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Abstract

We develop a simple analytical method to estimate the fraction of unreported in-

fections in epidemics with a known epicenter and estimate the number of unreported

COVID-19 infections in the US during the first half of March 2020. Our method uti-

lizes the covariation in initial reported infections across US regions and the number of

travelers to these regions from the epicenter, along with the results of a randomized

testing study in Iceland. We estimate that 4-14% (1.5%-10%) of actual infections had

been reported in US up to March 16, accounting for an assumed reporting lag of 8 (5)

days.
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1 Introduction

The global pandemic COVID-19 is here in the United States. The number of confirmed

cases is rising rapidly, reaching 398,809 as of April 7 with 12,895 reported deaths. The

coronavirus outbreak was declared a national emergency beginning March 11. More

than half of U.S. states have imposed various levels of lockdown measures2. In addition

to the public health crisis, the country is certainly looking at a deep and possibly long-

lasting economic recession, according to Ben Bernanke and Janet Yellen in a recent

Financial Times article3.

Given the level of severity of current conditions, we still fail to answer the most

basic yet important question: How many people are actually infected with COVID-19

in the U.S. and what is the true fatality rate? Because of the shortage in testing kits,

hospitals and disease control centers are only able to test the subsample of people with

severe symptoms or travel history. The number of reported infections is much lower

than the actual number of infections in the U.S.

These unreported infections can be unrecognized because they often experience

mild or no symptoms (Nishiura et al., 2020; Andrei, 2020). If not hospitalized or

quarantined, they can infect a large proportion of the population. Thus, estimating

the number of unreported infections can inform policy-makers about the proper scale

of virus control policies (Alvarez et al., 2020; Eichenbaum et al., 2020), and to assess

the effectiveness of public health policies such as social distancing in slowing the spread

of the epidemic.

Estimating the number of unreported infections may also give a more accurate

measure of the true fatality rate. The current reported fatality rate, which is 3-4%

according to WHO4, is not the true fatality rate. The true fatality rate is the proportion

of those actually infected who die, not of those reportedly infected. The reported fatality

rate is a biased estimate of the true rate, because there is selection bias in testing. Since

many of the patients who are tested have severe symptoms, they may have a higher

true fatality rate than those untested, which would make the reported fatality rate an

overestimate of the true rate.

Ideally, a randomized testing experiment will give an unbiased estimate of the true

rate. However, given the limited supply of testing kits and surging demand by people

with symptoms, randomized testing may be infeasible, especially in the early periods of

the outbreak. Therefore, it may be of great value to estimate the fraction of unreported

1
https://www.whitehouse.gov/presidential-actions/proclamation-declaring-national-emergency-concerning-novel-coronavirus-disease-covid-19-outbreak/

2https://www.wsj.com/articles/a-state-by-state-guide-to-coronavirus-lockdowns-11584749351
3https://www.ft.com/content/01f267a2-686c-11ea-a3c9-1fe6fedcca75
4https://www.who.int/docs/default-source/coronaviruse/situation-reports/

20200306-sitrep-46-covid-19.pdf?sfvrsn=96b04adf_2
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infections with observational data at hand. With that knowledge, policy-makers will

be better equipped to assess the proper level and duration of virus control policies.

In this paper we develop a simple analytical method to estimate the fraction of

unreported infections for situations where the epidemic has a known epicenter. Our

methodological strategy, described in Section 3, exploits the covariation between the

number of initial reported infections in locations away from the epicenter, and the

number of travelers from the epicenter to these locations.

To illustrate the idea, consider a time period when the epicenter is the only location

with infections, and that the only way another city/country can be infected is through

travelers. Also assume, as in Section 3.2, that any infected travelers can only come

from the unreported infected population in the epicenter – an assumption we find

reasonable (as reported infected individuals would not be allowed to travel), but are

able to relax in Section 3.3. Suppose now the hypothetical situation where we know the

reporting rate of infections in the epicenter (the fraction of reported infections to the

true number of infections), and that we know the number of travelers from the epicenter

to another city/country. Assuming travelers resemble the population of the epicenter,

we can calculate the expected number of infected (but unreported) travelers entering

other cities/countries. Assuming further that we know the rate of transmission of the

disease, we can then calculate the expected number of infections these travelers will

have generated in these locations. Comparing the expected number of infections that

arise from travelers to reported cases of the infection, we can estimate the reporting

rate.

What can we do in the realistic case if the reporting rate in the epicenter is un-

known? In Section 3.2, we propose the following: suppose we make the assumption

that the reporting rate at the epicenter and the previously uninfected city/country are

the same (or a known function of each other). We can then start with a guess on the

unknown rate of reporting at the epicenter, which allows us to calculate the implied

reporting rate at the previously uninfected city/country, and check whether these are

equal (or satisfy the known function). If not, we update our guess, and try again.

In other words, we can solve for the reporting rate(s) balancing the expected number

of infections from travel and the number of infected that are being reported in both

locations.

While the above strategy, outlined in Section 3.2, is in principle implementable, it

is crucially dependent on the assumption that reporting rates are the same across the

epicenter and destination locations (or a known function of each other). Moreover, its

results are very sensitive to knowing the transmission rate of the infection from travel-

ers, as this allows us to project the number of infections in the destination city/country.

Suppose now that we have access to the reporting rate of infections from another des-
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tination city/country, e.g. through universal or randomized testing, as has been done

in Iceland.5 This allows us to estimate how infectious the travelers from the epicen-

ter are. Assuming that this transmission rate from travelers is the same (or a known

function of) as the transmission rate at the destination city/country of interest, we can

then calculate the expected number of infections we would expect from travel. Intu-

itively, the ratio between number of travelers to two destination cities/countries from

the epicenter should tell us the ratio of total infections between the two cities/countries.

Randomized or universal testing at one of the destinations, Iceland in our case, will

give us its number of total infections, so total infections at the other destination can

be computed. This strategy is discussed in detail in Section 3.3.

We would like to be very upfront that the estimation strategies outlined above

are dependent on strong assumptions and reliable data on travel patterns, and that

any results are very sensitive to these assumptions. However, our hope is that our

approach is clear in terms of its assumptions and its corresponding limitations; we

hope that future research can improve upon these limitations. We have attempted to

account for some of the limitations. For example, in Section 3.4, we discuss how to

correct for the fact that infections are often reported with a delay, as there is a delay

to the outset of symptoms that are often a prerequisite for testing for the infection, as

well as a delay in laboratory testing.

