
The Longevity-Frailty Hypothesis: Evidence from
COVID-19 Death Rates in Europe

Sammy Zahran*a,b, Levi Altringera, and Ashok Prasadc

aDepartment of Economics, Colorado State University, Fort Collins, CO
bDepartment of Epidemiology, Colorado School of Public Health, Fort Collins, CO

cDepartment of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO

February 22, 2021

Abstract

By the end of spring (May 31st), the COVID-19 death rate was remarkably unevenly
distributed across the countries Europe. While the risk of COVID-19 mortality is known
to increase with age, age-specific COVID-19 death rates across Europe were similarly
aberrantly distributed, implying that differences in age structure is an unlikely source
of European variation in COVID-19 mortality. To explain these mortality distribu-
tions, we present a simple model where more favorable survival environments promote
longevity and the accumulation of health frailty among the elderly while less favorable
survival environments induce a mortality selection process that results in lower health
frailty. Because the age-related conditions of frailty render the elderly less resistant
to SARS-CoV-2, pre-existing survival environments may be non-obviously positively
related to the COVID-19 death rate. To quantify the survival environment parameter
of our model, we collected historic cohort- and period-based age-specific probabilities of
death across Europe. We find strong positive relationships between survival indicators
and COVID-19 death rates across Europe, a result that is robust to statistical control
for the capacity of a healthcare system to treat and survive infected persons, the timing
and stringency of non-pharmaceutical interventions, and the volume of inbound inter-
national travelers, among other factors. To address possible concerns over reporting
heterogeneity across countries, we show that results are robust to the substitution of
our response variable for a measure of cumulative excess mortality. Consistent with
the intuition of our model, we also show a strong negative association between age-
specific COVID-19 death rates and pre-existing all-cause age-specific mortality rates
for a subset of European countries. Overall, results support the notion that variation
in pre-existing frailty, resulting from heterogeneous survival environments, partially
caused striking differences in COVID-19 death during the first wave of the pandemic.
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1 Introduction

At the end of spring (May 31st), the COVID-19 death rate (deaths over population) was

strikingly unevenly distributed across Europe (Figure 1). Among the hardest hit countries

in the first wave of the pandemic were Belgium, Spain, Italy, and the United Kingdom with

COVID-19 death rates of 816, 580, 553, and 552 deaths per 1 million, respectively.1 As of May

31st, 2020, the United Kingdom’s COVID-19 death rate exceeded the similarly developed

economy of Germany (102 per million) by more than a factor of 5. Few epidemiological

indicators distinguish the countries of Europe by such an extent.

[Insert Figure 1]

Because the risk of COVID-19 death is significantly higher among the elderly one might

assume that variation in the COVID-19 death rate across Europe in this period reflects

differences in age structure [2, 3]. Consider Figure 2 that plots age-specific COVID-19 death

rates (as of May 31st, 2020) for nine European countries with readily available data. The size

of each point plotted in Figure 2 reflects the share of total reported COVID-19 deaths that

can be attributed to each age group within a country. Most striking is that the cross-national

variation observed in Figure 1 remains. England’s age-specific death rates are roughly five

times that of Germany’s across all age groups. The within-age-group variation in COVID-19

death rates across countries implies that the age structure of the population cannot account

for observed differences in COVID-19 mortality risk between European countries. In fact,

the percentage of the population ≥ 65 (r = 0.134, p = 0.480) and ≥ 75 (r = 0.186, p = 0.325)

years of age are statistically uncorrelated with the COVID-19 death rate during this phase

of the pandemic.

[Insert Figure 2]

While percent elderly is statistically independent of the COVID-19 death rate, the risk

of death by COVID-19 is manifestly related to age. Across the nine countries in Figure 2,

1Reporting suggests that Belgium’s method of recording COVID-19 deaths includes not only deaths that
are confirmed to be virus-related, but also deaths that are suspected of being linked, whether the victim was
tested or not [1].
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persons 70 years of age and older account for more than 80 percent of all reported COVID-19

deaths. A theory of the puzzling distribution of the COVID-19 death rate across Europe at

the end of spring must therefore account for the age-related nature of COVID-19 death risk.

Frailty is a technical notion used to describe a range of age-related conditions that render

the elderly less resistant to health shocks [4, 5, 6, 7]. The accumulation of frailty in a society

is non-obviously positively related to the survival environment [8, 9]. Societies characterized

by higher pre-existing rates of elderly survival and consequent frailty accumulation may be

more susceptible to higher rates of COVID-19 death, at least initially before the arrival of

more effective treatment modalities.

Consider two similarly economically developed countries with varying rates of survival to

age 75. Suppose that one country has high and the other a low survival environment with

respect to all causes of death. Persons surviving to 75 in the low survival environment are

more positively selected on the underlying ability to persist from one year to the next—i.e.,

longevity. Given positive mortality selection, elderly persons over the age of 75 in the low

survival country may be more likely to withstand adverse health shocks than similarly aged

persons in the high survival country because of lower underlying frailty. Similarly, persons

surviving to 75 in a high survival environment are more negatively selected on the underlying

ability to persist, rendering such persons less likely to withstand adverse health shocks than

similarly aged persons in a low survival environment because of higher underlying frailty.

In this paper we develop a simple model of longevity and accumulated health frailty that

captures the intuition above more formally. Each country begins with an identical underlying

distribution of health frailty among the population. Then, heterogeneous survival environ-

ments across countries induce a mortality selection process that generates varying amounts

of accumulated health frailty in subsequent periods. Specifically, more favorable survival

environments promote longevity and a larger amount of accumulated health frailty while less

favorable survival environments induce a relatively strict mortality selection process that re-

sults in a lower amount of accumulated health frailty among the elderly. With respect to an

exogenous health shock that disproportionately targets the relatively health frail, like SARS-
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CoV-2, this simple model implies that countries with more favorable survival environments

will have larger susceptible (health frail) populations and, therefore, higher COVID-19 death

rates.

