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Abstract

Objective

The aim of this study was to investigate relevance between type of autoantibody and
gene expression profile in skin lesion of systemic sclerosis (SSc), and identify
specifically dysregulated pathways.

Methods

Sixty-one patients with SSc from the Genetics versus Environment in Scleroderma
Outcome Study cohort and thirty-six healthy controls (HC) areincluded. Differentially
expressed genes (DEGs) were extracted and functional enrichment and pathways
analysis were conducted.

Results

Compared with HC, lists consisting of 2, 71, 10, 144 and 78 DEGs were created for
patients without specific autoantibody, anti-centromere (ACA), anti-U1 RNP (RNP),
anti-RNA polymerase |11 (RNAP) and anti-topoisomerase | (ATA) antibody,
respectively. While part of enriched pathways overlapped, distinct pathways were
identified except those without specific autoantibody: keratinocyte differentiation in
ACA, NF-kB signaling and cellular response to transforming growth factor beta
stimulus in RNAP, interferon alpha/beta signaling of RNP and cellular response to
stressin ATA.

Conclusion

Pathogenic pathways were identified according to type of autoantibodies by leveraging
gene expression data of patients and controls from multi-center cohort. The current
study will promote to explore new therapeutic target for SSc.
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I ntroduction

Systemic sclerosis (SSc) is a heterogeneous autoimmune disease characterized by
fibrosis and micro-vasculopathy. Compared with limited cutaneous systemic sclerosis
(IcSSc), those with diffuse cutaneous subtype of SSc (dcSSc) have with high morbidity
and mortality. Progression of skin lesion is associated with subsequent progression of
visceral organ lesion and mortality in dcSSc, suggesting critical disorder may be shared
among various lesion [1]. Thus, skin biopsy has been conducted to explore the key
molecule in the pathogenesis of dcSSc. To date, transcriptome profiling has revealed
involvement of fibroinflammatory pathways in aberrant milieu of skin lesion [2,3].
According to gene expression profiles observed in their skin biopsy specimens, there are
3 subgroups of patients with dcSSc; an inflammatory pattern, a proliferative pattern and

normal-like pattern [4].

However, while type of autoantibodies is relevant to clinical traits, association
between gene expression profile in situ and autoantibodiesis still largely unknown.
Antinuclear autoantibodies are positive in more than 80% of patients with SSc [5,6].
Anti-centromere (ACA) antibody is associated with |cSSc and negatively associated
with interstitial lung disease (ILD) [5,6]. Anti-topoisomerase | (ATA) antibody, which
is amost specific for dcSSc, is arisk factor for ILD [5,6]. Anti-RNA polymerase 111
(RNAP) antibody is almost specific for dcSSc and associated with renal crisis[7].
Patients with positivity of anti-U1 RNP (RNP) antibody, which is associated with
overlapping features of multiple connective diseases including SSc, develop
muscul oskeletal involvement earlier and more frequently than other type of SSc [8]. On
the other hand, less than 10% of SSc patients are seronegative [9]. These patients are
common in dcSSc and characterized by less vasculopathy such as pulmonary
hypertension, digital ulcers and fewer telangiectasias, and a greater proportion of males
and gastrointestinal involvement [10].

The aim of this study was to investigate relevance between type of
autoantibody and gene expression profile in skin lesion, and identify specificaly
dysregulated pathways.

Materialsand Methods

Patients and control subjects

The Genetics versus Environment in Scleroderma Outcome Study (GENISOS) is
prospective cohort with collaboration between the University of Texas Health Science
Center at Houston, the University of Texas Medical Branch at Galveston and the
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University of Texas Health Science Center at San Antonio [11]. All patients fulfilled the
criteriafor SSc according to American College of Rheumatology/European League
Against Rheumatism classification criteria [12]. Type of SSc, dcSSc or I1cSSc, was
defined based on the extent of cutaneous involvement [13]. The modified Rodnan skin
thickness score [14] was used to assess skin thickness. The presence of intertitial lung
disease was defined by high-resolution computed tomography findings and decreased
forced vital capacity less than 70% predicted.