Our data consists of detailed daily reported infections for all U.S. states/city/county

and Iceland collected by Johns Hopkins University of Medicine Coronavirus Resource

Center from January 22 to March 31, 2020; international travel data to U.S. in January

and February 2020 from I-94 travels data by National Travel and Tourism Office;

international travel data to Iceland by Icelandic Tourist Board in January and February

2020.

Our model generates a range of estimates that depend on the traveler data that is

incorporated, the date range considered, and assumptions regarding the lags associated

with reported case data. We report this range of estimates in Table 3. Across these

estimates, we find that 4% to 14% of cases were reported across the U.S. up to March

16, when social distancing measures began to be applied in major metropolitan areas

and travel declined significantly (Thompson et al., 2020) .6 This suggests that for

each case reported in late February/early March, between 6 to 24 cases remained

unreported (after accounting for an 8 day reporting lag). Once again, our estimates

5Of course, another strategy is to assume that the reporting rate discovered through randomized testing
in Iceland is the same in the destination city/country of interest (Section 3.1).

6This assumes that cases are reported with a lag of 8 days as in Table 3(b), and incorporates travel data
from China, Italy, Spain, Germany, and the UK. A shorter assumed reporting lag of e.g. 5 days generates
a range of estimated reporting rates between 1.5% to 10%. We have excluded King county, Washington
in these results because this county containing Seattle shows much earlier community infections than other
regions in U.S.
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are highly dependent on model assumptions, and the data that is used to inform it.

We discuss how our results depend on these assumptions in some detail in Section 5.

In the economic literature, Berger et al. (2020) and Stock (2020) study the im-

portance of unreported cases in the context of the coronavirus pandemic. Our paper

contributes to the growing literature in epidemiology on estimating the true number

of infections using observational data and structural model assumptions. Notably, (Li

et al., 2020; Wu et al., 2020; Flaxman et al., 2020; Liu et al., 2020a,b; Nishiura et al.,

2020) utilize simulated epidemiological models to estimate the fraction of unreported

infections in China and European countries. As Zhao et al. (2020) notes, it is often

difficult to identify the fraction of unreported alongside the growth of the infection

purely by measures of fit. Our paper complements these extant papers: we provide

what we believe is a transparent identification argument and a very light computational

strategy that allows researchers to assess the sensitivity of model estimates to mod-

eling and data assumptions. That said, our model may miss important components

of disease dynamics that these more sophisticated epidemiological models incorporate.

These richer models may also allow one to estimate a richer set of model parameters

than we have been able to.7 Another related recent paper is Imai et al. (2020), who

estimate potential total cases in Wuhan China from the confirmed cases in other coun-

tries due to international travel, assuming that all cases outside of China are reported

correctly 8. Korolev (2020) discusses non-identification in SEIRD models and proposes

estimation strategy conditional on knowing infectious period and incubation period.

Section 2 introduces our model of infection, which describes the early stages of

the dynamics of the epidemic. Section 3 presents our two estimation/identification

strategies. Section 4 describes the data we are using for estimation. Section 5 lays out

the estimation results and our robustness checks.

2 Model

Our model is based on the classic SIR model in epidemiology. We consider the evolution

of the virus in both the epicenter c and into target city i over a period of time T0 ≤
t ≤ T1. We are considering a relative short period of time in the early stage of the

7For example, that Li et al. (2020) estimates different transmission rates for reported vs. unreported
infections, which we are unable to identify with our strategy. Li et al. (2020) assume that unreported
infected individuals transmit the disease at a slower rate than reported infected individuals. However, since
most reported infections are either hospitalized or self-quarantined, it is not clear whether this assumption
is an a priori reasonable one.

8Bogoch et al. (2020) and Lai et al. (2020) calculates how vulnerable countries are to the virus by the
magnitude of travelers from Wuhan, and correlate these vulnerability/risk measures with reported cases in
these countries.
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epidemics. Thus, the “recovered” population at the epicenter, which is a small fraction

of the population, is assumed not to play a significant role during this period.

2.1 What happens at the epicenter c

We denote Infected, Reported Infected, and Unreported Infected in time t and epicenter

c as Ic,t, Rc,t, Uc,t respectively.

The epicenter starts with some initial infections Ic,0. We are considering a short

period of time in between T0 and T1, so the number of susceptibles at the epicenter

remain relatively constant throughout this period. There are also no infected cases

traveling into epicenter. We assume no recovery. So at time t, the total infections at

epicenter with transmission rate β is given by

Ic,t = Ic,0 exp(β(t− T0)) (1)

It is worth noting that this β term can include the spread minus recoveries, since

we do not model a changing number of susceptibles. It should be viewed as the net

spread of infections over time.

Each time t, there is a cohort of travelers Mi,t going from epicenter to target city

and potentially bringing the virus to target city.

2.2 What happens in target city i

We denote Infected, observed Reported Infected, and Unreported Infected in time t

and city i as Ii,t, Ri,t, Ui,t respectively. At period T0, target city i has zero infections,

so Ii,T0 = Ri,T0 = Ui,T0 = 0.

Each time t ∈ [T0, T1], target city receives a cohort t of incoming travelers Mi,t

from the epicenter. Among these travelers, Iinci,t are infected. Each cohort of incoming

infected Iinci,t will transmit the virus in target city with rate β for the period of [t, T1].

We assume that the transmission rate at target city is the same as in epicenter. Thus,

at period T1, this cohort will infect Iinci,t exp(β(T1 − t)) people in the city i. The total

new infections at target city at T1 caused by all cohorts of incoming infected travelers

will be

Ii,T1 =

∫ T1

T0

Iinci,t exp(β(T1 − t))dt (2)

Let α be fraction of reported case over new infections across periods, so α =
Ri,T1

−Ri,T0
Ii,T1−Ii,T0

. Since Ii,T0 = Ri,T0 = 0, we can write α =
Ri,T1
Ii,T1

. In reality at target
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city i, we only observe Ri,t with some iid measurement error εi,t
9. Let R̂i,t denote the

observed reported cases of city i time t. We have

R̂i,T1 = αIi,T1 + εi,T1 = α

∫ T1

T0

Iinci,t exp(β(T1 − t))dt+ εi,T1 (3)

3 Estimating the Reporting Rate α

The estimation/identification question is: can we recover α, the reporting rate, when

we only observe reported infections R̂i,T1 but not Iinci,t , the total incoming infected in

equation (3)? In the following Sections 3.1-3.3, we provide a complete treatment of

how one can recover α under different scenarios of data availability. We consider two

sets of data that could potentially be available: (i) data on travel from epicenter to

U.S., and (ii) data from a randomized testing implemented outside of U.S. In Section

3.4, we extend our model and estimation strategy to incorporate reporting lags.