To measure a survival environment, we collected data on pre-existing all-cause age-specific

death rates (measured in both period and cohort-specific terms), data of life expectancy at age

65, and develop an index of survival that is integrative of these measures. Across measures, we

show that a more favorable pres-existing survival environment is strongly positively associated

with the COVID-19 death rate across Europe. These results are robust to statistical control

for competing theories of COVID-19 prevalence and mortality, including the capacity of a

healthcare system to manage and survive infected persons, the timing and stringency of non-

pharmaceutical interventions, and the volume of inbound international travelers. Results

are also robust to the substitution of our response variable—the COVID-19 death rate—

with a measure of cumulative excess mortality that addresses possible concerns of reporting

heterogeneity across Europe.. For a subset of European countries with readily available data,

and also compatible with our longevity-frailty model, we show a strong negative association

between age-specific COVID-19 death rates and pre-existing all-cause age-specific mortality

rates.

In the next section we describe our theoretical model outlining the relationship between

a country’s survival environment and the expected accumulation of health frailty among the

elderly. In Section 3 we detail data sources, variable operations and statistical models to test

our model. In Section 4 we present results, including a series of robustness tests. In Section

5 we conclude with a summary of key findings and how our simple models extends to other

facts of the COVID-19 pandemic.

2 Model

Consider a simple model of survival with two periods, t = (1, 2). In period t = 1, a country

(j) begins with a representative population of individuals (i) who are each in possession of a

level of health frailty (fi). Health frailty ranges from 0 (least frail) to 1 (most frail) and, for
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simplicity, is assumed to be distributed normally across the population with the restriction

that Pr[0 ≤ f ≤ 1] = 1 since f ∈ [0, 1].

The likelihood that an individual survives to period t = 2 is determined by a Bernoulli

trial. Specifically, individual i in country j survives to period t = 2 with probability p(fi; δj)

or, equivalently, dies in period t = 1 with probability 1 − p(fi; δj). The survival probability

function p(f ; δ), defined over the domain of health frailty, and dropping the subscripts for

simplicity, takes the following functional form

p (f ; δ) = 1− f δ (1)

where δ > 1. Taking the first and second derivative of the survival probability function with

respect to health frailty shows that the probability of survival increasingly deteriorates with

health frailty

∂p

∂f
= −δ f δ−1 < 0 (2)

∂2p

∂f 2
= −δ(δ − 1)f δ−2 < 0 (3)

with certain survival for the least frail—p (0; δ) = 1—and certain death for most frail—

p (1; δ) = 0. For a given level of health frailty in the range (0, 1) a more favorable survival

environment increases an individual’s likelihood of surviving into older age. Specifically,

∂p

∂δ
= − ln (f)f δ > 0 (4)

so that larger values of δ reflect a more favorable survival environment.

Given the survival probability function, we can derive the expected accumulation of health

frailty in period t = 2. Let N1
f denote the number of individuals in period t=1 with health

frailty f. Then the expected number of persons with health frailty f ≥ h that survive to
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period t = 2 is given by

E
[
N2
f≥h
]

=

∫ 1

h

N1
f p (f ; δ) df =

∫ 1

h

N1
f p
(
1− f δ

)
df (5)

and the expected number of relatively frail individuals (f ≥ h) that survive to period t=2 is

increasing in δ

∂E
[
N2
f≥h
]

∂δ
= −

∫ 1

h

N1
f ln (f) f δdf > 0; h ∈ (0, 1) . (6)

Thus, this simple model outlines a clear relationship between a country’s survival environment

(δ) and the expected accumulation of health frailty among the elderly (period t = 2).2

Because frail persons are more susceptible to a range of age-related conditions that render

them less resistant to health shocks or sudden changes to the survival environment like

SARS-Cov2, we predict that higher survival environments are positively associated with

higher COVID-19 death rates.

While we do not explicitly model the determination of δ, this environmental parameter

is a function of several factors that contribute to the longevity of individuals across a health

frailty distribution [13]. These factors may operate on populations in period-specific ways or

cumulatively on a specific cohort over the life-course.3 In the next section, we develop and

describe various period and cohort-based indicators of the survival environment used to test

our model.

2It is important to note that an individual’s health frailty is not endogenously determined in this simple
model. For instance, a less favorable survival environment may positively contribute to the accumulation
of health frailty through “scarring” or “weathering” effects even though the process of mortality selection
negatively contributes to accumulated health frailty, or what some refer to as the “culling” effect [10]. A
model that incorporates these competing effects would provide a more general theoretical understanding of
accumulated health frailty that could account for within-country variation in health outcomes and/or mor-
tality across groups—for example, the relatively high COVID-19 death rates observed for African Americans
in the US [11] or the positive association between COVID-19 death risk and multiple deprivation in the UK
[12].

3For example, the period-based influenza hypothesis argues that COVID-19 death rates are higher Sweden
than neighboring Nordic countries because Sweden experienced remarkably lower death rates from flu over
the last seasons [14]. The period-specific attenuation of influenza mortality produced relatively higher rates
of frailty that rendered the elderly in Sweden more susceptible to COVID-19 death.
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3 Data and Methods

3.1 Survival Environment Indicators

Cohort Survival. To obtain a cohort-based measure of survival environments across the

countries of Europe we employ cohort death rate data from the Human Mortality Database

(HMD).4 First, we subset the HMD data for countries in our sample to all cohorts born

between 1910 and 1960—i.e., data for individuals at least 60 years of age in the year 2020—

and collect mx, the observed death rate at age x. This generates different amounts of data for

each country-cohort group. For instance, for the cohort born in 1920, data may be available

for the age range of 0 to 106 years. For the cohort born in 1960, however, death rate data will

only be available for the 0 to 56 years age range. Further, there is missing death rate data

for some cohort-age observations for some countries. For the sake of comparability across

countries, we subset the cohort mx data to all cohort-age observations that are available for

all countries in our sample.

