from the mainland France or areas
affected by Covid − 19 to self-isolate at home for 14 days and avoid contact with
others. In addition, the government has urged the public to observe good personal
hygiene, such as regular hand washing. Individuals who develop respiratory symp-
toms, such as cough, fever, and difficulty breathing, within 14 days of arrival into
Mayotte are advised not to visit the doctor or emergency room directly, but to
contact the SAMU (French Emergency Medical Services) immediately by dialing
15. Further international spread of the virus was expected until March 29 ; but
from March 30 the government has decided to cancel all flights both departure and
arrival in Mayotte.

Many mathematical models of the COVID-19 coronavirus epidemic in China, USA,
Italy and France have been developed, and some of these are listed in th following
papers []. Mathematical models can be defined as a method of emulating real life
situations with mathematical equations to expect their future behavior. In epi-
demiology, mathematical models play role as a tool in analyzing the spread and
control of infectious diseases. It is well known that one of the most useful param-
eters concerning infectious diseases is called basic reproduction number. It can be
specific to each strain of an epidemic model.

To anticipate future trends in the development of the epidemic in Mayotte starting
early at March 13, we explore in this paper a deterministic and stochastic epidemic
model to describe the number of cases. To this end, we describe the evolution of an
individual through several possible states: susceptible, exposed, infected including
symptomatics and asymptomatics cases, removed (isolated or cured), hospitalized
and death cases.

Estimating the basic reproduction numbers for SARS-CoV-2 presents challenges
due to the high proportion of infections not detected by health systems and regu-
lar changes in testing policies, resulting in different proportions of infections being
detected over time and between countries. Most countries so far only have the
capacity to test a small proportion of suspected cases and tests are reserved for
severely ill patients or for high-risk groups (e.g. contacts of cases appeared in
Mulhouse). Looking at case data, therefore, gives a systematically biased view of
trends. However, in France and other contries in Europe the basic reproduction
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MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE 3

numbers for SARS-CoV-2 is betwen 2 and 3 at the begining of the epidemic with
an average around 2.5.

In our case, firstly we fit the constant transmission rate parameter of the model at
the begining of the epidemic in Mayotte to observed data. After that we focused
on the effects of the France government imposed public policies designed to contain
this epidemic in his overseas department Mayotte from March 20, wich correspond
to just a few days after that effective date of control measures which really started
in practice.
We assume that from March 20, the transmission rate parameter is not only time-
depending and exponentially decreasing but also does not affect the recovery rate
unless the disease is curable, which is not the case for Covid-19 actually.

Our model can thus be used to project the time-line of the model forward in time.
We then propose various scenarios on this control to show the impact of strict re-
spect of the government measure can lead to have a control on the capacity of the
hospital staff in Mayotte.

The novelty of our paper is based on the new model (1) This paper is organized as
follows. Section 2 deals with some preliminaries and basis aspects of the determin-
istic SEIR model intended to clarify the compuations and simulayions.

2. Preliminaries and basis aspects of the deterministic SEIR model

A deterministic susceptible-exposed-infectious-recovered (SEIR) model for infec-
tious diseases is developed here with the aim to make experimental simulations in
next sections. Because the classical model assumes that the infected person’s incu-
bation period is not infectious, this assumption is quite different from the infection
characteristics of the new coronavirus infection. Therefore we will use a revised
SEIR model to analyse and predict the trend of the outbreak. The model meets
the following assumption.

(H1) The mortality rate µ induced by the disease is considered.
(H2) The transmission method is person-to-person and after a short infectious

period individual becomes permanently immune.
(H3) Once exposed, individuals go through a latent period 1

λ of approximately

6 days after which they become infectious for a period 1
γ1

that is estimated

to be 8 days for slight or mild infectious cases and for a period 1
γ2

for severe

infectious cases that is estimated to be 21 days.

(H4) We assume that there exists a proportion p of mild infections and a mor-
tality rate µ.

The model divides the total population into six categories :

• Susceptibles S not yet infected but a risk of being infected
• Exposed E infected but not yet be infectious, in a latent period; Infectious
• I confirmed to be infectious (with infectious capacity and not yet be quar-

antined) and contain reported and unreported cases.
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4 MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE

• Removed with mild infections RM , Removed RS with severe infections and
Death death cases.

Define S(t) E(t), I(t), RM (t), RS(t) andD(t) as the number of susceptible, exposed,
infectious, removed with mild infections, severe infections with hospitalization and
death cases in the population at time t, respectively.

Susceptibles (S)

Exposed (E)

Infectious (I)

Mild Retired (R_M) Severe Retired (R_S)

Dead 

β SI/N

λ

µ

p*γ1 (1-p)*γ2

Figure 1. Compartments of the SEIR model
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MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE 5

Consider a time interval [t, t+ dt] where the small change dt represents the length
between the two points at which measurements are taken. Let β denote the disease
transmission coefficient. This can be though as the rate at which each infectious
individual makes potentially infections contacts with each other individual, where
a potential infectious contacts will transmit the disease if the contact is made by an
infectious individual with a susceptible individual. It is the product of the contact
rate and the probability of infection given a contact per unit time.
The number of new infections in the time interval [t, t+ dt] is

β
S(t)I(t)

N
dt,

where N is the total population size at the beginning date t0 of the epidemic.
Given initial conditions S(0) = N , initial average of exposed individuals E0 > 0
and I(0) = I0 > 0, the model consists of the following system of ordinary differential
equations: 

dI(t) = λE(t)dt− pγ1I(t)dt− (1− p)γ2I(t)dt,

dS(t) = −β S(t)I(t)N dt,

dE(t) = β S(t)I(t)N dt− λE(t)dt,
dRM (t) = pγ1I(t)dt
dRS(t) = (1− p)γ2I(t)− µRS(t)dt
dD(t) = µRS(t)

(1)

The total population size is denoted by

N(t) = S(t) + E(t) + I(t) +RM (t) +RM (t) +D(t) and satisfies
dN(t)

dt
= 0,

so that the population size remains constant.