3.1 Travel data unavailable but randomized testing data

available

If randomized testing data from some other country is available, the true infection

rate in that country can be estimated. Therefore, given the population and number of

reported infections, the fraction of reported infections in that country can be estimated.

If we are willing to believe that the fraction of reported infections in that country is

the same as in the U.S. due to similar testing availability or medical systems, then α

is trivially recovered. However, in many cases, this assumption is unlikely to hold. In

the next sections, we will show how we can recover α relaxing this assumption.

3.2 Travel data available but randomized testing data un-

available

When only travel data is available, we need the assumption that people capable of

traveling away from the epicenter would be the uninfected and the unreported infected.

This is a reasonable assumption especially in the case of COVID-19 because the great

majority of reported infected individuals would be quarantined and not allowed to

travel.

Our main assumption in this scenario is:

9This measurement error εi,t could arise from error in collecting the data.
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Assumption 3.1.

Iinci,t

Mi,t
=

Uc,t

Nc − R̂c,t
for any time t ∈ [T0, T1], city i and epicenter c (4)

Nc is the population of epicenter. R̂c,t is the observed reported infections at epi-

center c time t, defined analogously to R̂i,t for target city i. In other words, we are

assuming that the fraction of unreported infections among incoming travelers from the

epicenter is the same as the fraction of unreported infections among people capable of

leaving the epicenter. (We will relax this assumption in Section 3.3.) Since α remains

constant,10 we have Uc,t = (1− α)Ic,t = 1−α
α Rc,t. Therefore, assumption 3.1 becomes:

Iinci,t

Mi,t
=

(1− α)Ic,t

Nc − R̂c,t
∀t ∈ [T0, T1], city i, epicenter c (5)

Plugging equation (1) in, we get

Iinci,t =
(1− α)Ic,0 exp(β(t− T0))

Nc − R̂c,t
Mi,t ∀t ∈ [T0, T1], city i, epicenter c (6)

Plugging back to equation (3), we get

R̂i,T1 = α

∫ T1

T0

(1− α)Ic,0 exp(β(t− T0))
Nc − R̂c,t

Mi,t exp(β(T1 − t))dt+ εi,T1 (7)

= α(1− α)Ic,0 exp(β(T1 − T0))
∫ T1

T0

Mi,t

Nc − R̂c,t
dt+ εi,T1 (8)

= α(1− α)
Rc,0
α

exp(β(T1 − T0))
∫ T1

T0

Mi,t

Nc − R̂c,t
dt+ εi,T1 (9)

= (1− α)Rc,0 exp(β(T1 − T0))
∫ T1

T0

Mi,t

Nc − R̂c,t
dt+ εi,T1 (10)

This equation allows us to solve for (1−α) exp(β(T1−T0) if we observe Rc,0. We will

allow for observing Rc,0 with error in Section 3.3. We can estimate β from the growth

of reported infections in the epicenter because there is no influx of infected people from

other regions. Given that β is now determined, we can solve for α. However, there is

much variation in estimation of β within the literature, and our estimate of α varies

10In reality α may be varying over time, due to e.g. changes in the extensiveness of testing. If this is the
case, as we vary the [T0, T1] window, we will obtain window-specific estimates of α, which can be thought of
as a weighted average of α during this period.
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with point estimates of β (Liu et al., 2020; Read et al., 2020; Shen et al., 2020).

3.3 When travel data and a random testing benchmark

are available

In this scenario, we will be leveraging the same fact that the number of incoming

unreported infections is informed by the travelers from the epicenter. Now we can also

allow for selection in traveling. More specifically, if we think that e.g. urban areas

are likely to have a higher infection rate than rural areas and travel abroad more11,

then assumption 3.1 might not hold. Therefore, we introduce a bias correction term

γ in the relation between the fraction of infected among travelers and the fraction of

unreported infected individuals in the general population. This bias correction term γ

can also account for the fact that a fraction of the unreported infected people might

be too sick to travel. Our relaxed assumption in this scenario is:

Assumption 3.2.

Iinci,t

Mi,t
= γ

Uc,t

Nc − R̂c,t
for any time t ∈ [T0, T1], city i and epicenter c, γ 6= 0(11)

We can further allow for the fact that the reporting rate in epicenter αc can be

different from that of region i, so Uc,t = (1 − αc)Ic,t = 1−αc
αc

Rc,t. We can now rewrite

assumption 3.2 as:

Iinci,t

Mi,t
= γ

(1− αc)Ic,t
Nc − R̂c,t

∀t ∈ [T0, T1], γ 6= 0, city i, epicenter c (12)

Plugging into equation (1) and (3), we get

R̂i,T1 = α
1− αc
αc

γ exp(β(T1 − T0))Rc,0
∫ T1

T0

Mi,t

Nc − R̂c,t
dt+ εi,T1 (13)

The additional parameters for the bias correction term γ and different reporting

rate for the epicenter complicate the estimation of α using travel data alone. However,

having data from a country that has done randomized or complete testing greatly

helps overcome this challenge. In our case, we are able to identify α using additional

information given by the randomized testing benchmark provided by Iceland. Since

the Iceland company deCODE genetics implemented random testing of COVID-19 for

11This is likely to be true in epicenters like China.
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a representative sample of the island population12, we are able to observe true infection

rate of Iceland at time T1. Multiplying this true infection rate by the population of

region j in Iceland will give us the actual number of infections in region j at time T1,

which is Ij,T1 . Thus, for any region j in Iceland we observe Ij,T1 − Ij,T0 , which in turn,

equals the infections generated by travelers from the epicenter:

Ij,T1 − Ij,T0 =
1− αc
αc

γ exp(β(T1 − T0))Rc,0
∫ T1

T0

Mj,t

Nc − R̂c,t
dt+ εj (14)

Note that if we allow for iid measurement error εj in observing Ij,T1−Ij,T0 , we can get

a consistent estimate of 1−αc
αc

γ exp(β(T1 − T0))Rc,0 by estimating equation (14). If we

don’t allow for measurement error εj , then we can estimate 1−αc
αc

γ exp(β(T1− T0))Rc,0
with no error. Estimating equation (13) gives consistent estimate of α1−αc

αc
γ exp(β(T1−

T0))Rc,0. Taking the ratio, we have identified α.