To calculate qx for each country-cohort-age group, which is defined as the probability that

a person of age x will die within one year, we perform the following life table calculation

qx =
mx

(1 + axmx)
=

mx

(1 + 0.5mx)
(7)

under the imposed assumption (shown above) that ax=0.5 for all age groups, which is con-

sistent with the HMD Methods Protocols (pg. 36-37) [15]. Thus, for each country-cohort-age

observation we are able obtain 1 − qx, which is the probability that a person of age x will

survive to the following year. To get an average measure of the survival environment across

cohorts for each country, we perform a LOESS regression of 1−qx on age to get 1− q̃x values.

To get an overall measure of the cohort-based survival environment across all age groups

4HMD data were accessed at https://www.mortality.org/.
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by country, we then perform the following calculation

102∑
x=23

1− q̃x (8)

which is a discrete measure of the area under the 1 − q̃x curve. For reference, across the 28

European countries in our sample for which cohort data are readily available—Germany and

Croatia excluded—the minimum area calculated 1−q̃x is 73.05 (Bulgaria), the maximum area

calculated is 75.41 (France), and the mean and median areas are 74.62 and 74.37, respectively.

Period Survival. We employ the most recently available all-cause age-specific death rate

data from HMD life tables—2016 for all countries except for Ukraine where the most recently

available data are 2013—to obtain our first period-based measure of the survival environment

for the countries of Europe. Specifically, for each country-age group—0 to 110 years for each

European country—we collect qx, which, again, is defined as the probability that a person

of age x will die within one year. Then, transforming this measure to 1 − qx we obtain

the probability that a person of age x will survive to the following year. Given that HMD

measures terminate at 110 years of age, we impose the restriction that 1 − q110 = 0 for all

countries.

Similar to our cohort-based measure of survival environment, we perform the area under

the curve calculation

110∑
x=0

1− qx (9)

to get an overall measure of the survival environment across all age groups, by country. Across

the 30 European countries in our sample, the minimum area calculated is 99.84 (Bulgaria),

the maximum area calculated is 102.43 (France), and the mean and median areas are 101.42

and 101.55, respectively. In addition to the period-based measure presented above, we also
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employ the most recently available life table measure of life expectancy at 65 years of age as

a period-based measure of survival environment. This is obtained directly through the HMD

life tables.

Survival Index. Our three indicators of survival (described above) are all highly correlated.

Thus, using Principal Component Analysis (PCA), we combine our cohort- and period-based

measures of survival environment into one integrative index. Our results indicate that roughly

94 percent of the variation observed across these three measures is captured through the first

principal component. The standardized predicted PCA score for each country in our sample

serves as an additional indicator of survival to be employed in analyses of COVID-19 death

risk across the countries of Europe.

Validation of Survival Environment Indicators. Our simple model outlined a clear

relationship between a country’s survival environment and the accumulation of health frailty

among the population. Insofar as our indicators of survival are an appropriate characteriza-

tion of relative differences in survival environments across the countries of Europe, it follows

that they can proxy, albeit roughly, for relative differences in the accumulation of health

frailty.

Using data from the European Commission Eurostat database, we test the conceptual

validity of our simple model and indicators of survival.5 Data are available for 14 of the 30

countries in our sample—see Appendix Table A1 for the list of countries where Germany is

excluded given the absence of a cohort-based indicator of survival environment. We begin by

constructing an elderly care index from three separate measures of elderly frailty; percent of

disabled persons ≥ 65 years that need the assistance of others, percent of persons ≥ 65 years

that need help with personal care activities, and percent of persons ≥ 65 years that need

help with household activities. Employing PCA, we derive an integrative index of the need

for elderly care using these measures. Across these three measures that proxy for elderly

frailty and the need for care, the first principal component accounts for roughly 68 percent

5Eurostat data were accessed at https://ec.europa.eu/eurostat/data/database.
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of overall variation.

In Appendix Table A1 we present scores for the three indicators of survival and the

Survival Index alongside the three measures of elderly frailty and the Elderly Care Index

for 13 similarly economically developed countries. The four countries that score highest

according to our Survival Index — France, Spain, Italy, and the United Kingdom — also

score highest on the Elderly Care Index, in the same order. Additionally, Iceland, Austria,

and Finland rank in the bottom four countries across both indices. Further, in Appendix

Figure A1, we present a correlation matrix which, using the data presented in Appendix

Table A1, shows that each individual indicator of the survival environment and need for

elderly care, as well as associated indices, are positively correlated with each other. We see

this as an indication that our Survival Index, comprised of various indicators of the survival

environment, proxy for relative differences in accumulated health frailty among the elderly

across the countries of Europe.

3.2 COVID-19 Mortality Risk

Our measure of COVID-19 mortality risk comes from the John Hopkins University Center

for System Sciences and Engineering COVID-19 Unified Dataset.6 Specifically, we combine

COVID-19 death data with population data from the UN to calculate the daily cumulative

COVID-19 death rate (deaths divided by population) over the period of March 4th, 2020 to

May 31st, 2020, corresponding to the end of spring and the first wave of the pandemic.

We note here that the COVID-19 death rate may be biased by testing regimes and capabil-

ities. The issue of testing bias is particularly problematic for our analysis if COVID-19 testing

regimes and capabilities are correlated with survival environments. For instance, one might

expect that countries with greater COVID-19 testing capabilities are likely to be the same

countries that have the healthcare infrastructure necessary cultivate a relatively favorable

survival environment. This would result in a positive relationship between the COVID-19

death rate and survival environment that is merely an illusion of testing capabilities. The

6JHU CSSE data were accessed at https://github.com/CSSEGISandData/COVID-19 Unified-Dataset .
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standard econometric approach in this case would be to employ a fixed effects regression

model, where unobserved heterogeneity in the response variable—such as testing capabili-

ties—is controlled for through country fixed effects. However, given the time-invariant nature

of our variables of interest, as well as the other control variables included in or model, we are

unable to undertake this approach. Instead, we employ a second-best alternative—random

effects regression model—which we discuss below. In the next section, we describe a series

of control variables that account for these alternative explanations.