Remark 2.1. It is worth to mentionned that the initial average of exposed individ-
uals in front of an infectious individuals E0 is not E(0).

One can also look, by this model, to keep track of the cumulative number of Covid-
19 cases from the time of onset of symptoms for C(t) which is not a compartent
and defined as follows :

dC(t) = λE(t)dt.

With contact tracing, a proportion of individuals exposed to the virus is quaran-
tined. The quarantined individuals can either move to the compartment E or S q
, depending on whether they are effectively infected or not.
, while the other proportion, 1 q, consists of individuals exposed to are effectively
infected or not [20], while the other proportion, 1 q, consists of individuals ex-
posed the virus who are missed from the contact tracing and move to the exposed
compartment, E, once to the virus who are missed from the contact tracing and

Remark 2.2. One can assume that some international infectious travelers indi-
viduals y(t) negligible in front of the total population size S(t) (S(t) + y(t) ∼ S(t))
but not negligible in front of Infectious individuals I(t) subsequently travel at time
t and are eventually detected in their destination to Mayotte.
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6 MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE

Susceptibles (S)

Exposed (E)

Infectious (I)

Mild Retired    
(R_M)

Severe Retired 
(R_S)

Dead 

β SI/N

λ

µ

p*γ1 (1-p)*γ2

Exposed 
international 
travelers to 

Mayotte

β Sy/N

Figure 2. Compartments of the SEIR model including exposed travellers

Hence this leads to the new equations of the model :

dI(t) = λE(t)dt− pγ1I(t)dt− (1− p)γ2I(t)dt,

dS(t) = −β S(t)(I(t)+y(t))N dt,

dE(t) = β S(t)(I(t)+y(t))N dt− λE(t)dt,
dRM (t) = pγ1I(t)dt
dRS(t) = (1− p)γ2I(t)− µRS(t)dt
dD(t) = µRS(t)

(2)
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MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE 7

The dynamic of new exposed travellers y(t) can be thought as follows :

dy(t) = αdt

where α is the average number of imported exposed individuals.

The following table lists the parameters of the model we’ll use for numerical simu-
lation and estimates. These estimates are often wide due to wide variations from
one infection to another. Only the parameter β will be estimated.

Description Mean value Intervall and Reference
Incubation period λ−1 6 [5, 6] : ARS-Mayotte (2020)
infectious period for mild cases
γ−1s

8 ARS-Mayotte (2020)

γ−1h : infectious period for hospi-
talized cases

21 ARS-Mayotte (2020)

β : Basic reproduction number Estimated Package R0
θ : Case fatality rate (CFR) for
hospitalized infections

θ = 0.15 [0.135; 0.165] : Sant Publique France

µ : mortalit rate amoung severe
infection

µ = γg
θ

1−θ SpF

c : fraction of R0 reduced by
public health policies

variable formula (Manou-Abi)

E(0): average of contact cases 15 [15, 16] ARS-Mayotte 2020
p : proportion of infections that
do not require hospitalization

0.8 [0.8; 0.95] Santé Publique France

Remark 2.3. In the above model, we only consider constant-valued parameters.
However, many of these quantities actually vary with time. Take for example the
transmission rate coeffcient β. One can then thing naturally about a possible time
varying transmission coefficient β(t) that allows the effect of control interventions
and by the way we will explore how the basic reproduction number R0 change.

According to this remark, the previous system of ordinary differential equations
becomes: 

dI(t) = λE(t)dt− pγsI(t)dt− (1− p)γhI(t)dt,

dS(t) = −β(t)S(t)I(t)N dt,

dE(t) = β(t)S(t)I(t)N dt− λE(t)dt,
dRM (t) = pγsI(t)dt
dRS(t) = (1− p)γhI(t)− µRS(t)dt
dD(t) = µRS(t)

(3)

This is a realistic model that can be used by epidemiologists to study the dynamics
of the diseases and the effects of control interventions. The basic reproduction
number R0 is defined as the average number of secondary cases generated by a
primary case over his/her infectious period when introduced into a large population
of susceptibles individuals [19]. Note that the constant R0 thus measures the initial
growth rate of the epidemic and for the model above it can be shown (see the next
section) that

R0 =
β

γ1 + γ2
,
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8 MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE

where γ1 = pγs and γ2 = (1 − p)γh. Furthermore Chowell et al. [2] define the
time-dependent effective reproductive number

R0(t) =
β(t)

γ

S(t)

N

of secondary cases per infections cases at time t. One can see that if S(t) ∼ N it

follows that R0(t) ∼ β(t)
γ is a function proportional to the time varying transmis-

sion coefficient β(t). The time point at which R0(t) assumes values smaller that 1
indicates when control measures have becomes effective in controlling the epidemic.

The intervention strategies to control the spread of Covid include surveillance,
placement of suspected cases in quarantine for 2 weeks (the maximum estimated
length of the incubation period), education of hospital personnel and community
members on the use of strict barrier nursing techniques (i.e. protective clothing and
equipment, patient management), and the rapid burial or cremation of patients who
die from the disease.

In order to account for the control intervention we assume that the transmission
rate function β(t) is constant up to the time point t∗ when the control measures
are introduced and after that decays exponentially.