One intuition for this strategy is the following: the ratio between travel to U.S.

and travel to Iceland from the epicenter should tell us the ratio of total infections

between U.S. and Iceland. Iceland’s randomized testing gives us its number of total

infections, so U.S. total infections can be computed. In other words, we observe the

outcome in U.S. with under-reporting, and the unobserved counterfactual outcome

with full reporting is given by the benchmark Iceland. An additional advantage of this

estimation/identification strategy, as opposed to the previous strategy in section 3.2,

is that now we don’t need an estimate of β in order to recover α. We also allow for the

fact that Rc,0 could be observed with error. Identifying α does not require observing

Rc,0 perfectly because Rc,0 appears identically in both equations.

We should be clear that for terms with β to cancel out, the argument does assume

that β is the same across Iceland and the U.S. We believe this might be a reason-

able assumption for the early periods of the infection when social distancing or other

widespread measures had not yet been implemented (in a potentially differential fash-

ion). We also need the bias term γ to be the same for US and Iceland; this means that

proportion of (unreported) infected travelers from China to the U.S. and Iceland are

the same. More detailed micro-data on travelers may be used to assess the validity of

this assumption.

This estimation strategy also works when a complete testing benchmark exists.

If the whole population of region j is tested, then we observe Ij,T1 − Ij,T0 trivially.

Equation (14) still gives consistent estimate of 1−αc
αc

γ exp(β(T1 − T0))Rc,0 and the rest

of the argument follows.

Note that if in the model reported infections and unreported infections have different

transmission rates, then our strategy would not be able to capture the differential rates.

12We will describe the randomized testing in detail in Section 4
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We would need other sources of information to help us pin down these differential rates.

3.4 Incorporating Reporting Lags

In this section, we show how our model can incorporate a fixed reporting lag in reported

infections and derive identification equations. Reporting lags are important, because

if people are tested for the virus only after symptoms show up, there will be a lag in

reported infections. Another major reason for reporting lag is the lag in testing results.

The turnaround time for testing results in U.S. major laboratory companies could be

2 to 3 days (Kaplan and Thomas, 2020).

We denote true infected, true reported infected, and true unreported infected

in time t and target city i as Ii,t, Ri,t, Ui,t respectively. Those for epicenter c as

Ic,t, Rc,t, Uc,t. Let k be the lagged report period. At time t city i denote the lagged

reported infected LRi,t = Ri,t−k. For epicenter c, lagged reported infected is LRc,t =

Rc,t−k. But the observed lagged reported infected of target city L̂Ri,t is with iid mea-

surement error εi,t .

Define reporting rate at city i as α =
Ri,t−k

Ii,t−k
=

LRi,t

Ii,t−k
and at epicenter c as αc =

Rc,t−k

Ic,t−k
=

LRc,t

Ic,t−k
. This means that we are considering the reporting rate of lagged

reported cases as a fraction of the lagged total infections.

When travel data are available but randomized testing data unavailable, we still

maintain assumption 3.1. In city i time T1, the estimating equation is

L̂Ri,T1 = α
1− αc
αc

exp(β(T1 − T0 − k))LRc,k

∫ T1−k

T0

Mi,t

Nc − R̂c,t
dt+ εi,T1 (15)

If α = αc, then both of them are identified if β and k are identified and LRc,k is

observed without error.

When both travel data and randomized testing data are available, we maintain

assumption 3.2. In US city i time T1, the estimating equation is

L̂Ri,T1 = αγ
1− αc
αc

exp(β(T1 − T0 − k))LRc,k

∫ T1−k

T0

Mi,t

Nc − R̂c,t
dt+ εi,T1 (16)

In Iceland region j time T1, the estimating equation is

Îj,T1−k = γ
1− αc
αc

exp(β(T1 − T0 − k))LRc,k

∫ T1−k

T0

Mj,t

Nc − R̂c,t
dt+ εj,T1 (17)
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If we know k, then we can compute Îj,T1−k from the randomized testing data.

Regressing equation (17) gives consistent estimate of γ 1−αc
αc

exp(β(T1 − T0 − k)LRc,k.

Regressing equation (16) gives a consistent estimate of αγ 1−αc
αc

exp(β(T1−T0−k))LRc,k.

Taking the ratio, we can identify α if we know k. Again here we can also allow for

the situation where we don’t observe LRc,k perfectly. Details of how we derive the

estimating equations are in the appendix.

4 Data

4.1 COVID-19 Data

Daily reported infections and recovery data are collected by Johns Hopkins University

of Medicine Coronavirus Resource Center from January 22 to March 31, 2020. We use

data for all U.S. states/counties and Iceland.

Randomized testing data in Iceland is obtained from the website maintained by

the Directorate of Health and the Department of Civil Protection and Emergency

Management in Iceland13. We have daily number of tests conducted by deCODE

genetics and daily number of confirmed cases. We use the first wave of randomized

testing by deCODE which spans March 15 - 19, 2020. During the first wave they

performed 5490 tests and confirmed 48 cases, which implies an infection rate of .874%.

The randomized testing conducted was random over non-confirmed individuals which

made up a very tiny portion of the Icelandic population at this time. This could lead to

slightly downward biases in our Iceland confirmed data, slightly biasing our US alpha

estimates upward.

In our main estimation we consider February 23 as T0 and March 10 as T1 with

a 5 day lag, and T1 as Mar 13 for an 8 day lag. This is because there were very few

infections in January and early February. We check robustness of different time periods

in Section 5.3.

4.2 Travel Data

We obtain monthly data of international arrivals to U.S. by port of entry and country of

origin from I-94 Arrivals by National Travel and Tourism Office. We use the number of

visitors from China, Italy, Spain, UK, and Germany in January and February 2020 as

the measure for incoming travelers to U.S. states. For international arrivals to Iceland,

we get the number of visitors from China, Italy, Spain, UK, and Germany in January

13https://www.covid.is/data
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and February 2020 from the Icelandic Tourist Board. We have not been able to obtain

March travel data into either country.