3.3 Control Variables

The control variables included in our empirical models account for alternative hypotheses of

variation in COVID-19 mortality risk. These hypotheses include the timing and strength of

epidemic seeding from exported cases, the capacity of healthcare systems to manage and sur-

vive infected persons, the stringency of non-pharmaceutical interventions (NPI), and whether

or not a country requires mandatory Bacille Calmette-Guérin (BCG) vaccination.

To control for timing and strength of international seeding we collected the most recently

available data from the World Bank on the annual count of inbound international tourists

(2018). The intuition being that a country with a larger number of inbound international

tourists would likely have a stronger initial seeding of the virus, which would likely influence

the trajectory of the pandemic in each country. We also include World Bank data on hos-

pital beds per capita (2015/2016), physicians per capita (2015/2016) and nurses per capita

(2015/2016) to control for the capacity of healthcare systems in each country to manage and

survive infected persons. Our measure of NPI stringency comes from the Oxford COVID-19

Government Response Tracker and is collected from the John Hopkins University Center

for System Sciences and Engineering COVID-19 Unified Dataset. The Oxford COVID-19

Government Response Tracker collects information on several common policy responses that

governments have implemented to respond to the pandemic, such as school closures, work-

place closures, cancellation of public events, and stay at home orders to name a few. We

use the Stringency Index which combines information about containment and closure policies
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with information about public information campaigns to generate a daily stringency score

for each country that ranges from 0 to 100.

3.4 Statistical Models

Due to the time-invariant nature of our survival environment measures of interest, as well

as the cross-sectional time-series nature of the data, we estimate versions of the following

random effects model

ln(CoVjt) = α + βSEIj + δXj + γZjt + νj + εjt (10)

with

εjt = ρjεjt−1 + ηjt (11)

where j indexes country and t indexes day. CoV is the COVID-19 death rate. SEI is the

survival environment indicator of interest, which, as we have previously shown, proxies for

the accumulation, or build-up, of health frailty in a country. X is a vector of time invariant

control variables, including the number of inbound international tourists, hospital beds per

capita, physicians per capita, nurses per capita, and mandatory BCG vaccination status,

while Z represents our only time-variant control, NPI policy stringency. vj is a country-

specific random effect and εjt is the model disturbance term which is assumed to follow

the AR(1) process shown above—where |ρ| < 1 and ηjt is independently and identically

distributed (i.i.d.) with mean 0 and variance σ2
η.

We estimate three specifications of the general model presented above. First, we include

our measures of interest, the indicators of survival environment (SEI ), as a continuous vari-

able — the natural log of life expectancy at 65 (lnLE65), the natural log of the cohort-based

survival area (lnCS), the natural log of the period-based survival area (lnPS), and the
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natural log of the Survival Environment Index (lnSI)—so that

ln(CoVjt) = α + β ln(SEIj) + δXj + γZjt + νj + εjt (12)

with εjt defined to follow the AR(1) process described by Eq. (11). According to our theoret-

ical intuition that links favorable survival environments with larger amounts of accumulated

health frailty, we expect the estimated β coefficient to be positive. In other words, we expect

that countries with pre-existing survival environments that are relatively more favorable will

have a higher COVID-19 death rate, all else equal. Specifically, the estimated β coefficient is

interpreted as an elasticity. For example, in the case where the survival indicator is lnLE65,

a 1 percent increase in life expectancy at 65 is associated with a β percent increase in the

COVID-19 death rate, all else equal.

Second, we include the indicators of survival environment as a categorical variable by

grouping our sample of European countries into terciles along the particular measure of

interest so that

ln(CoVjt) = α + β1SEI 2nd
j + β2SEI 3rd

j + δXj + γZjt + νj + εjt (13)

where SEI 2nd
j (SEI 3rd

j ) is a dummy variable equal to 1 if country j is in the second (third) ter-

cile group for the survival environment indicator of interest—e.g., life expectancy at 65—and

0 otherwise. εjt follows the previously defined AR(1) process. Here, the reference group are

all countries that fall into the first tercile range of the measure of interest. The interpretation

of the β coefficients is less straight forward than in the previous specification. The exponen-

tiated coefficient exp (β1) is the ratio of the expected geometric mean for the second tercile

group over the expected geometric mean for the first tercile group, all else equal. Thus,

[exp (β1) − 1] × 100 gives the associated percentage increase, or decrease if the difference is

negative, in the COVID-19 death rate for the second tercile group relative to the first tercile

group, all else constant [16].

Lastly, we continue with the categorical treatment of the Survival Index (SI ) and interact
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it with week fixed effects to allow the estimated relationship between CoV and SI to vary

over time. Specifically,

ln(CoVjt) = α +Wt + β1SI 2nd
j + β2SI 3rd

j + β3Wt × SI 2nd
j + β4Wt × SI 3rd

j

+ δXj + γZjt + νj + εjt (14)

where Wt are the included week fixed-effects. In analyses that follow, we report the results

of this model via post-estimation predicted margins, visually representing the divergence of

COVID-19 deaths across survival environments in time.

4 Results

We begin with a simple assessment of the relationship between the COVID-19 death rate and

our indicators of the survival environment. As expected by our model, we find strong positive

correlations between the COVID-19 death rate and our indicators of the survival environment:

life expectancy at 65 (r = 0.72, p < .001), period survival (r = 0.69, p < .001), cohort survival

(r = 0.74, p < .001), and our survival index (r = 0.73, p < .001). In other words, higher

pre-existing rates of elderly survival are associated with higher rates of COVID-19 death.

Figure 3 displays the correlation spatially. Countries in yellow have the most unfavorable

survival environments while countries in purple have the most favorable, according to our

survival index. Hyper-imposed on the map are grey circles of varying size, corresponding

to the observed COVID-19 death rate as of May 31st, 2020. The spatial correspondence

between pre-existing elderly survival and the COVID-19 death rate is evident.

