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An impact of viral mutations on the extent of an epidemic is examined. A mechanism of immunization 

of the population via spread of weakly mutated strain  as a natural factor terminating the epidemic is 

indicated. An epidemic model  which  details this mechanism  is proposed. 
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Introduction and Motivation 

The COVID-19 virus has spread across the world, becoming a pandemic. It brings with it a great deal 

of social, economic, and political damage.  

In this rapidly developing crisis, it is necessary to reliably assess the current state of the epidemic as 

well as to predict its near- and medium-term development. A scientifically sound assessment is vital 

for deciding on how to allocate the significant yet limited medical resources available to combat the 

epidemic. And it is crucially important for determination of optimal quarantine measures, such that 

they would effectively reduce the severity of the epidemic but would not inflict near-irreparable 

damage to the economy.   

In this paper, we consider the role of the inherent mutability of the virus. We recognize it  as the 

principal factor which critically suppresses the growth of novel viral epidemics.  The mechanism of 

this suppression has a well known evolutionary nature. In plain words, once viruses get under attack 

of the immune systems of the infected humans, they mutate to survive in the hostile environment. 

Given the diminutive scale of the virus reproduction time, it is fair to assume that viruses may mutate 

quite fast on the human timescale. And by evolutionary principle, a less pathogenic virus strain has 

better survival chances.  When a statistically significant number of people get infected, there should 

be a large number of them with strong immunity that facilitates less pathogenic virus mutations. As 

these people transmit their weaken strain to others, we observe some natural cross-immunisation.      

 We develop a new mathematical model which takes viral mutability into account, and compares our 

results against other models and current factual data available for COVID-19 pandemic. Our results 

allow us to evaluate our ability to suppress the spread of the epidemic, and to debate on measures 

which we should take in order to optimally facilitate its containment and termination. We also 

provide a medium term forecast of  the epidemic development in those countries where COVID-2019  

has yet to unravel in full force. 

The paper is structured as follows.  

In the first part we review the commonly  accepted SIR epidemiological model [1]. We argue that the 

SIR-based estimates of the peak values of the infected population and epidemic duration can hardly 

be supported by COVID-19 data for a number of countries. We attribute this fact to the SIR model 

overlooking the impact of  the virus mutability on the epidemic, whereas  the fact of rapid mutations 

is now reliably established [2]. 

We next extend the SIR model to incorporate a virus mutation factor. Our model, which we call 

“SIMR”, shows that rapid virus mutations that accompany avalanche epidemic phase can drastically 

scale down the epidemic and reduce the height of its peak by a factor of ten-to-hundred  as 

compared to the  SIR results. 

In the second part of this paper, we use the SIMR model to analyze the now practically terminated 

COVID-19 outbreak in Wuhan of China [3]. This allows us to evaluate the main internal parameter of 

the model - the probability of mutation of the transmitted virus. Next, we shell use this approach to 

analyze and assess the current situation in other countries where the epidemic still goes. 
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In the third part, we analyze the current state of the epidemic in a number of countries and 

megacities, as well as make medium-term forecasts of the development of the situation. The analysis 

is based on the same SIMR model with the same basic parameter. 

In the conclusion, we qualitatively evaluate the role of the SIMR model parameters in limiting the 

scale of the epidemic as well as discuss the role of the age structure of a country population which is 

not explicitly reflected in the SIMR model in the suggested form. 

I. TWO MODELS OF THE EPIDEMIC DEVELOPMENT 

A. Basic SIR model that does not take into account mutations of the virus  

It is the main epidemic development model that exists today to describe the course of an epidemic. It 

is based on a three-stage scheme, where the entire population is divided into three parts: 𝑆 is 

susceptible (uninfected),  𝐼  is infected (infected, sick),  𝑅  is recovered. 

It is assumed that the survivors acquired perfect immunity at the cost of the disease and no longer 

get sick. Taking into account that 𝑆(𝑡),  𝐼(𝑡) and 𝑅(𝑡) are the fractions of these groups throughout 

the entire population, the model builds the evolution of the epidemic through a system of three 

differential equations: 

𝑑𝑆

𝑑𝑡
= −𝛽𝐼𝑆 (1) 

 

𝑑𝐼

𝑑𝑡
= 𝛽𝐼𝑆 − 𝛾𝐼 (2) 

 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 (3) 

 

where 𝛽 characterizes the rate of transmission of the virus, and 𝛾 is the rate of the recovery and 

therefore the rate of getting the acquired immunity. 