The National Travel and tourism office of the United States provides monthly data

for entry by port of entry, as well as a separate data set for country of origin. We

construct the number of visitors from China, Italy, Spain, Germany, and the UK by

scaling the port-of-entry data by the percentage of total visitors that are from these

countries. This introduces error, as we cannot observe directly the number of e.g.

Chinese travelers into a particular city or state. It is also important to note that we

do not observe inter-state travel. While this may not be important for the immediate

infections caused by travelers from the epicenter, our projections for the number of

infections for T1 that are far removed from T0 will be less accurate due to interstate

travel.

For Icelandic data, 99% of international travelers arrive through Keflavik airport

into Iceland. The data contains a breakdown of arrival by country of origin, broken

down by month of arrival. We use January and February arrival data from China,

Italy, Spain, UK, and Germany for estimation.

Our travel data for both countries does not control for connecting flights. However

the United States data is limited to the top-30 port of entries, many of which are

large urban cities for which there will be less connecting flights. Further work that

can obtain more precise estimates of entry may be able to control for this. In the case

of Iceland: a survey conducted by the Icelandic Tourist Board suggests that 2-5% of

international travelers are aboard connecting flights, suggesting it is less of a problem

for this set of data.

4.3 Population Data

Estimates of U.S. State and county population data come from the U.S. Census Bureau.

Data for the populations of China, Iceland, Italy, Spain, UK, and Germany as of 2020

are obtained from the United Nations Population Division.

5 Empirical Application

5.1 Implementation

We now consider estimation of αUS using randomized sampling in Iceland, as described

in Section 3.3. Randomized sampling done by deCODE genetics gives a percentage

of the population that has contracted the virus. We estimate equation (14) using

Randomized Testing to construct Ij,T1−k. We do not have city-level travel data into

13
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Iceland. 99% of all international travel arrives through a single airport, and while

the data provided is accurate, this gives only a single data point for estimation. As a

result, equation (14) relies on a single data point of travel and infection, but exp(β(T1−
T0))γ

1−αc
αc

Rc,0 is estimated without error by the ratio of Ij,T1− Ij,T0 and
∫ T1
T0

Mj,t

Nc−R̂c,t
dt.

For estimation of reporting rates in the U.S., we need estimates of several figures:

Firstly Mj,t, and secondly of Ij,T1 − Ij,T0 . We discuss the estimation of these here.

We observe only monthly travel data to construct Mj,t, and to maintain robustness to

January travels and infections, we average February and January travel into both the

United States and Iceland. We assume that Mj,t is uniform over the entire time period

such that
∫ Feb29
Jan1 Mj,t is equal to the sum of all travel into the city from January and

February. Thus the integral
∫ T1
T0

Mj,t

Nc−R̂c,t
varies only due to the confirmed infections

increasing over time. Estimation of Ij,T1 is complicated due to randomized testing by

Iceland only being conducted at certain dates. To resolve this problem, we scale the

Iceland randomized results by the scale of the confirmed cases against March 15. This

means that if there were half the confirmed cases in March 5 as in March 15, the total

infections would be half of the randomized testing percent times the population of

Iceland. This allows for us to consider T1 closer to the onset of the infection than the

randomized testing dates. We also remove the number of infected from Wuhan China

from our data on confirmed infected in China due to the lock-down restrictions placed

on this city. We use the first wave of deCODE testing to determine the percentage of

the population that has contracted the disease. This testing took place during Mar

15 through Mar 19. The results show that .874% of the population of Iceland have

contracted the disease as of Mar 1514.

We estimate equation (13) using multiple data points from U.S. states and counties.

We obtain our estimate of α exp(β(T1−T0))γ 1−αc
αc

Rc,0 via OLS without a constant term.

One important note is that if the magnitude of measurement error in travel data were

high, this problem may be alleviated via instrumental variables strategy using other

travel data measured with error.

We then construct our estimate of α by dividing the two estimates. It is important

to note that as a result of the division, this method is not reliant on population data

from the epicenter of infection. As long as γ and β are the same between Iceland and

the United States we will have identified α. It is likely that at the onset of the infection

similar preventative measures have been taken in these two countries, meaning that β

will be reasonably close for each country.

Is China the only epicenter for the United States? While the first confirmed in-

fection in Seattle occurred from a visitor from China, our data on The United States

and Iceland occurs later in the global progression of the virus than our Chinese data.

14Stock et al. (2020) also estimates the undetected rate and total infection rate in the Iceland study.
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By the time these countries were experiencing infections, Italy had also experienced

an outbreak. To this end, we also allow for a second epicenter: Italy. Italy is located

much closer to Iceland and constitutes a substantial amount of travel to the country.

However, to maintain identification, we require that α, β and T0 be same for both

China and Italy, and we observe LRc,k for both epicenters with no error. However we

find that allowing T0 to vary does not affect our estimates by much. We also consider

a broader collection of epicenters of China, Italy, Spain, Germany and the UK. For

some collection of epicenters L: Our estimation equation for the United States is given

below.

L̂Ri,T1 = α
1− αc
αc

γ exp(β(T1 − T0 − k))

(∑
`∈L

[∫ T1−k

T0

LR`c,kM
`
i,t

N `
c − R̂`c,t

dt

])
+ εi,T1 (18)

A similar equation is also estimated with multiple epicenters (China and Italy, also

with Spain, Germany, and UK) for Iceland.

5.2 Results: Illustration

As a first illustration of our approach, we first estimate α using February 23 as T0 and

March 10 as T1. We consider other dates for robustness later. We consider two lag

models, 5 days, the median time for symptoms to appear, and 8 days, to capture the

testing lag in addition to symptom onset (Lauer et al. (2020); Kaplan and Thomas

(2020); Li et al. (2020)). For the 8 day lag, T1 was set to March 13 for comparison.

We estimate, for the 8 day lag, a value of α = 0.0416 (s.e. 0.00984).15 This would

mean that for every case confirmed in the United States in early March, there are still
1−α
α = 23 unconfirmed cases (assuming a reporting lag of 8 days).

There is one city present in our data that is a huge outlier. Seattle featured very

early infections, and was unable to contain the spread of early infections unlike other

cities in the United States. We believe that for King County, T0 may be much earlier

than for the other cities. This means that within our time interval, there are substantial

amounts of infections caused by residents of the city, not only visitors. As a result, this

city has a substantially higher (3700%) amount of confirmed cases per visitor than any

other city at the current time, and we exclude it from the data.

Correct estimation of the reporting lag parameter is essential, as our estimates of

α are sensitive to this. We consider its robustness in the following section.