[Insert Figure 3]

Next, we test whether observed relationships between the COVID-19 death rate are robust

to inclusion of variables that operationalize other candidate hypotheses, including timing

and strength of epidemic seeding from exported cases, the capacity of healthcare systems

to manage and survive infected persons, the stringency of non-pharmaceutical interventions

14
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(NPI), and whether or not a country requires mandatory Bacille Calmette-Guérin (BCG)

vaccination. Importantly, our statistical models include a country random-effect and week

fixed-effects to account for unobserved heterogeneity by place and time.

Table 1 reports regression coefficients from our random effects regression model (Eq.12) for

all measures of the survival environment. The estimate of β, corresponding to our measures

of the survival environment, is expected to be positive, indicating that higher pre-existing

rates of survival among the elderly are associated with higher COVID-19 death rates. The

necessary assumption for the identification of β is E[vj|SEj| = 0, with a similar condition

being required for the identification of the coefficients on the other covariates. In other words,

vj is assumed to be the realization of an i.i.d. process with mean 0 and variance σ2
η.

As expected, all coefficients are positive and statistically distinguishable from chance.

Focusing on column (4), corresponding to our integrative survival index (SI ), we find that a

standard deviation increase in the pre-existing survival environment increases the COVID-

19 death rate by 52.2% (95% CI: 25.7, 78.8), other things held equal. A standard deviation

increase in the survival index, for example, is the equivalent of moving from Greece (SI =1.28)

to Spain (SI =2.22). The estimate of ρ is reported for all models in Table 1 along with the

associated modified Bhargava et al. Durbin-Watson and Baltagi-Wu locally best invariant

(LBI) test statistics under the null hypothesis ρ = 0 [17, 18]. This null hypothesis is rejected

across all models presented in Table 1, and implying that the modeled AR(1) disturbance

structure appropriately corrects the model estimated standard errors.

[Insert Table 1]

Figure 4 shows predicted COVID-19 death rates from Eq.(12) across percentile scores of

all indicators of the pre-existing elderly survival environment. We derive predicted COVID-

19 death rates by fixing other model covariates pertaining to inbound international travelers,

healthcare system capacity, the stringency of non-pharmaceutical interventions (NPI), and

week of observation are set at their sample means. We observe high statistical agreement

across period and cohort-based operations of the elderly survival environment. Results indi-

cate that the expected COVID-19 death rate is 3.7X higher for countries at the 75th percentile

15
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of our survival index as compared to countries at the 25th percentile. Overall, Figure 4 im-

plies that the rate of COVID-19 mortality increased linearly in pre-existing elderly survival

over the first wave of the COVID-19 pandemic.

[Insert Figure 4]

Table 2 reports coefficients from Eq.(13), where measures of the elderly survival envi-

ronment are divided categorically into terciles of low, medium, and high survival. Because

our response variable is measured in natural log terms, reported coefficients have the inter-

pretation of a semi-elasticity reflecting the percent difference in the COVID-19 death rate

of a tercile of interest relative to the reference tercile I of low pre-existing elderly survival.

Consistent with theoretical expectation, coefficients across all operational definitions of the

elderly survival environment are positive and statistically significant. Focusing on column

(4), and all other things held equal, we find that countries in tercile II (medium survival

environment) have an average COVID-19 death rate that is 444.7% higher (95% CI: 99.0,

1,379.1) than countries in tercile I (low survival environment).7 Similarly, and relative to

tercile I (low survival environment), countries in tercile III (high survival environment) have

an average COVID-19 death rate that is 784.6% higher (95% CI: 203.4, 2,473.9). Results in

Table 2 corroborate Table 1 and Figure 4 implying that, other things held equal, the COVID-

19 death rate increased monotonically with pre-existing elderly survival over the first wave

of the pandemic.

[Insert Table 2]

Next, Figure 5 presents results from Eq.(14), showing predicted cumulative COVID-19

death rates by Survival Index terciles over the course of the first wave of the European

pandemic. Again, predictions are derived with all other model covariates fixed at their

sample means. By mid-April, the predicted COVID-19 death rate in high elderly survival

countries was almost 8X that observed in low elderly survival countries (69.4 vs 8.7 deaths

7To obtain the marginal effects, in percentage terms, for the estimated coefficients in Table 2, one must
perform the following transformation: [exp(β̂)− 1]× 100 [16].
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per million). By the end of spring, the COVID-19 death rate of high elderly survival countries

stood at 150 deaths per million, about 1.2X and 5.6X higher than medium and low survival

environments, respectively.

[Insert Figure 5]

5 Robustness

5.1 Excess Mortality

Given known inconsistencies in the reporting of COVID-19 deaths across countries—especially

during the first wave of the pandemic—excess mortality can be used as a proxy for COVID-19

mortality that is potentially less biased by administrative differences that lead to under- or

over-reporting of COVID-19 deaths. We obtained weekly excess mortality Z -scores from Eu-

roMOMO 8. Each observation in the EuroMOMO data reflects the within country deviation

from central tendency, or baseline, in all-cause mortality for a given week. Because of the

within-country differenced nature of EuroMOMO’s excess mortality measure, we estimate

following panel-corrected standard errors model

ln(EMjt) = α + β ln(SEIj) + δXj + γZjt + εjt (15)

where all terms carry from Eq. (10), with the exception of our response variable EMjt which

measures the cumulative excess mortality of country i in week j in standardized terms. εjt

follows the same AR(1) disturbance structure defined in Eq. (11).

Table 3 reports the estimated coefficients. As before, our interpretive focus is on column

(4) corresponding to our survival index. Because our survival index is measured in standard-

ized terms, our coefficient of interest, β, has the interpretation of an elasticity, indicating

that a standard deviation increase in the pre-existing survival environment is associated with

a β percent change in excess mortality. Other things held equal, we find that a unit increase

8Excess mortality Z -scores were accessed at https://www.euromomo.eu/graphs-and-maps.
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in our survival index is associated 6.1% increase (95% CI: 1.5, 10.7) in cumulative weekly

excess mortality.