Expression profiling

The methods of skin biopsy and gene expression measurement were described in the
previous report [2]. Briefly, after RNA was extracted from skin specimen, global gene
expression was measured using Illumina HumanHT-12bead arrays. All microarray
experiments were performed in single batch. Raw expression dataset is available in
public GEO (accession number GSE58095). Data were normalized according to the
median method and transformed to z-score. For quality control, genes whose log
intensity variance was in the bottom 75th percentile and whose expression level werein
the bottom 20th percentile were filtered out. Finally, 9456 transcripts met this criterion.
The extraction of differentially expressed genes (DEGs) was conducted based on the
empirical Bayes method in the R/Bioconductor limma package. DEGs were extracted
by setting the criterion for statistical significance as an adjusted P value by the
Benjamini-Hochberg procedure < 0.05 and an absolute fold change > 1.5. Functional
enrichment and pathways analysis were conducted using Gene Ontology terms, Kyoto
Encyclopedia of Genes and Genomes pathway, Hall mark gene sets, Canonical
Pathways and Reactome Gene Sets. The interactive visualization was generated by

M etascape (https://metascape.org/gp/index.html). In hierarchical clustering, genes were
divided into clusters by k-means method.

Satistics

Continuous data were presented as the median and range or as a number with a
percentage value, as appropriate. The Wilcoxon rank sum test was used to examine the
differences between continuous variables. Fisher’s exact test was used to compare
proportions in categorical data between groups. All statistical analyses without
transcriptome analyses were performed with R (R Foundation for Statistical Computing,
Vienna, Austria).

Results
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Totally, 61 patients with SSc from GENISOS cohort and 36 healthy controls (HC) were
included (Table 1). Patients with positivity of RNP were significantly younger, and
those with RNAP and ATA had high the modified Rodnan skin thickness score at
biopsy.

First, whole gene expression profiling was described by hierarchical clustering
analysis (Figure 1A). Genes were divided to 3 clusters (Supplementary Table 1): those
in cluster 2 were specifically upregulated in SSc, while thosein cluster 1 and 3 was not
different among SSc and HC. Functional enrichment analysis revealed that cluster 1 was
characterized by ERBB2 signaling, which isinvolved in pulmonary fibrosisin
bleomycin-treated mice [15] (Figure 1B). Genesin cluster 2 were associated with
inflammatory pathways such as neutrophil degranulation, antigen processing and
presentation and cytokine mediated signaling pathway. On the other hand, enriched
terms by genes in cluster 3 were physiological function, suggesting normal-like
signatures. These results were in agreement with previous report [2].

Then, gene expression was compared between patients and controls according
to type of autoantibody. Lists consisting of 2, 71, 10, 144 and 78 DEGs were created for
patients without specific autoantibody (None), ACA, RNP, RNAP and ATA,
respectively (Figure 2A-E and Supplementary Table 2). A part of DEGs were
overlapped among ACA, RNAP and ATA, suggesting those might share condition of
cutaneous lesion to some extent (Figure 2F and G). For example, ITGB5, whichisa
beta subunit of integrin and receptor for fibronectin, was identified as DEGs of ACA,
RNAP and ATA. TAGLN, which ubiquitously expresses in vascular and visceral
smooth muscle and downstream of transforming growth factor-beta (TGF-$)[16], was
also included in DEGs of ACA, RNAP and ATA. Indeed, enrichment analysis using
upregulated DEGs demonstrated that the several terms, such as extracel lular matrix
organization, were overlapped among them (Figure 3). On the other hand, signature of
DEGs of RNP were distinct from other autoantibodies (Figure 2F and G), and interferon
alpha/beta signaling was upregulated, representing features of overlapping other
connective diseases [8]. Regarding to downregulated DEGs, while eukaryotic
translation elongation was enriched in RNAP and ATA, its relevance fibrotic diseases
is unknown (Figure 3).

Finally, to explore distinct pathways characterizing signature of each
autoantibody, functional enrichment analysis was conducted using specific DEGs of
each autoantibody (Figure 4). Corresponding with the result earlier, interferon
alpha/beta signaling was upregulated in RNP. Interestingly, while fibrotic pathway
such as keratinocyte differentiation was enriched in ACA, inflammatory pathways
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including NF-kB signaling also enriched in RNAP. No term was enriched in specifically
upregulated DEGs in ATA. According to downregulated DEGs, ARG1 (Arginase-1) and
CLDN1 (Claudini11) were relevant to cellular response to transforming growth factor
beta stimulus in RNAP. Macrophage-specific ARG1 functions as an inhibitor of
inflammation and fibrosis viasuppressing T helper 2 (Th2) cytokine [17], suggesting
downregulation of ARG1 might promote fibrosis. CLDN1, which is downstream of
TGF-$, isrequired for the normal barrier function of the skin through maintaining tight
junctions [18]. Asto ATA, H3-3B, RPL24, RPL31 and RPL23 were downregul ated,
implying suppression of cellular responseto stress (e.g., hypoxia and oxidative stress).