Our approach is also sensitive to the travel data magnitudes, which may not be

15We are reporting a naive OLS standard error here. We have not fully explored the sampling properties
of this estimation method.
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well estimated for the United States due to data limitations. In particular, connecting

flights after port of entry may lead to underestimates of international arrivals into

smaller cities and counties. We also lack inter-state travel between the United States,

which would be important for estimating α later into the spread of the virus.

Have we considered all epicenters of the virus for the United States and Iceland?

There were other countries which had seen substantial infections such as South Korea.

Their exclusion biases both the estimates from both Iceland as well as the United

States, and as long as the magnitudes of travel were even between the two will not

bias alpha. If these other epicenters had more travel to the United States relative

to Iceland United States than Iceland, this would downward bias our estimates of α,

and vice versa. However, we see little change in our estimates by adding in Spain,

Germany and UK. If the travel patterns between the United States and Iceland to and

from an omitted set of epicenter countries are not very different, we do not believe

their omission will substantially alter our results.

5.3 Results: Range of Estimates and Robustness Checks

Our dates for T0 and T1 are chosen such that they capture the onset of the infection for

the United States. As table 3 shows, our α estimate is reasonably stable along choices

of T1, and very stable among choices of T0 all throughout February. We estimate a

range of 1.5%− 10% for the average reporting rate across the US with a reporting lag

of 5 days and 4% − 14% reporting rates when there is a lag of 8 days. Using only

China as the epicenter, we observe similar patterns in α. For early March we note

a relatively stable α over T1. For very early choices for T1, our Iceland estimates of

confirmed are very small, and this could create very noisy estimates of α (the first

case in Iceland was confirmed February 28). As we increase T1, we see an increase in

α. This may be due to increases in the availability of test kits, which lead to higher

reporting rates. However, this result may in part be due to unobserved/unaccounted

travel, particularly within the United States, along with the fact that we do not have

data on March travel into the US. Both of these factors would lead to under-reporting

of travel for late March, and cause estimates of α to be upward biased. Moreover, as

we progress later into March, social distancing/health policy measures across Iceland

and U.S. began to be applied, leading to differential changes in the transmission rate.

How would these estimates affect our estimate of total infections, as opposed to

reported infections? As an illustration, with our estimated average reporting rates

from table 3, we compute the estimated total infections for different U.S. counties as

of March 15 and March 20 in table 5. To give a range of our estimates, we take the

10th and 90th percentile of the estimated reporting rates over all cutoffs to compute

16
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a bound on estimated total infections. As of March 20, our results suggest, for our

average α estimate in table 3, that there were 41,205 (85,937) Infected residents of New

York City, with a 10th percentile of 24,366 (47,257) and a 90th percentile of 114,849

(306,607) for an assumed 8 (5) day lag. These estimates imply that, as of March 20,

with an assumed 8(5) day reporting lag, about 0.5% (1%) of New York City population

was infected for our average estimate in table 2, and 1.4% (3.6%) at the 90th percentile

of our estimates.

Throughout the analysis above, we have excluded King County, Washington which

contains Seattle. Table 7 displays our estimates including this county, which heavily

skews the data. We believe this may be due to significant community infections occur-

ring in the county during our time period, as the city was infected much earlier than

other cities.

We consider our estimates robustness to reporting lags in table 8. Our estimates

of α appear reasonably robust to a range of lengths of the lag, with an increase as the

lag becomes longer.

We note that large lags (k > 10) pose a problem for estimation in our model. For

estimation purposes, we maintain T1 − k to be a constant date as we consider changes

in the lag parameter. This means that for large lags, we must consider T1 dates deep

into March. However, the further we get into March, the more interstate travel and

carrying of infections between cities and states matters, which may lead to overstating

α. To complicate matters, Icelandic and the US policies for handling the spread of the

virus may have diverged significantly. This means that our assumption of β constant

between countries also may not hold. When it does not, our estimate of α identifies

α×exp [(βUS − βI) (T1 − T0)]. βUS > βI implies that we are overestimating α for large

T1 values. Evidence from Kucharski et al. (2020) suggests that β is very sensitive to

changes in policy, leading to this upward bias in α.

6 Conclusion

In this paper, we lay out a simple model of disease transmission across a known epi-

center and target cities. Using this model, we provide simple analytical arguments

to allow the estimation/identification of reporting rates in target cities away from the

epicenter. Our preferred estimation strategy utilizes variation of travel patterns from

epicenter to destination cities and available randomized testing results from elsewhere

in the world. The empirical implementation of our model generates a range of esti-

mates for the percentage of infections that have been reported. Using international

travel data to the U.S. and randomized testing data from Iceland, for the February to

early March window, our estimates of the average reporting rate in the U.S. lie in a
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range of 4 − 14%, accounting for an assumed reporting lag of 8 days. (The range is

1.5−10%, accounting for a reporting lag of 5 days.) Our estimates suggest that a large

number of infections in the U.S. have not been reported in this early period.

We should be very clear that we are not offering or endorsing any policy recom-

mendations based on our estimates. Nor do we suggest that any of our analysis should

be taken as a substitute for randomized/complete testing, which will provide the most

reliable estimates of the true infection rate in the population. Our primary aim in this

paper has been to obtain tractable analytic results showing how to identify the report-

ing rate from available data. We also note that our model is a substantially stripped

down version of epidemiological models considered by (Li et al., 2020; Wu et al., 2020;

Flaxman et al., 2020). These more complex models may allow additional sources of

variation in the data to pin down the key parameters of interest. Importantly, we do

want to emphasize that our identification and estimation results rely quite sensitively

on model assumptions and the (un)availability of high quality data on travel. We hope

future research can improve on these important limitations.
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Figures and Tables

Table 1: Summary Statistics of Fraction of Reported Infections by County

Version Min. 1st Qu. Median Mean 3rd Qu. Max.
China Travel Only 0.001404 0.027434 0.037345 0.060896 0.100897 0.203500

China and Italian Travel 0.001254 0.025142 0.034784 0.055746 0.094906 0.183048
China and EU Travel 0.001397 0.024920 0.038928 0.051934 0.067098 0.193740

Summary statistics reported on the distribution of α for each county in the data. α is estimated
for T0 Feb 23, T1 Mar 13, and a Lag of eight days. EU travel includes traveler data from Italy,
Spain, UK, and Germany.
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Table 2: Estimated average fraction of reported infections