[Insert Table 3]

5.2 Age-Specific Mortality

The National Institute for Demographic Studies (INED) collects age- and sex-specific COVID-

19 death data for select European countries.9 We collapse age-specific COVID-19 deaths

into common age intervals across the countries for which data are available and calculate

corresponding pre-existing all-cause mortality rates using data from the HMD. Age-specific

COVID-19 death data is available for all age groups in England, France, Germany, Italy, the

Netherlands, Spain, Sweden and Ukraine. Denmark’s age-specific data is only available for

those 60 years of age and older, Norway data is available for those 40 years of age and older,

and Portugal’s data is top-coded at 80 years of age so that comparable data is only available

for those 79 years of age and younger. Pre-existing age-specific all-cause mortality data are

anchored on the most recently available common year of 2016. To test the statistical rela-

tionship between pre-existing all-cause mortality and the COVID-19 death rate, we estimate

the following least squares model

ln (CoV ijt) = α + β ln(ACDRij) + δi +Wt + εijt (16)

where CoV is the COVID-19 death rate for age group i in country j at time t, ACDR is

the pre-existing all-cause death rate (2016), δi is a vector of age-interval fixed effect, and Wt

is a vector of week fixed effects. ε is the model disturbance term. Our theoretical interest

is in the estimate of β which we expect to be negative, implying that, other things equal,

a 1 percent increase in the age-specific all-cause death rate is associated with a β percent

decrease in the associated age-specific COVID-19 death rate.

Table 4 reports the coefficient estimates for equation (15). The model estimates presented

9INED age- and sex-specific COVID-19 death data were accessed at https://dc-covid.site.ined.fr/en/data/.
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in column (1) are generated in the absence of age-interval fixed effects. In columns (2)

through (4) we introduce age-interval fixed effects. The inclusion of these variables results

in a between-country estimate of that is purged of the confounding within-country effect of

increasing risk of death across age intervals. According to our theoretical expectations, pre-

existing all-cause mortality rates are estimated to have a strong, negative association with

the COVID-19 death rate across countries. The coefficient estimate of -1.439 (95% CI: -1.519,

-1.360) in column (2) implies that, other things equal, a 1% increase in the pre-existing all-

cause death rate is associated with an approximate 1.5 percent lower COVID-19 death rate,

on average across age intervals.

In column (3) of the table we reduce the sample to intervals ≥ 60 years of age. The

qualitative nature of the estimates are maintained, though the negative association between

pre-existing all-cause mortality and the COVID-19 death rate appears to be stronger among

the elderly. Specifically, a 1% increase in the pre-existing all-cause death rate is associated

with an approximate 4.3 percent decrease in the COVID-19 death rate for those ≥ 60 years

of age, other things equal. In column (4) we restrict the sample to intervals ≤ 49 years of

age. Relative to column (3), which restricts to intervals ≥ 60 years of age, the coefficient

estimate in column (4) intuitively deflates, reinforcing that the pre-existing death rate effect

is stronger among the elderly and compatible with a longevity-frailty model.

[Insert Table 4]

6 Conclusion

In this paper we developed a simple model of longevity and accumulated health frailty in an

attempt to explain observed differences in COVID-19 mortality across the countries of Eu-

rope. The model describes how heterogeneous survival environments across countries induce

mortality selection processes that generate varying amounts of accumulated health frailty

among elderly populations. With respect to an exogenous health shock that disproportion-

ately targets the relatively health frail, like SARS-CoV-2, our model implies that countries
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with a more favorable survival environment will have a larger susceptible (health frail) popu-

lation and, therefore, a higher COVID-19 death rate. To operationalize a country’s survival

environment we collected data on pre-existing all-cause age-specific death rates (measured

in both period and cohort-specific terms), life expectancy at age 65, and an index of sur-

vival that is integrative of these variables. We showed that our various indicators of the

survival environment are correlated with measures of elderly frailty, serving as sound proxies

of relative differences in accumulated health frailty among the countries of Europe.

We then statistically linked cross-national variation in survival environments to the puz-

zling distribution of COVID-19 death rates in Europe at the end of spring, finding that a

more favorable survival environment, as indicated by lower pre-existing all-cause mortality

rates, is positively associated with COVID-19 death rates. Specifically, we find that a stan-

dard deviation increase in the pre-existing survival environment increases the COVID-19

death rate by 52.2% (95% CI: 25.7, 78.8), other things held equal. Coupled with analyses

involving categorical measurement of the elderly survival environment, the COVID-19 death

rate appeared to increase monotonically with pre-existing elderly survival over the first wave

of the pandemic. Importantly, these relationships are robust to statistical control for the

inbound international travelers, the capacity of a healthcare system to manage and survive

infected persons, and the timing and stringency of non-pharmaceutical interventions, among

other factors.

We followed with analyses of cumulative excess mortality instead of the COVID-19 death

rate. Results behaved similarly, implying that reporting differences across European countries

is an unlikely source of our observed correlations between pre-existing survival environments

and COVID-19 mortality. We closed analyses showing a strong negative association between

age-specific COVID-19 death rates and pre-existing all-cause age-specific mortality rates for

a subset of European countries with readily available data.

Our results are consistent with other known facts concerning COVID-19 mortality during

the first wave of the pandemic. Specifically, end-of-spring data show that a large percentage

of COVID-19 deaths occurred among frail populations in long-term care facilities — Belgium
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(53%), Denmark (34%), France (51%), Germany (36%), Hungary (19%), Ireland (60%),

Norway (60%), Portugal (40%), and Sweden (45%).10 In France, Spain and Italy, among

the hardest hit countries of Europe, about half to two-thirds of elderly require assistance for

basic personal and household care activities. This fact educates that a sizeable percentage

of European elderly could not easily socially distance in the first wave of the pandemic,

compounding the risk of COVID-19 mortality.