Discussion

The current study reconfirmed that condition of cutaneous lesion were divided into 3
subgroups according to gene expression profiling in skin lesion: fibrosis, inflammation
and normal-like signature [2]. In addition, while part of pathogenic pathways
overlapped, distinct pathways were identified according to type of autoantibodies,
representing characteristics of clinical features autoantibodies of SSc: for example,
upregulation of keratinocyte differentiation in ACA, NF-kB signaling and cellular
response to transforming growth factor beta stimulus in RNAP, interferon alpha/beta
signaling of RNP and suppression of cellular responseto stressin ATA.

The evidence of the mechanisms that lead to chronicity of tissue repair
responses in SSc is accumulating. Genome-wide associ ation studies reveal ed numerous
susceptibility loci for SSc and implicated involvement of several inflammatory
responses including interferon stimulated genes in the pathogenesis od SSc: IRF5
(encoding interferon regulatory factor 5), IRF8 (interferon regulatory factor 8) and
STAT4 (signal transducer and activator of transcription 4) [19]. The current study
suggests, athough the inflammatory responses in SSc vary across numerous pathways,
upregulation of interferon signaling is characteristic especially in SSc overlapping other
connective diseases, which is associated with RNP. On the other hand, SSc with RNAP
was associated with upregulation of NF-kB signaling in skin, corresponding with recent
study which found NFKB1 as a novel susceptible locus for SSc [19]. In addition,
decrease in expression of ARG1 in skin lesion of SSc with RNAP, contributing to
suppression of cellular response to transfor ming growth factor beta stimulus, might be
relevant to aberrant Th2 cell-M2 macrophage-mediated response, which is potent
profibrotic mediators [17]. Asto SSc with ATA, cellular response to stress was
suppressed. Various cellular stresses are considered to trigger inflammation and
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immune signaling [20], suggesting they could be an initiator of aberrant responsein
skin lesion of SSc.

Fibrotic tissue responses are highly important aspects of SSc. The
microvascular injury initiates a reparative cascade, triggering an inflammatory response
and fibroblast activation [21]. In skin lesion of SSc with ACA, keratinocyte
differentiation and wound healing were upregulated. When tissue isinjury,
myofibroblasts invade and repair injured tissues, following they undergo apoptosis [22].
However, in SSc, myofibroblasts are chronically activated, and therefore wound healing
response and tissue remodeling prolong [23]. Considering the result of enrichment
analysis, SSc with ACA polarize towards aberrant tissue remodeling with less
contribution of inflammatory response.

Although patients without specific autoantibody were also included in the
current study, the number of DEGs was disproportionally small. Except autoantibodies
measured in the GENISOS cohort, SSc-associated autoantibodies are present at low
frequencies. They include antibodies directed to endothelial cells, fibrillin-1, fibroblasts,
against matrix metalloproteinases, the PDGF receptor and the angiotensin 11 type 1
receptor, and each of them is associated with different clinical characteristics [24].
Therefore, the reason why only 2 DEGs were generated from them because they might
be heterogenous population.

This study suffers from several limitations. First, the possibility that factors
other than autoantibody affected the result couldn’t be denied. If clinical information
will be in available, confounding factor can be clear. Second, histological and functional
experiments were needed to confirm that the dysregulated pathways contributed clinical
phenotype.

In conclusion, distinct pathways were associated with type of autoantibody,
while apart of gene expression profiling were overlapped among them, by leveraging
gene expression data of patients and controls from multi-center cohort. The current
study will promote to explore new therapeutic target for SSc.
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Table 1. Demographic and clinical characteristics of subjects at skin biopsy.