αice αUS
1−αUS

αUS

5 Day Lag

China and Italy Travel Data
0.0231 .0161 61.2

Only Chinese Travel Data
0.0231 0.0169 58.3

China, Italy, Spain, Germany, UK
0.0231 0.0168 58.6

8 Day Lag

China and Italy Travel Data
0.0231 0.0416 22.5

Only Chinese Travel Data
0.0231 0.0458 20.8

China, Italy, Spain, Germany, UK
0.0231 0.0452 21.1

We report estimated α by OLS without a constant for several
specifications of the model. We use T0 as Feb 23 and T1 as March
10,13 for each Lag respectively. For the versions including Euro-
pean data, European travel to both Iceland and the United States
is considered. King County, WA is omitted from the calculation.
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Figure 1: Estimated reported infections by county
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(b) 8 Day Lag

This plot shows the ratio of Confirmed Cases to Estimated Cases in each County on T1 = March 10 for 5
day lag, and 13 for 8 day lag. T0 is February 23rd. We use the full European Entry. Estimated Cases are
computed as the ratio of the right hand side of equation 16 and the ratio of equation 17
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Table 3: Mean Fraction of Unreported Infections with Different Cutoffs

T0 Date

Feb 1 Feb 5 Feb 10 Feb 15 Feb 20 Feb 25 Feb 29

T
1

D
at

e

Mar 6 0.09759 0.09758 0.09756 0.09762 0.09767 0.09774 0.09767
Mar 7 0.05279 0.0528 0.05282 0.05275 0.05266 0.05249 0.05196
Mar 8 0.03083 0.03083 0.03084 0.03081 0.03076 0.03068 0.03047
Mar 9 0.01611 0.01611 0.01612 0.0161 0.01609 0.01605 0.01598
Mar 10 0.01683 0.01683 0.01684 0.01682 0.01679 0.01676 0.01668
Mar 11 0.02283 0.02284 0.02285 0.02282 0.02278 0.02273 0.02263
Mar 12 0.02043 0.02044 0.02046 0.02041 0.02037 0.02031 0.02022
Mar 13 0.03101 0.03102 0.03104 0.03099 0.03093 0.03086 0.03075
Mar 14 0.04247 0.04248 0.04252 0.04244 0.04236 0.04227 0.04212
Mar 15 0.03682 0.03683 0.03686 0.0368 0.03675 0.03669 0.0366
Mar 16 0.04809 0.0481 0.04815 0.04806 0.04798 0.0479 0.04777
Mar 17 0.06773 0.06776 0.06784 0.06769 0.06756 0.06743 0.06723
Mar 18 0.109 0.109 0.1092 0.1089 0.1086 0.1084 0.1081
Mar 19 0.2479 0.248 0.2483 0.2477 0.2472 0.2466 0.2459

(a) 5 Day Reporting Lag

T0 Date

Feb 1 Feb 5 Feb 10 Feb 15 Feb 20 Feb 25 Feb 29

T
1

D
at

e

Mar 9 0.1397 0.1397 0.1397 0.1395 0.1391 0.1382 0.1354
Mar 10 0.09538 0.09542 0.0954 0.09517 0.09485 0.09422 0.09265
Mar 11 0.08921 0.08927 0.08925 0.08898 0.08864 0.08804 0.08678
Mar 12 0.03928 0.03931 0.0393 0.03915 0.03899 0.03875 0.03832
Mar 13 0.0456 0.04563 0.04562 0.04548 0.04532 0.0451 0.04472
Mar 14 0.05725 0.0573 0.05729 0.05708 0.05686 0.05658 0.05613
Mar 15 0.05082 0.05086 0.05085 0.05071 0.05058 0.05039 0.0501
Mar 16 0.08169 0.08178 0.08176 0.08147 0.08121 0.08088 0.0804
Mar 17 0.1201 0.1203 0.1202 0.1197 0.1192 0.1186 0.1178
Mar 18 0.211 0.2114 0.2113 0.2102 0.2092 0.2081 0.2066
Mar 19 0.4528 0.4538 0.4536 0.4505 0.448 0.4452 0.4414

(b) 8 Day Reporting Lag

This table displays α value for different dates for both T0 and T1. We vary T0 across the month
of February, and T1 across early March. Very early March and February dates are not available
since Iceland confirmed infections only begin February 28. Travel data is assumed uniform across
days throughout and is not weighted as T0 or T1 change. We include Italy, Spain, Germany, and
the United Kingdom as epicenters as well as China.
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Table 5: Estimated Total Infected By County - Lag 5

Mar 15 Mar 20

County Rep. 10Pct. Mean 90Pct. Rep 10Pct. Mean 90Pct.

Broward, FL 36 330 601 2143 128 1174 2135 7619
Clark, NV 16 147 267 952 126 1156 2102 7500
Cook, IL 50 459 834 2976 278 2550 4638 16548
Fulton, GA 20 183 334 1190 88 807 1468 5238
Harris, TX 11 101 184 655 30 275 501 1786
Hillsborough, FL 4 37 67 238 32 294 534 1905
Honolulu, HI 3 28 50 179 28 257 467 1667
Los Angeles, CA 53 486 884 3155 292 2679 4872 17381
Maricopa AZ 4 37 67 238 34 312 567 2024
New York City, NY 269 2468 4488 16012 5151 47257 85937 306607
Philadelphia, PA 4 37 67 238 67 615 1118 3988
Ramsey, MN 5 46 83 298 16 147 267 952
San Diego, CA 16 147 267 952 127 1165 2119 7560
San Francisco, CA 28 257 467 1667 76 697 1268 4524
Suffolk, MA 27 248 450 1607 86 789 1435 5119

Estimated Total Infected in each county at March 15 and March 20 For a 5 day lag in reporting.
We compute the 90th and 10th percentiles based on the range of α given in Table 3. Total Infected
is computed as

Rc,t

α . Since we are using the same range of α for each county, row entries with the
same number of reported cases are identical. Harris County is missing Mar 20, so Mar 19 data is
used for Harris.
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Table 6: Estimated Total Infected By County - Lag 8

Mar 15 Mar 20

County Rep 10Pct. Mean 90Pct. Rep 10Pct. Mean 90Pct.