Assumes that a fraction c ∈ [0, 1) of new infections is reduced during a period
T = t − t∗ where t∗ is the time point at which control measures are introduced.
Then we can write :

β(t) = (1− c)β ∀t ∈ [t∗, t∗ + T ] (4)

= β(1− c)n = βeln(1−c)
n

(5)

= βe−nq n ≥ 1, ∀t ∈ [t∗, t∗ + nT ], (6)

where q = − ln(1 − c) ≥ 0 is a kind of quarantine control paramter. Thus in the
rest of this paper we will assume that there exists q ∈ [0, 1) such that

β(t) = βe−nq n ≥ 1, ∀t ∈ [t∗, t∗ + nt], (7)

where the date t∗ denote the starting time where the control intervention start and
n equal to the period where the control parameter relied for example one can as-
sume that the percentage of a control measure is maintened about a 7-day period.
This will be the approach for simulations in the paper.
Note that such kind of parametrization of β(t) was already consider in [?] and [?].
Let us point out that the geometry of the likelihood function can not permit iden-
tification of this quarantine parameter q as its estimator is correlated.

Our way for the transmission rate is a more parsimonious parametrization and it
does not affect γ the recovery rate unless the disease is curable, which is not the
case for Covid-19 actually. Now, let us discussed about the importance of c and p.

• If c = 0 (q = 0) one can see that β(t) = β which means that 0% of new
infections are reduced so that there is no effort to contain new infections
which mean that the control intervention failed.
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MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE 9

• Note that in the time interval [0, t − t∗] if we consider q = 0.2 (c ∼ 0.18)
and β = 0.422 this is equivalent to a higher level of control measures since
this mean that after time T the control measure started, approximately
80% of new interventions are reduced. One can then thing on 1 − p as
the percentage of succefull intervention measures during the major public
policies process introduced to avoid new infections.
• If a fraction c of new infections is reduced during every period T = t − t∗

then the epidemic will go to extinction after nT time where n is the interger
part of

− ln(γ)

cT
.

To close this paragraph, let us say some words above a possibility to have an al-
most periodicity or asymptotic periodicity in the data. Some disease have seasonal
patterns such that measles and flu, which may be well represented by an almost
periodic or asymptotic periodictime varying transmission rate resulting from, for
example, changes in contact rates corresponding to when control measures or re-
ported numbers of infectious fluctuate on some day the day of the week.
In the spirit of the above parametrization, we will consider according to observation
in real data where we think that there is a slight increasing in a sequence of change
times t1, ...tK and followed by a slowly varying exponential decrease, a piecewise
linear continuous transimission coefficient β(t) in the form :

β(t) = β
K∑
k=1

hktIt≤tk + β
∑
n≥1

βe−q(1+0.14n2)
√

log(n)I[tn+1,tn+2]

where β = β(0) at the begining and

t0 = March 20; t1 = March 26; t2 = April 2;

and n = 1, 2.... denoting the change of one week to another.

3. About the french overseas department Mayotte and epidemic Data

Mayotte, is an island and overseas department of France located in the northern
Mozambique Channel in the Indian Ocean off the coast of Southeast Africa, be-
tween northwestern Madagascar and northeastern Mozambique. It is also located
between the two southeasternmost islands of the Comoros archipelago. Mayotte is
made up of one main island (also called Grande Terre), one smaller island called
Petite Terre which lies about 1.5 miles east of the main island and islets. The
capital, Mamoudzou, is located on the eastern coast of the main island and in the
neighbouring smaller island of Petite-Terre, the DzaoudziPamandzi International
Airport is located. The territory is also known as Maore, the native name of its
main island, especially by advocates of its inclusion in the Union of the Comoros.
Mayotte has a total land area of about 144 square miles or 374 square kilometres
(sq. km), and with its almost 285000 people according to official estimates, is very
densely populated at 747 inhabitants per sq.km. Mayotte is the poorest department
of France. However, many immigrants from other Mozambique Channel nations en-
ter Mayotte illegally, as it is one of the most prosperous regions in the area.
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10 MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE

From 1976 into the 21st century, Mayotte had a special status with France as a
territorial collectivity, conceived as being midway between an overseas territory and
an overseas department. Its status was changed to a departmental collectivity in
2001 and then to overseas department in 2011.
Mayotte is represented in the French National Assembly by a deputy and in the
French Senate by two senators. It is administered by a French-appointed prefect
and an elected Departmental Council. The judiciary is modeled on the French sys-
tem. Although, as a department, Mayotte is now an integral part of France, and
despite being in France, the vast majority of Mayottes population do not speak
French as a first language, but a majority of the people 14 years and older report
in the census that they can speak French (with varying levels of fluency). The
majority language is Shimaore, a language related closely to those found in the
neighbouring Comoros islands. Kibushi, a Malagasy language, is the second most
widely spoken. Both have been influenced by Shimaore. The vast majority of the
population is Muslim.

As concerned the land, note that a volcanic mountain range forms a north-south
chain on Mayotte island, with summits from about 1, 600 to 2, 000 feet (500 to
600 metres) in elevation. Protected waters for shipping and fishing are created by
surrounding coral reefs some distance from the shore. Mayotte age structure is as
follows : 46.6% of the population is under age 15, 51% of the population between
15 and 64 years old and 2.4% of the population is older than 65. As we can see the
Mayotte population is young. This type of age structure is common for developing
countries with high birth and death rates. Relatively short life expectancy, as well
as low level of education and poor health care.

3.1. Epidemic Data process in Mayotte. Mayottes Regional Health Agency
and local authorities confirms the first case of new coronavirus infection, an im-
ported case, on march 14 and reported on march 13. He was an individual who
traveled from the metropolitan France and back to Mayotte three days ago. Sub-
sequently, five other imported case was confirmed on march 20. After that 8 others
imported on March 26. Thus a total of 14 imported cases were confirmed. Three
others imported cases were confirmed from march 27 to 29. One can thus think
that almost 1 imported case is introduced per day.
In this case and according to Remark 8, we can assume that among susceptibles
individuals a negligible fraction of international infectious individuals subsequently
travel and are detected in their destination to Mayotte. Thus, according to the
model (8) one may take y(t) = t a variable number y(t) of exposed international
travellers to Mayotte at time t. Clearly, this is reasonable according to the epidemic
history data in Mayotte at the begining.
But since March 30 , the authorities of Mayotte department and France have de-
cided to close and cancel all flights to and from Mayotte; which therefore limits
the introduction of new imported cases but cannot prevent the spread of the virus.
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MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE 11

Figure 3. A map of Mayotte

Hence for t ∈ [t0, tc], this leads to the new equations of the model :

dI(t) = λE(t)dt− pγsI(t)dt− (1− p)γhI(t)dt,

dS(t) = −β S(t)(I(t)+y(t))N dt,

dE(t) = β S(t)(I(t)+y(t))N dt− λE(t)dt,
dRM (t) = pγsI(t)dt
dRS(t) = (1− p)γhI(t)− µRS(t)dt
dD(t) = µRS(t)

(8)

where t0 = march13 and tc = march29. But for t ≥ tc+1 we assume that y(t) = 0.