The model parameter β characterizes the rate of transmission of the virus, and γ the rate of recovery 

and thereby the acquisition of immunity. The SIR model keeps the sum  𝑆(𝑡) + 𝐼(𝑡) +  𝑅(𝑡) =

1 constant, as it should be. 

Point S = 1, I = R = 0 corresponds to a state with no infected.  Small deviations from it develop in time 

according to the law ∝ exp[(𝛽 − 𝛾)𝑡]. The emergence of the epidemic and its further development is 

controlled in this model by the only dimensionless parameter  𝑟 = 𝛽/𝛾.  At a high propagation speed 

of the virus  , when 𝑟 is more than one, the number of sick people starts to grow and the epidemic 

begins. 

Later on, the number of sick people increases until a significant majority of the population passes 

through the stage of the disease and thereby acquires immunity. At the beginning of the epidemic, 

the vast majority of people 𝑆(0) = 1 − 𝐼0 are healthy ( 𝐼(0) = 𝐼0 ≪ 1 is the initial fraction of carriers 

of the virus, 𝑅(0) = 0 - nobody have been sick and gained immunity so far). During the epidemic, a 

significant fraction of people 0 < 𝐼(𝑡) < 1 are sick. At the end of the epidemic, there are no more 
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sick people,  𝐼(𝑡) = 0. Some people 𝑅(𝑡) as a result of the epidemic went through disease and gain 

immunity, another part 𝑆(𝑡) escaped the disease. The typical course of the epidemic in the SIR 

model is as follows (Fig.1): 

 

Fig.1. SIR  model  epidemic  development (β=0.6, γ=0.12) 

The maximum fraction of the sick people during the epidemic is given by the relation [1] 

𝐼𝑚𝑎𝑥 = 1 − (1 + ln 𝑟)/𝑟 (4) 
 

It follows from this that the fraction of sick people at the peak of the epidemic can be very high. So, 

at 𝑟 = 5 it is 𝐼𝑚𝑎𝑥 = 48% as shows the 𝐼(𝑡) plot in Fig.1. Experience shows that the fraction of sick 

people never reaches this level. This fact alone indicates the incompleteness of the SIR model and 

the existence of other mechanisms for ending the epidemic, not related to the acquisition of 

immunity by people through the stage of the disease. 

B. New SIMR model taking into account virus mutations 

To understand what exactly can be this way, you need to consider that the virus itself, like the human 

body, changes during the course of the epidemic. And if a person gains immunity in the course of a 

disease, then the initial strain of the virus, due to the sharply increased replication rate in the body 

affected by the disease, rapidly mutates. 

 Mutations of the virus occur randomly, but it is precisely those strains that lead not to acute, but to 

a subnormal, latent course of influenza that are transmitted most successfully. It is the carriers of 

such a strain that transmit the largest number of viruses, and therefore it is precisely such a strain 

that spreads most rapidly and most successfully. 

Thereby there is a kind of mutual complementarity: 

1) an aggressive strain quickly and efficiently propagates inside the body affected by the disease, but 

it has a limited duration of action, during which it either is eliminated by the immune system or leads 

to the death of the body. Further, he is less likely to spread further due to the rapid immobilization of 

the patient; 
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 2) a milder strain does not lead to acute illness and multiplies inside the human body to a much 

lesser extent, but it has the ability to remain in the body for a long time, because it is built into the 

subnormal state of the body. Further, he is more likely to transmit from person to person due to the 

lack of external manifestations of the disease. 

For these reasons, the softer strain spreads faster and thereby exhausts the full area of the virus, 

gradually depriving the original aggressive strain of the possibility of further spread. In general, this 

should lead to a change in the composition of the strain circulating during the epidemic in the 

direction of its mitigation.  

Further, although the mutated virus does not lead to an acute course of the disease, the very scale of 

its reproduction in the human body is limited by the activation of the natural immune mechanism. 

Due to the genetic proximity of the original and mutated viruses, the effect of the latter acts as a 

natural vaccine, leading to hidden immunization of the body.  

Both of these factors — the softening of the initial strain and the hidden immunization — act in the 

direction of ending the epidemic. 

Virus mutations can be included in the base SIR model, giving the original virus ability to mutate 

during transmission. 

For this, along with the previous three categories (susceptible - infected - recovered), the fourth is 

introduced - those who received the mutated virus. The fraction of such people who got a mutated 

virus and were protected by it from the disease is denoted by 𝑀(𝑡). In the future, they do not get 

sick and live the same way as they were recovered from the set 𝑅(𝑡). 