Broward, FL 36 170 288 803 128 605 1024 2854
Clark, NV 16 76 128 357 126 596 1008 2809
Cook, IL 50 237 400 1115 278 1315 2224 6198
Dallas, TX 11 52 88 245 74 350 592 1650
Essex, NJ 7 33 56 156 73 345 584 1628
Fulton, GA 20 95 160 446 88 416 704 1962
Harris, TX 11 52 88 245 30 142 240 669
Hillsborough, FL 4 19 32 89 32 151 256 713
Honolulu, HI 3 14 24 67 28 132 224 624
Los Angeles, CA 53 251 424 1182 292 1381 2336 6511
Maricopa AZ 4 19 32 89 34 161 272 758
Miami-Dade, FL 13 61 104 290 123 579 980 2731
Multnomah, OR 1 5 8 22 12 57 96 268
New York City, NY 269 1272 2152 5998 5151 24366 41205 114849
Philadelphia, PA 4 19 32 89 67 317 536 1494
Ramsey, MN 5 24 40 111 16 76 128 357
San Diego, CA 16 76 128 357 127 601 1016 2832
San Francisco, CA 28 132 224 624 76 360 608 1695
Suffolk, MA 27 128 216 602 86 407 688 1918
Wayne, MI 8 38 64 178 67 317 536 1494
Whatcom, WA 2 9 16 45 10 47 80 223

Estimated Total Infected in each county at March 15 and March 20 For an 8 day lag in reporting.
We compute the 90th and 10th percentiles based on the range of α given in Table 3. Total
Infected is computed as

Rc,t

α . Since we are using the same range of α for each county, row entries
with the same number of reported cases are identical. Harris County is missing Mar 20, so Mar
19 data is used. Miami-Dade is missing Mar 19 and Mar 20, so the average between Mar 19 and
Mar is used instead.
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Table 7: Reporting Rate (α) Estimates Including King County

αice αUS
1−αUS

αUS

5 Day Lag

China and Italy Travel Data
0.0231 0.0206 47.6

Only Chinese Travel Data
0.0231 0.0211 46.5

China, Italy, Spain, Germany, UK
0.0231 0.0211 46.5

8 Day Lag

China and Italy Travel Data
0.0231 0.0516 18.4

Only Chinese Travel Data
0.0231 0.0539 17.6

China, Italy, Spain, Germany, UK
0.0231 0.0538 17.6

We report estimated α by OLS without a constant for several
specifications of the model. We use T0 as Feb 23rd and T1 as
Mar 10,13 for each lag respectively. For the versions including
European data, European travel to both Iceland and the United
States is considered. King County is included in this data.
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Table 8: Robustness to Lag

Lag α

0 0.00558
1 0.00874
2 0.0094
3 0.01
4 0.0123
5 0.0168
6 0.0287
7 0.0299
8 0.0452
9 0.0717
10 0.0758
11 0.124
12 0.211

Table 8 shows estimates of α as the reporting lag period is varied. We use T0 as

Feb 23, and T1 as March 5 + Lag days. King County is omitted. We include Italy,

Spain, Germany, and the United Kingdom as epicenters as well as China.s
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Appendix

We derive our model incorporating reporting lags in the appendix and show how we

get the estimating equations in Section 3.4.

Recall that we denote true infected, true reported Infected, and true unreported

infected in time t and target city i as Ii,t, Ri,t, Ui,t respectively. Those for epicenter

c as Ic,t, Rc,t, Uc,t. Let k be the lagged report period. At time t city i denote the

lagged reported infected LRi,t = Ri,t−k. For epicenter c, the lagged reported infected

is LRc,t = Rc,t−k.

Define reporting rate at city i as α =
Ri,t−k

Ii,t−k
=

LRi,t

Ii,t−k
and at epicenter c as αc =

Rc,t−k

Ic,t−k
=

LRc,t

Ic,t−k
. This means that we are considering the reporting rate of lagged

reported cases on the lagged total infection.

We know that in the epicenter c, we have the following:

Ic,t = Ic,0 exp(β(t− T0)) (19)

Rc,t = αcIc,t (20)

Uc,t = (1− αc)Ic,t (21)

= (1− αc)Ic,0 exp(β(t− T0)) (22)

When only travel data is available, our assumption 3.1 is

Iinci,t

Mi,t
=

Uc,t

Nc − R̂c,t
for any time t ∈ [T0, T1], region i and epicenter c (23)

We can then write it as

Iinci,t =
Mi,t

Nc − R̂c,t
(1− αc)Ic,0 exp(β(t− T0)) (24)

In city i, at time T1 we observe L̂Ri,T1 . We have
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Ii,T1−k =

∫ T1−k

T0

Iinci,t exp(β(T1 − k − t))dt

L̂Ri,T1 = αIi,T1−k + εi,T1

= α

∫ T1−k

T0

Iinci,t exp(β(T1 − k − t))dt+ εi,T1

= α

∫ T1−k

T0

Mi,t

Nc − R̂c,t
(1− αc)Ic,0 exp(β(t− T0)) exp(β(T1 − k − t))dt+ εi,T1

= α(1− αc)Ic,0 exp(β(T1 − T0 − k))

∫ T1−k

T0

Mi,t

Nc − R̂c,t
dt+ εi,T1

= α(1− αc)
Rc,0
αc

exp(β(T1 − T0 − k))

∫ T1−k

T0

Mi,t

Nc − R̂c,t
dt+ εi,T1

= α
1− αc
αc

exp(β(T1 − T0 − k))LRc,k

∫ T1−k

T0

Mi,t

Nc − R̂c,t
dt+ εi,T1

When both travel data and randomized testing data are available, we maintain

assumption 3.2:

Iinci,t

Mi,t
= γ

Uc,t

Nc − R̂c,t
for any time t ∈ [T0, T1], region i and epicenter c (25)

We can write it as

Iinci,t = γ
Mi,t

Nc − R̂c,t
(1− αc)Ic,0 exp(β(t− T0)) (26)

In US city i, at time T1 we observe L̂Ri,T1 . Following the same derivation as above,

we have

L̂Ri,T1 = αγ
1− αc
αc

exp(β(T1 − T0 − k))LRc,k

∫ T1−k

T0

Mi,t

Nc −Rc,t
dt+ εi,T1 (27)

Similar derivation shows that for Iceland region j time T1, we have

Îj,T1−k = γ
1− αc
αc

exp(β(T1 − T0 − k))LRc,k

∫ T1−k

T0

Mj,t

Nc − R̂c,t
dt+ εj,T1 (28)
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