We obtain information and data from the regional french agency of health called
ARS of Mayotte where the second author of this paper belongs.

Dates imported cases
from march 13 to 20 3
from march 20 to 26 14
from march 26 to 29 17
from march 30 to
nowadays

17
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12 MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE

According to ARS Mayotte and Santé Publique France in Mayotte, the probable
contact number with a confirmed case is around 15− 16 so we take for our model
E(0) = 15 at the begining of the epidemic. More informations can be found at the
following website of the Mayotte local authorities : http://www.mayotte.gouv.fr
and www.mayotte.ars.sante.fr in Coronavirus COVID-19 : Point de situation

Dates Average of contacts with an infectious case at the begining of the epidemic
from march 13 to 20 15-16

So for simulation purposes we will have that I(0) = 3 from march 13 to 20, I(0) = 14
from march 20 to 26 and I(0) = 17 from march 27 to nowadays.

The following table presents the data observed in Mayotte. Data information
includes the cumulative number of reported (confirmed), imported, hospitalized
cases including critical cases. For more informations about the collection of the
data, we refer the reader to the following website of the Mayotte local authorities :
http://www.mayotte.gouv.fr or www.mayotte.ars.sante.fr in Coronavirus COVID-
19 Point de situation.

Date march 13-14 march 15 march 16 march 17 march 18 march 19 march 20
Confirmed
cases

1 1 1 2 3 4 6

incidence
cases

1 0 0 1 1 1 2

imported
cases

1 1 2 2 3 3 3

hospitalized
cases

0 0 0 0 0 0 1

critical cases 0 0 0 0 0 0 1
cured cases 0 0 0 0 0 0 0
death cases 0 0 0 0 0 0 0

Table 1. Covid cases in Mayotte from march 13 to 19

4. Illustration and Numerical Simulations of the epidemic COVID-19
in Mayotte

The following picture illustrate both the number of cumulative confirmed, cured,
hospitalized and death cases from march 13 to april 14.

4.1. Estimation of the basic reproduction number R0 in the begining of
the epidemic. The Reproduction number R0 may be estimated at different times
during an epidemic. Some importants review found that the estimated mean R0

for COVID-19 is in [2, 3] with a median of2.5 which is considerably higher than the
SARS estimate or the influenza.
These estimates of R0 depend on the estimation method used as well as the valid-
ity of the underlying assumptions. Due to insufficient data and short onset time,
current estimates of R0 for COV ID − 19 are possibly biased. However, as more
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Date march 21 march 22 march 23 march 24 march 25 march 26 march 27
Confirmed
cases

9 11 21 30 35 42 50

incidence
cases

3 2 10 9 5 7 8

imported
cases

8 9 10 11 12 13 14

hospitalized
cases

1 1 0 3 3 4 3

critical cases 1 1 2 3 3 2 2
cured cases 0 0 0 0 0 1 4
death cases 0 0 0 0 0 0 0

Table 2. Covid cases in Mayotte from march 20 to 26

Date march 28 march 29 march 30 march 31 april 1 april 2 april 3
Confirmed
cases

63 74 82 94 101 116 128

incidence
cases

13 11 8 12 7 15 12

imported
cases

17 17 17 17 17 17 17

hospitalized
cases

3 8 10 10 11 13 14

critical cases 2 2 3 2 2 3 3
cured cases 4 8 10 10 10 10 13
death cases 0 0 0 1 1 2 2

Table 3. Covid cases in Mayotte from march 27 to april 3

Date april 4 april 5 april 6 april 7 april 8 april 9 april 10
Confirmed cases 134 147 164 171 184 186 191
incidence cases 6 13 17 7 13 2 5
imported cases 17 17 17 17 17 17 17
hospitalized cases 18 18 17 17 16 15 17
critical cases 3 3 3 3 3 4 4
cured cases 14 14 15 22 23 38 50
death cases 2 2 2 2 2 2 2

Table 4. Covid cases in Mayotte from april 4 to 10

data are accumulated, estimation error can be expected to decrease.
Methods for estimating the basic reproduction number at the beginning of the out-
break and the time-dependent reproduction number of secondary cases at any time
during the outbreak, are usually bases on the following methods, but all required
some hypotheses in order to apply the methods.
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14 MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE

Date april 11 april 12 april 13 april 14 april 15 april 16 april 17
Confirmed cases 196 203 207 217 221
incidence cases 5 7 4 10 4
hospitalized cases 20 20 22 20 15
critical cases 3 3 3 3 3
cured cases 59 67 69 69 77
death cases 3 3 3 3 3

Table 5. Covid cases in Mayotte from april 11 to 17

For instance, the Maximum Likewood (ML) that we are interested in this paper as
an estimator according to [9] and [27] propose extensions and options implemented
in the software R. Others methods like Exponential growth rate (EG) and Sequen-
tial Bayesian method also exists.

Note that the ML methods require the user to select the time period over which
growth is exponential and to determine the serial intervall meaning the duration
between symptoms onset of the primary cases and symptoms onset of the secondary
cases in a transmission chain.