Further, there are several characteristics of COVID-19 that explain why mortality could

be strongly associated with frailty, as we have shown here. Firstly, persons with comorbidities

such as type II diabetes, hypertension, cardiovascular disease, chronic kidney disease etc.,

especially those with multiple comorbidities, face a higher risk of death. Age > 80 years is

also independently associated with high mortality [20, 21, 22, 23]. Secondly, while we now

know that airborne transmission is the main mode of the spread of this virus [24, 25], this was

not appreciated in the early months of the pandemic and public health advice on airborne

transmission was inadequate, if not misleading [26, 27]. Thirdly, evidence suggests that pre-

symptomatic and asymptomatic infected persons can and did spread the infection [28, 29].

Finally, the dynamics of viral shedding by infected people allow them to easily infect multiple

people in closed or crowded environments and super-spreader events played an important role

in early transmission dynamics [30, 31]. These factors proximately underwrite the association

between mortality and the accumulation of frailty reported here.

In sum, our results support the hypothesis that variation in pre-existing frailty, stemming

from differences in pre-existing survival environments, partially determined the striking dif-

ferences in COVID-19 death risk during observed during the first wave of the European

pandemic. Our findings also provide general intuition as to how similarly novel causes of

death might operate across countries via the heterogeneous accumulation of health frailty

among their populations. It is interesting that some reports suggest that the aged popu-

lation in developing countries show a lower COVID-19 mortality rate than seen in Europe,

10These data come from the International Long-Term Care Policy Network [19] (https://ltccovid.org/wp-
content/uploads/2020/05/Mortality-associated-with-COVID-3-May-final-5.pdf) and Sciensano, a public re-
search institution which publishes very detailed epidemiological daily reports on COVID-19 (https://covid-
19.sciensano.be/sites/default/files/Covid19/covid-19 daily report 20200505 - fr.pdf).
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which would be predicted by our model due to the poor survival environment that the aged

face in these countries [32].
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Tables

Table 1: Coefficients of Interest for Regression of Ln Cumulative
COVID-19 Death Rate on Ln Survival Environment Indicators

(1) (2) (3) (4)

Life Expectancy at 65 (LE) 10.251***
(2.496)

Cohort Survival (CS) 99.159***
(23.739)

Period Survival (PS) 102.897***
(34.768)

Survival Index (SI) 0.522***
(0.136)

Constant -38.544*** -433.442*** -483.180*** -7.340***
(7.235) (101.231) (159.862) (2.378)

ρ̂ 0.859 0.859 0.859 0.859
Bhargava et al. Durbin-Watson 0.382 0.375 0.382 0.375
Baltagi-Wu LBI 0.418 0.410 0.418 0.410

Observations 2,670 2,492 2,670 2,492
Countries 30 28 30 28
Country RE Yes Yes Yes Yes
Week FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes

NOTE: Standard errors in parentheses. Levels of statistical significance are indicated by *** p < 0.01,
** p < 0.05, * p < 0.1. All models incorporate an AR(1) disturbance structure and the estimated ρ is
reported along with the associated modified Bhargava et al. Durbin-Watson and Baltagi-Wu locally
best invariant (LBI) test statistics, both of which have complicated distributions [17, 18]. In all cases
we reject the null hypothesis of ρ = 0.
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Table 2: Coefficients of Interest for Regression of Ln Cumulative COVID-19
Death Rate on Categorical Survival Environment Indicators

(1) (2) (3) (4)

LE Tercile II 1.687***
(0.429)

LE Tercile III 2.221***
(0.520)

CS Tercile II 1.209***
(0.461)

CS Tercile III 1.923***
(0.572)

PS Tercile II 0.900**
(0.418)

PS Tercile III 1.397***
(0.504)

SI Tercile II 1.695***
(0.513)

SI Tercile III 2.177***
(0.547)

Constant -9.983*** -7.390*** -9.484*** -9.577***
(2.075) (2.598) (2.392) (2.254)

ρ̂ 0.859 0.859 0.859 0.859
Bhargava et al. Durbin-Watson 0.382 0.375 0.382 0.375
Baltagi-Wu LBI 0.418 0.410 0.418 0.410

Observations 2,670 2,492 2,670 2,492
Countries 30 28 30 28
Country RE Yes Yes Yes Yes
Week FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes

NOTE: Standard errors in parentheses. Levels of statistical significance are indicated by ***
p < 0.01, ** p < 0.05, * p < 0.1. For each column (1)-(4), the estimated coefficients are
relative to the reference group, which is Tercile I for each survival environment indicator. All
models incorporate an AR(1) disturbance structure and the estimated ρ is reported along with
the associated modified Bhargava et al. Durbin-Watson and Baltagi-Wu locally best invariant
(LBI) test statistics, both of which have complicated distributions [17, 18]. In all cases we
reject the null hypothesis of ρ = 0. To obtain the marginal effects, in percentage terms, for the
estimated coefficients above, one must perform the following transformation: [exp(β̂)− 1]× 100
[16].
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Table 3: Coefficients of Interest for Regression of Ln Cumulative
Excess Mortality on Ln Survival Environment Indicators

(1) (2) (3) (4)

Life Expectancy at 65 (LE) 3.202***
(0.925)

Cohort Survival (CS) 32.305***
(10.460)

Period Survival (PS) 31.048***
(11.311)

Survival Index (SI) 0.061***
(0.023)

Constant -10.219*** -139.669*** -143.971*** -0.953
(3.599) (45.759) (53.065) (0.985)

ρ̂ 0.821 0.833 0.836 0.841

Observations 247 234 247 234
R-squared 0.701 0.725 0.703 0.724
Countries 19 18 19 18
Week FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes

NOTE: Standard errors in parentheses. Levels of statistical significance are indicated by ***
p < 0.01, ** p < 0.05, * p < 0.1. All models incorporate an AR(1) disturbance structure and
the estimated ρ is reported.
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Table 4: Regression of Ln Cumulative Age-Specific COVID-19 Death
Rates on Ln Pre-Existing All-Cause Age-Specific Death Rates

(1) (2) (3) (4)