Control None ACA RNP RNAP ATA
N 36 17 7 3 17 17 D
. 4956 4863 59.70 2413 57.33 54.21
Age (median [range]) 0.046
[2332,67.32] [2199,7321]  [51.99,6346] [2401,8187]  [4321,6602]  [24.79,79.95]
Gender, female/male (%) 29/7 (80.6/19.4) 14/3 (824/17.6)  5/2 (71.4/286)  3/0(100.0/0.0) 13/4(76.5/235) 10/7 (58.8/41.2) 0527
Race, N (%) 0.359
White 19 (52.8) 11 (64.7) 6 (85.7) 1(33.3) 12 (70.6) 10 (58.9)
African American 10 (27.8) 4(235) 0(0.0) 1(33.3) 4(235) 1(5.9)
Latino 7(19.4) 2 (11.8) 1(14.3) 1(33.3) 1(5.9) 5 (29.4)
Other 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 1(5.9)
Type of SSc, N (%) <0.001
desse N/A 11 (64.7) 1(14.3) 2 (66.7) 16 (94.1) 13 (76.5)
lcSse N/A 6(35.3) 6 (85.7) 1(33.3) 1(5.9) 4(235)
| 8.00 6.00 6.00 2150 17.00
MRSS (median [range]) N/A 0.01
[2.00,3200]  [2.00,24.00] [2.00, 7.00] [3.00,39.00]  [4.00,34.00]
'merg'“ajN ! ;2? diseese, N/A 8 (47.1) 0(0.0) 1(33.3) 6(35.3) 8 (47.1) <0.001
'mmunoprp; veagents, N/A 4(235) 1(14.3) 0(0.0) 6(35.3) 6 (35.3) 0.001
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AN
-—

ACA, anti-centromere antibody; ATA, anti-topoisomerase antibody; dcSSc, diffuse cutaneous systemic sclerosis; DEGSs, differentially expressed genes; IcSSc,
limited cutaneous systemic sclerosis; mRSS, the modified Rodnan skin thickness score; None, seronegative patients; RNAP, anti-RNA polymerase 3 antibody;

RNP, anti-U1RNP antibody.


https://doi.org/10.1101/2020.04.12.20063131

medRxiv preprint doi: https://doi.org/10.1101/2020.04.12.20063131; this version posted April 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

Figure legends.

Figure 1. Whole gene expression profiling and functional enrichment analysis.
A) Hierarchical clustering analysis.

B) Functional enrichment analysis using genesin cluster 1, 2 and 3 identified in
hierarchical clustering analysis (A).

ACA, anti-centromere antibody; ATA, anti-topoi somerase antibody; dcSSc, diffuse
cutaneous systemic sclerosis; 1cSSc, limited cutaneous systemic sclerosis; None,
seronegative patients; RNAP, anti-RNA polymerase 3 antibody; RNP, anti-U1RNP
antibody.

Figure 2. Differentially expressed genes compared with healthy controls.

A, B, C, D and E) Volcano plot of None (A), ACA (B), RNP (C), RNAP (D) and ATA
(E). Top 10 significantly upregulated and downregulated transcripts are annotated by
gene symbol.

F and G) Venn diagram of upregulated DEGs (F) and downregulated DEGs (G).
ACA, anti-centromere antibody; ATA, anti-topoisomerase antibody; DEGs,
differentially expressed genes; None, seronegative patients; RNAP, anti-RNA
polymerase 3 antibody; RNP, anti-U1RNP antibody.

Figure 3. Functional enrichment analysis using differentially expr essed genes.

A, B, C, D, Eand F) Enriched terms using differentially expressed genesin ACA (A),
RNP (B), RNAP (C and E) and ATA (D and F). Top 20 significant terms are shown.
ACA, anti-centromere antibody; ATA, anti-topoisomerase antibody; DEGs,
differentially expressed genes; None, seronegative patients; RNAP, anti-RNA
polymerase 3 antibody; RNP, anti-U1RNP antibody.

Figure 4. Functional enrichment analysis using differentially expressed genes
without overlapping each other.

A, B, C, D and E) Enriched terms using differentially expressed genes without
overlapping each other in ACA (A), RNP (B), RNAP (C and D) and ATA (E). Top 20
significant terms are shown.

ACA, anti-centromere antibody; ATA, anti-topoisomerase antibody; DEGs,
differentially expressed genes; None, seronegétive patients; RNAP, anti-RNA
polymerase 3 antibody; RNP, anti-U1RNP antibody.
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Supplementary Table 1. Cluster of genesin hierarchical clustering analysis.
Supplementary Table 2. Genes with adjusted p-value lessthan 0.05 compared with
healthy controls.

ACA, anti-centromere antibody; ATA, anti-topoi somerase antibody; RNAP, anti-RNA
polymerase 3 antibody; RNP, anti-U1RNP antibody.
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