In the case of Covid− 19 in Mayotte, the epidemic curve can be analyzed the first
week from the case on march 15 to march 21 where over consecutive time units and
a generation time interval with mean 2 days and standard deviation 0.5 day. To
estimate the early dynamics of Covid − 19 transmission in Mayotte, we fitted the
value of the serial interval with a gamma distribution with mean 2 and standard
deviation 0.5.
By using the R0 Package, we estimate that the basic reproduction number for the
epidemic in Mayotte

R0 = 2.44, with 95%C.I

We presented the code using the R0 Package in the following lines.

Now, we are able to apply the preceding compartmental model for the prediction
of the Covid− 19 in Mayotte. Note that, according to our assumptions we have

β = 0.421 from march 15 to march 21, with 95%C.I

β = 0.422, from march 20 to march 26, with 95%C.I

Here is a Typical session code.

> library(R0) # Loading package
> # epidemic curve can be input as a list of dates
> epid = c(”2020-03-15”, ”2020-03-16”, ”2020-03-17”,”2020-03-18”, ”2020-
03-19”,”2020-03-20”,”2020-03-21”)
> # create generation time : gamma distribution, with mean 2 time
units and standard deviation 0.5 time units
>mGT = generation.time (”gamma”, c(2, 0.5))
> # outbreak during the 2020 Coronavirus in Mayotte
> Mayotte.2020=c(0,1,1,1,2,3,2 )
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MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE 15

Figure 4. Covid19 in Mayotte: cumulative confirmed, cured, hos-
pitalized and death cases from march 13 to april 14.

> data(Mayotte.2020)
> est.R0.ML(Mayotte.2020, mGT, begin=1, end=7, range=c(0,3))
> # Reproduction number estimate using Maximum Likelihood method.
> plot(res.R) # diplays results
> res=est.R0.ML(Mayotte.2019, mGT, begin=1, end=7, range=c(0,3))
> plot(res)

4.2. Prediction of the Covid-19 in Mayotte. Assume that there was any in-
tervention control, of course this is not true beacause from march 16, the french
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16 MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE

government imposed public policies designed to contain this epidemic in all depart-
ments including overseas department, for instance in Mayotte.

The following table illustrative cumulative confirmed compared to predicted data
with our mathematical model.

Dates march 13 march 20 march 27 april 3 april 10
Confirmed cases 1 9 50 128 196
Predicted without control
measure

1 13 43 109 292

Predicted severe cases
cases

1.5 5 12 22 34

Confirmed death cases 0 0 0 2 2
Predicted death cases 0 0 0 [[1,2]] 3

Table 6. Reported Covid and predicted cases in Mayotte from
march 13 to april 10

Now

Remark 4.1. Note that during in this period the model predict that at most two
hospitalized individual will died. This was the case at april 10 in Mayotte.

Discussion:
Comparing model predictions with observed confirmed cases reported in Mayotte,
we found that, from april 3 to 10 the model predicted almost two times higher cases
than those were reported . Thus, we deduce that the control measures and public
policies really started around April 1 instead of March 16 the official date.
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Figure 5. Predictions cases of Covid19 in Mayotte from march
26 to april 10 without any public policies.

The following picture illustrate the number of cumulative predictions cases in May-
otte as weel as the pic and the end of the epidemic without any control measure.
Discussion:
Without any control measure, we can see that the pic will be attained around June
25 an the extinction of the epidemic can be esperate at the end of august.

Remark 4.2. Note also that the cancelation of travel restrictions on the peak time
and peak value has an effect on the peak time and peak value.
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18 MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE

Figure 6. Predictions cases of Covid19 in Mayotte without any
public control.

5. Prediction when varying the quarantine control parameter q

Now let us assume that from march 20, the transmission rate parameter is time-
depending, does not affect the recovery rate unless the disease is curable, which is
not the case for Covid-19 actually and exponentially decreasing as described in 7
with a control quarantine paramter q. This should be actually the case since the
control measure started at this time.
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β(n) =
∑
n≥1

βe−0.7nqI[n;n+1[,

with n = 1 means march 20 and n = 2 means march 27 and so one.
The following table show the evolution of the epidemic when the control paramter
q = 0.2 under the following time varying function

Figure 7. Predictions cases of Covid19 in Mayotte with a control
paramter q = 0.2.

Discussion:
Under control measure with a control paramter q = 0.2, one observed that the pic
is attained later around July 17 with a maximum of infectious people less that the
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one with no control measure.
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Figure 8. Predictions cases of Covid19 in Mayotte with various
control parameter

Discussion: Now, let us remark that at this stage with the exponential decreasing
parameter β if q = 0.5 every 7 days one can observe a rapide extinction of the
epidemic but with q = 0.05 or q = 0.07 every 7 days the extinction come later. At
this stage, we hink that a different parametrization need to be introduced. So one
would like to imagine a slowly varying parameter in the form

β(t) = βe−q
√

log(t), t ≥ 1.

But since we already observed that the control measures and public policies really
started around April 1 instead of March 16 the official date, we will assume that
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22 MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE

there was an increasing of the transmission parameter β(t) during the second week
(from March 20 to 26 and from March 26 to April 3) and after that the decrease
phase started
Now we assume in the rest of the prediction scenarios that there was a slowly
varying in transmission on the form

β(n) = 1.285βI[t0,t1] + 1.125βI[t1,t2] +
∑
n≥1

βe−q(1+0.14n2)
√

log(n)I[tn+1,tn+2]

where β = β(0) at the begining and

t0 = March 20; t1 = March 26; t2 = April 2;

and n = 1, 2.... denoting the change of one week to another.

Let us see what becomes the simulation with a specific choosen quantine parameter
q = 0.1 compared with reported Covid-19 cases in Mayotte.
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Figure 9. Predictions cases of Covid19 in Mayotte with the new
control parameter

To examine the possible impact of enhanced interventions on disease infections, we
plotted the number of cumulative infected individuals I(t) and the predicted cu-
mulative number of reported cases with varying the quarantine parameter q. This
analysis shows that incresing the parameter persistently decreases the peak value
but may either delay or bring forward the peak, as shown in the above pictures.