All-Cause Death Rate (2016) 1.112*** -1.439*** -4.313*** -0.653***
(0.010) (0.041) (0.095) (0.034)

Age 10-19 -0.758*** -0.169**
(0.104) (0.072)

Age 20-29 1.664*** 1.600***
(0.089) (0.061)

Age 30-39 3.595*** 3.001***
(0.093) (0.065)

Age 40-49 5.570*** 4.364***
(0.106) (0.078)

Age 50-59 8.101***
(0.132)

Age 60-69 10.408***
(0.160)

Age 70-79 12.831*** 5.009***
(0.192) (0.104)

Age 80-89 15.571*** 10.979***
(0.234) (0.201)

Age ≥ 90 17.749*** 16.161***
(0.274) (0.297)

Constant 4.843*** -17.480*** -20.587*** -10.379***
(0.501) (0.487) (0.649) (0.581)

Observations 4,697 4,697 2,335 1,820
R-squared 0.738 0.869 0.710 0.764
Week FE Yes Yes Yes Yes
Age Interval FE No Yes Yes Yes

NOTE: Standard errors in parentheses. Levels of statistical significance are indicated by ***
p < 0.01, ** p < 0.05, * p < 0.1. For columns (2) and (4) the reference age group is 0-9. For
column (3) the reference age group is 60-69.
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Figures

Figure 1: Uneven Distribution of Wave I (ending May 31st, 2020)
COVID-19 Mortality Risk Across the Countries of Europe

NOTE: The countries of Europe are arranged in descending order by reported
COVID-19 deaths per million, as of May 31st, 2020. COVID-19 death data
by country are from Johns Hopkins Coronavirus Resource Center (JHU CSSE)
(https://github.com/CSSEGISandData/COVID-19 Unified-Dataset ).
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Figure 2: Heterogeneous Wave I (ending May 31st, 2020) COVID-19
Mortality Risk by Age Group Across Select European Countries

NOTE: COVID-19 death and population data (closest to May 31st, 2020) by age
and country are from National Institute for Demographic Studies (INED) (https://dc-
covid.site.ined.fr/en/data/).
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Figure 3: Spatial Distribution of Wave I (ending May 31st, 2020)
COVID-19 Mortality Risk and Relative Survival Environment

NOTE: COVID-19 death data by country are from Johns Hopkins Coronavirus Resource
Center (JHU CSSE) (https://github.com/CSSEGISandData/COVID-19 Unified-Dataset )
and Survival Index data are derived from the Human Mortality Database (HMD)
(https://www.mortality.org/).

33

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2021. ; https://doi.org/10.1101/2020.04.14.20065540doi: medRxiv preprint 

https://github.com/CSSEGISandData/COVID-19_Unified-Dataset 
https://www.mortality.org/
https://doi.org/10.1101/2020.04.14.20065540
http://creativecommons.org/licenses/by-nd/4.0/


Figure 4: Model Predicted Cumulative COVID-19 Death
Rate at Various Percentiles of Survival Environment Indicators.

NOTE: Model predicted cumulative death rates are generated via the Eq. (12) model estimates
presented in columns (1)-(4) of Table 1, where all other covariates are evaluated at their mean.
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Figure 5: Model Predicted Cumulative COVID-19 Death
Rate by Week of Wave I for Survival Index Terciles

NOTE: Model predicted cumulative death rates by week and Survival Index tercile are generated
via Eq. (14) model estimates, where all other covariates are evaluated at their mean.

35

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2021. ; https://doi.org/10.1101/2020.04.14.20065540doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.14.20065540
http://creativecommons.org/licenses/by-nd/4.0/


Appendix

Table A1: Survival and Elderly Care indexes by Country

Country
Survival

Index
Cohort
Survival

Period
Survival

Life Ex-
pectancy

at 65

Elderly
Care
Index

% > 65
Disabled

Need
Help

% > 65
Need
Help

Personal
Activi-

ties

% > 65
Need
Help

House
Activi-

ties

France 2.557 1.522 1.590 1.404 2.270 1.400 0.678 1.839
Spain 2.220 1.271 1.410 1.249 2.258 1.496 1.266 1.149
Italy 1.975 1.172 1.208 1.125 2.208 1.816 0.810 1.185
United Kingdom 1.259 0.778 1.004 0.476 1.115 0.746 0.611 0.575
Norway 1.040 0.519 0.558 0.803 -1.486 -0.890 -1.076 -0.613
Luxembourg 0.978 0.192 0.744 0.839 -1.144 -0.362 -1.217 -0.418
Belgium 0.969 0.574 0.608 0.571 1.394 0.623 0.310 1.470
Sweden 0.951 0.578 0.402 0.744 -0.415 -0.528 -0.219 0.029
Denmark 0.805 0.370 0.843 0.256 -0.449 -0.785 0.464 -0.437
Iceland 0.776 0.970 -0.015 0.458 -1.525 -0.944 -0.905 -0.794
Austria 0.762 0.489 0.323 0.583 -1.514 -0.814 -0.840 -0.967
Finland 0.468 0.372 -0.024 0.536 -2.158 -1.460 -0.949 -1.322
Netherlands 0.416 0.440 -0.071 0.423 -1.114 -0.873 -0.822 -0.239

NOTE: This table presents standardized scores for three indicators of survival environment and the “Survival
Index” alongside three measures of elderly frailty and the “Elderly Care Index” for 13 similarly economically
developed countries. Survival environment indicator data are from the Human Mortality Database (HMD)
(https://www.mortality.org/) and elderly frailty indicator data are from European Commission Eurostat
database (https://ec.europa.eu/eurostat/data/database).
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Figure A1: Correlation Matrix for Indicators of Survival Environment and Elderly Frailty

NOTE: Survival environment indicator data are derived from the Human Mortality Database (HMD)
(https://www.mortality.org/) and elderly frailty indicator data are from European Commission Eu-
rostat database (https://ec.europa.eu/eurostat/data/database). The data underlying the correlations
presented here can be found in Appendix Table A1.
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