Remark 5.1. Note that, our analysis shows that increasing quarantine rate will
bring forward the peak and lead to a reduction of the peak value in terms of the
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24 MATHEMATICAL ANALYSIS OF THE COVID-19 EPIDEMIC IN MAYOTTE

number of infected individuals. This indicates that enhancing quarantine and iso-
lation following contact tracing and reducing the contact rate can signicantly lower
the peak and reduce the cumulative number of predicted reported

Remark 5.2. Considering the spreading of the virus and in order to examine the
impact the impact of the travel restriction
We find that with travel restriction (no imported exposed individuals), the number of
infected individuals compared with the scenario of no travel restriction will decrease.
This means that the effect of a travel restriction to Mayotte on the 2019 − nCoV
infection is almost equivalent to increasing quarantine parameter.

5.1. Discussion about the relevance about stochastic models. At this stage,
let us point out the fact that a stochastic pertubation is necessary since in general,
susceptible individual does not have the same probability of being infected and
depends on many factors depending on the behavior of individuals which changes
over the course of the epidemic for instance the confinement will changes the habit.
Therefore suppose that some stochastic environmental factor acts simultaneously
on each individual in the population so that β changes to a a stochastic process
(β(t))t≥0 such that

β(t)dt = βdt+ σdB(t), ∀t ≥ t∗,

where B is a standard brownian motion. Hence the number of potential infectious
contacts that a single infected individual makes with another individual during a
period dt is normally distributed with mean βdt and variance σ2dt. Hence

E(β(t)dt) = βdt, V ar(β(t)) = σ2dt.

As V ar(β(t)) → 0 when dt → 0, this is reasonable model for biologist and it is a
well-established way of introducing stochastic environmental noise into biologically
realistic population dynamic models. To motivate the above assumption on β, let
us we argue as follows. Suppose that thenumbers of potentially infectious contacts
between an infectious individual and another individual in successive time intervals
[t, t+T ),[t+T, t+2T ), ..., [t+(n1)T, t+nT ) are independent identically distributed
random variables and that n is very large. By the Central limit Theorem, the total
number of potentially infectious contacts made in [t, t + nT ) has approximately a
normal distribution with mean nx0 and nσ2

0 , where x0 and σ2
0 are, respectively,

the mean and variance of the underlying distribution in each of the separate time
intervals of length T . Hence it is reasonable to assume that the total number of
potentially infectious contacts has a normal distribution whose mean and variance
scale as the total length of the time interval as in our assumptions. Therefore we
replace β(t) in (7) by

β(t)dt = βdt+ σ(t)dB(t), ∀t ≥ t∗

where B is a standard brownian motion and σ is the diffusion paramter that allows
the effect of random control measures.
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Imitating the arguments of proof in [], we can show that under the above assumption
on β, that the underline SDE rewrittes as follows admits a positive solution.

dI(t) = λE(t)dt− pγsI(t)dt− (1− p)γhI(t)dt,

dS(t) = −β(t)S(t)I(t)N dt− σ(t)S(t)I(t)N dB(t),

dE(t) = β(t)S(t)I(t)N dt+ σ(t)S(t)I(t)N dB(t)− λE(t)dt,
dRM (t) = pγsI(t)dt
dRS(t) = (1− p)γhI(t)− µRS(t)dt
dD(t) = µRS(t)

(9)

6. Towards a generalized continuous time Markov SEIR model

The analogous stochastic model (continuous timeMarkov chain) is constructed by
considering the following events : exposure E, infection I and removal (mild or
severe)R. The transition rates are defined as

Event Effect Transition rate

Exposed E (S,E,I,R) → (S 1, E + 1, I, R) β(t)SIN
Infectious I (S,E,I,R) → (S, E-1, I + 1, R) λE
All Removed (S,E,I,R) → (S, E, I-1, R + 1) (pγs + (1− p)γh)I

When an infection occurs, the number of suscptibles decreases by 1 and the number
of exposed increases by 1; when the latency period γ = (pγs + (1− p)γh) ends, the
number of number of exposed decreases by 1 and the number of infectives increases
by 1; and finally when there is a recovery, the number of infectives decreases by 1,
and finally when there is a recovery, the number of infectives decreases by 1 and
the number of recovered increases by 1.

increments distributed exponentially :
Now, to understand the following probabilistic modelisation, assumes first that the
latency period λ and the duration of infection γ satisfies an exponential distribution
E ∼ E(λ), I ∼ E(γ) whe the mean retired rate γ = pγs + (1 − p)γh. In that case,
the above three types of events happen as follows :

• Infection of a susceptible (such an event decreases S(t) by one, and increases
I(t) by one, so the event happen at rate :

β
S(t)I(t)

N
• Exposed (contact) of a susceptible with an infective (such an event increases
E(t) by one, and decreases S(t) by one, so the event happen at rate :

λE(t)

• Removed of an infective with mild infection RM (such an event decreases
I(t) by one and increases RM (t) by 1 so the event) happen at rate

pγsI(t)

• Retired RS with severe infection (such an event decreases I(t) by one and
increases RS(t) by 1 so the event) happen at rate

(1− p)γhI(t)
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Hence we have the following equations with Ps,e, Pe,i, Pi,rs, Pi,rh Prh,d standard
mutually independent poisson processes :

S(t)− S(0) = −Ps,e
(
β
N

∫ t
0
S(u)I(u)du

)
E(t)− E(0) = Ps,e

(
β
N

∫ t
0
S(u)I(u)du

)
− Pe,i

(
λ
N

∫ t
0
E(u)du

)
I(t)− I(0) = Pe,i

(
λ
N

∫ t
0
E(u)du

)
− Pi,rs

(
pγs

∫ t
0
I(u)du

)
− Pi,rh

(
(1− p)γh

∫ t
0
I(u)du

)
RM (t)−RM (0) = Pi,rs

(
pγs

∫ t
0
I(u)du

)
RS(t)−RS(0) = Pi,rh

(
(1− p)γh

∫ t
0
I(u)du

)
− Prh,d

(
µ
∫ t
0
RS(u)du

)
(10)

Note that one can clearly forget about the last equation since If we set

N(t) = S(t) + E(t) + I(t) +RM (t) +RD(t) +D(t) = N.

Now define

SN (t) = N−1S(t), IN (t) = N−1I(t), EN (t) = N−1E(t), RNM (t) = N−1RM (t)

RNS (t) = N−1RS(t), DN (t) = N−1D(t).

We have

SN (t)− SN (0) = − 1
N Ps,e

(
Nβ

∫ t
0
SN (u)IN (u)du

)
EN (t)− EN (0) = 1

N Ps,e

(
βN

∫ t
0
SN (u)IN (u)du

)
− 1

N Pe,i

(
λN

∫ t
0
EN (u)du

)
IN (t)− IN (0) = 1

N Pe,i

(
λN

∫ t
0
EN (u)du

)
− 1

N Pi,rs

(
pγsN

∫ t
0
IN (u)du

)
− 1
N Pi,rh

(
(1− p)γhN

∫ t
0
IN (u)du

)
RNM (t)−RNM (0) = 1

N Pi,rs

(
pγsN

∫ t
0
IN (u)du

)
RNS (t)−RNS (0) = 1

N Pi,rh

(
(1− p)γhN

∫ t
0
IN (u)du

)
− 1

N Prh,d

(
µN

∫ t
0
RNS (u)du

)
DN (t)−DN (0) = 1

N Prh,d

(
µN

∫ t
0
RNS (u)du

)
.

(11)
The above model equations assumes that β, γs, γh and λ are constant. But as
explained above a temporally varying parameter is relevant in order to explained
stochastic or deterministic fluctuations in β so we consider β(t) and the model
equations can be read as follows.

SN (t)− SN (0) = − 1
N Ps,e

(
N
∫ t
0
β(u)SN (u)IN (u)du

)
EN (t)− EN (0) = 1

N Ps,e

(
N
∫ t
0
β(u)SN (u)IN (u)du

)
− 1

N Pe,i

(
λN

∫ t
0
EN (u)du

)
IN (t)− IN (0) = 1

N Pe,i

(
λN

∫ t
0
EN (u)du

)
− 1

N Pi,rs

(
pγsN

∫ t
0
IN (u)du

)
− 1
N Pi,rh

(
(1− p)γhN

∫ t
0
IN (u)du

)
RNS (t)−RNS (0) = 1

N Pi,rh

(
(1− p)γhN

∫ t
0
IN (u)du

)
− 1

N Prh,d

(
µN

∫ t
0
RNS (u)du

)
RNM (t)−RNM (0) = 1

N Pi,rs

(
pγsN

∫ t
0
IN (u)du

)
DN (t)−DN (0) = 1

N Prh,d

(
µN

∫ t
0
RNS (u)du

)
.

(12)
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Note that here again the population is closed :

N(t) = N, ∀t ≥ 0,

and the above stochastic model can reads as follows :

ZNt = xN +
∑5
j=1

hk

N Pj
(
Nβj(u, Z

N
u )du

)
N =

∑6
k=1 Z

N,i
n

(13)

where
ZNt = (SN (t), EN (t), IN (t), RN (t), HN (t))
xN = (SN (0), EN (0), IN (0), RNM (0), RNS (0)) ∈ R5

h1 = (−1, 0, 0, 0, 0)
h2 = (1,−1, 0, 0, 0)
h3 = (0, 1,−1,−1, 0)
h4 = (0, 0, 0, 1,−1)
h5 = (0, 0, 1, 0, 0)

(14)

and

β1(u, z) = (β(u)SN (u)IN (u), 0, 0, 0, 0)
β2(u, z) = (β(u)SN (u)IN (u), λEN (u), 0, 0, 0)
β3(u, z) = (0, λEN (u), pγsI

N (u), (1− p)γhIN (u)
β4(u, z) = (0, 0, 0, N(1− p)γhIN (u), µRNS (u))
β5(u, z) = (0, 0, pγsI

N (u), 0, 0)
z(t) = (SN (t), EN (t), IN (t), RNM (t), RNS (t)) ∈ R5

(15)

The Pj are standard mutually independent poisson processes defined above.

Note that we forgot about the last equation in D(t) since it is not relevant in the
study of the previous model equations since it can be deduced easily.

In order to estabilished some relevant results let us recall the following Large Num-
bers for Poisson processes.

Proposition 6.1. Let (P (t))t≥0 be Poisson process with rate λ. Then

t−1P (t)→ λ, a.s t→ +∞.

Imitating the arguments in Theorem 2.2.7 in [22], we can established the following
Theorem.

Theorem 6.1. Law of Large Numbers Assume that

b(t, x) =
5∑
j=1

hjβj(t, x)

is a locally Lipschitz function in x, locally uniformly in time t such that

sup
j

sup
0≤t≤T

sup
|x|≤K

βj(t, x) <∞

and the unique solution of the ODE

dz(t)

dt
= b(t, z(t)), z(0) = z0
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does not explose in finite time. Let ZNt denote the solution of the above Stochastic
Differential Equation. Then ZNt converges almost surely and locally uniformly in t
to 

di(t) = λe(t)dt− pγsi(t)dt− (1− p)γhi(t)dt,
ds(t) = −β(t)s(t)i(t)dt,
de(t) = β(t)s(t)i(t)dt− λe(t)dt,
drm(t) = pγsi(t)dt
drs(t) = (1− p)γhi(t)− µh(t)dt

(16)

which is exactly our deterministic model normalized with N with s = S/N , i = I/N ,
e = E/N rm = RM/N , rs = RS/N and z = (s, e, i, rm, rh).

Now, since the above stochastic model converges to our deterministic diffential
system model, it is natural to look at fluctuations of the difference between the
stochastic epidemic process and its deterministic limit.
In this way, we introduce the following rescaled difference between ZNt and z(t) :

V Nt =
√
N(ZNt − z(t)).

Define the continuous time martingales

Mj(t) = Pj(t)− t.

We have

ZNt = xN +

∫ t

0

b(u, ZNu )du+
5∑
j=1

hk
N
Mj

(
Nβj(u, Z

N
u )du

)
.

Now, consider the following 5-dimensional process whose j-th component is defined
as

MN
j (t) =

1

N
Mj

(
N

∫ t

0

βj(u, Z
N
u )du

)
.

We wish to show that V Nt converges in law to a Gaussian process. It is clear that

V Nt =
√
N(xN − x) +

√
N

∫ t

0

(b(u, ZNu )− b(u, z(u))du+
5∑
j=1

hjM
N
j (t).

Now let us established the main result of this section. The proof is contained in
Theorem 2.3.2 in [22].

Theorem 6.2. Central Limit Theorem Under the assumption of the previous the-
orem, assume furthermore that the function b is locally of class C1 in x, locally
uniformly in t. Then as N → +∞ the above rescaled process (V Nt )t≥0 converges in
law to a Gaussian process V defined by the following stochastic differential equation.

Vt =

∫ t

0

∇xb(s, z(s))Vsds+
5∑
j=1

hj

∫ t

0

√
βj(s, z(s))dBj(s), t ≥ 0,

where (B1, B2, B3, B4, B5) are mutually independent Brownian motion.
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7. Methods for computing R0 and R0(t)

The basic reproduction number R0 is defined as the average number of secondary
cases generated by a primary case over his/her infectious period when introduced
into a large population of susceptibles individuals [19]. The constant R0 thus mea-
sures the initial growth rate of the epidemic. A typical first step in analysing a
system of differential equations is finding the equilibra. At equilibrium we do not
mean that individuals are fixed within particular compartments, but rather the
rate of individuals entering and leaving a compartment is excatly balanced. This
is equivalent to setting the right hand size of our equations, i.e. the rate of change
of individuals into and out of each compartment equal to zero. In epidemiology,
models generally have two important equilibria:

• the disease-free equilibrium (DFE) and the endemic equilibrium. The DFE
requires that there are no infected individuals in the population, or in the
case of SIR model I∗ = 0, when the star designates an equilibrium solu-
tion. In contrast the endemic equilibrium corresponds to the state in which
infected individuals persist indefinitely such that I∗ > 0.

Finding equilibria is only the first step to understanding long-term behavior in a
system. We must also determine which of the behavior are typically realized. This
involves determining the stability of the equilibria and will show us whether we will
approach the equilibria or more away from it, assuming we have started near by.
Now coming back to the method for computing R0, there is a rich mathematical
theory that describe how this quantity can be computed for a long range of SEIR-
type models. Let us introduce a commonly used method for finding R0 : the next
generation matrix method. of [?]. A nice feature of the next generation matrix
method is that it only requires use of the DFE which is often easy to compute. In
the SEIR model the DFE is given by

(S∗, E∗, I∗, R∗M ;R∗S) = (N, 0, 0, 0).

Set

γ = pγs + (1− p)γh; µ = 0.

After determining the DFE, we must create a sub-model that only considers the
”disease” compartments, a subset of the equations in the modified SEIR model.
The disease compartment are those that include individuals that are in any stage
of infection which, for the SEIR model, includes both the exposed and infections
individuals namely equations :{

dE(t) = β S(t)I(t)N dt− λE(t)dt
dI(t) = λE(t)dt− γI(t)dt

(17)

Set

−→x =

(
dE
dt
dI
dt

)
(18)

and we can write the disease compartment in the form

d−→x
dt

= F(−→x )− V(−→x )
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d−→x
dt

=

(
β S(t)I(t)N
0

)
−
(
λE(t)
−λE(t)dt+ γI(t)

)
.

Here F(−→x ) contains any terms that directly lead to new infections entering each
compartment j (here j = 2 because disease compartments are E and I) and −→x a
vector of the j disease compartments.
Notice that the second element of F is zero because no new infections enter the
compartment I rather their transition from to the E into I.

V(−→x ) = V−(−→x )− V+(−→x )

where V−(−→x ) contains all of the outputs and V+(−→x ) contains all the inputs from
each disease class. This includes term such as mortality or transition between class.

V+(−→x ) =

(
0
λE(t)

)
V−(−→x ) =

(
λE(t)
γI(t)

)
.

The Jacobian matrix of our equivalent sub-model equations evaluated at the DFE
is given by

J(S∗, E∗, I∗, R∗) =

[
∂E
∂E

∂E
∂I

∂I
∂E

∂I
∂I

]
(N,0,0,0)

=

[
−λ β S

N
λ −γ

]
(N,0,0,0)

=

[
−λ β
λ −γ

]
.

As a result, we can factor out the vector −→x on the right hand size, leaving us with(
dE
dt
dI
dt

)
==

[
0 β
0 0

]
−
[
λ 0
−λ γ

](
E
I

)
(19)

so that
d−→x
dt

= (F − V )−→x .

From linear stability analysis we know that the DFE is equivalent to the real part
of all eigen values of F − V being less than zero.

R0 = ρ(FV −1) < 1

means that the DFE is stable where ρ is the spectral radius of FV −1.

FV −1 =

[β
γ

β
γ

0 0

]
so that

R0 = ρ(FV −1) =
β

γ
=

β

pγs + (1− p)γh
.
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