 Let the probability of mutation in a single act of virus transmission be 𝑚 < 1. Thus, the fraction of 

sick people 𝐼(𝑡) will be replenished at a rate of 𝛽(1 − 𝑚)𝐼𝑆. The fraction of people infected with a 

mutated virus 𝑀(𝑡) will be replenished at a rate of 𝛽𝑚𝐼𝑆 from sick people and at a rate of 𝛽𝑚𝑆 from 

those who already got mutant virus. Then equations of the modified model, similar to the base one, 

take the form 

𝑑𝑆

𝑑𝑡
= −𝛽(𝐼 + 𝑀)𝑆 (5) 

 

𝑑𝐼

𝑑𝑡
= 𝛽(1 − 𝑚)𝐼𝑆 − 𝛾𝐼 (6) 

 

𝑑𝑀

𝑑𝑡
= 𝛽(𝑚𝐼 + 𝑀)𝑆 (7) 

 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 (8) 

 

Later on, we will call it the SIMR model. At 𝑚 = 0, it leads to the absence of mutations, as a result of 

which 𝑀(𝑡) = 0, and coincides with the basic SIR model. 
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In essence, the SIMR model is based on the model assumption that there are only two strains of the 

virus - the original (aggressive) and mutated (milder) ones. Now it is important to understand the 

effect of the mutation factor m on the epidemic in this model. 

 

Like the SIR model, the SIMR model keeps the sum 𝑆(𝑡) + 𝐼(𝑡) +  𝑀(𝑡) + 𝑅(𝑡) = 1 constant. Point S 

= 1, I = M = R = 0 corresponds to the state with no infected people. Small deviations from it develop 

in time according to the law ∝ exp[((1 − 𝑚)𝛽 − 𝛾)𝑡]. The emergence of the epidemic and its further 

development is controlled in the SIMR model by the only dimensionless parameter 𝑟 = (1 − 𝑚)𝛽/𝛾. 

At a sufficiently high rate of spread of the virus 𝛽, when 𝑟 > 1, the fraction of sick people begins to 

grow and an epidemic occurs. 

A typical course of the development of the epidemic when mutations are taken into account is 

presented in Fig.2. 

 

Fig. 2. SIMR epidemic development (m = 0.2, β = 0.6, γ = 0.05). The red line indicates that at the peak 

of the epidemic, the percentage of hidden immunization 𝑀(𝑡) is approximately 70%. 

A characteristic feature of the mutation model is a significantly smaller fraction of sick people. This is 

due to the fact that the vast majority of people got a mutated virus instead of the original one and 

thereby undergo the hidden immunization. 

On the graph, this is manifested in the fact that during the course of the epidemic, the fraction of 

𝑀(𝑡) who got a new, mutated virus significantly exceeds the fraction of 𝑅(𝑡) who got the original 

strain and thereby got sick. 

We emphasize that from the point of view of epidemiology, these two groups are equivalent - both 

of them are no longer sick and gained immunity. Although the price they paid for it is different. The 

first group (M) suffered the disease subnormally and barely noticed anything. The second group (R) 

suffered the disease in severe form with all the attendant risks.  

Since a person got a mutated virus does exhibit any pronounced disease and practically does not 

appear externally, it is natural to interpret the value of 𝑀(𝑡) as a percentage of hidden 

immunization. 
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The key effect manifested in the SIMR model of the epidemic is the avalanche-like spread of the 

mutated strain, which is significantly faster than the epidemic itself. As can be seen from Fig.2, at 

the peak of the epidemic, the percentage of the hidden immunization 𝑴(𝒕) caused by this strain 

already exceeds 70%, and soon afterwards tends to 100%. In the framework of the SIMR model, 

this is precisely the terminating factor of the epidemic. 

Thus, the SIMR model describes a natural mechanism for limiting the scale of the epidemic, which is 

based on a mutation of the original virus, its gradual displacement from the circulating strain, and 

hidden immunization of the population with the mutated strain. 

To assess the level of the hidden immunization, it is convenient to consider the limiting case of the 

absence of the usual immunity, γ = 0. In this case, during the course of the epidemic, all susceptible 

persons sooner or later get either the original strain - 𝐼(𝑡) - or the softened mutated one - 𝑀(𝑡). In 

this limit, the SIMR model has an exact solution (see Appendix A), allowing to find the limiting value 

of the fraction of infected 𝐼(𝑡) by the end of the epidemic, i.e. as 𝑡 → ∞:  

𝐼(∞) = (𝐼0)𝑚 (9) 
 

For example, with an initial infection rate of one in a million (𝐼0 = 10−6) and 𝑚 = 0.2, the total 

infection rate of the original strain is 𝐼(∞) = 1/16. This is part of those who have been immunized 

through the disease. The rest will receive a mutated virus, 𝑀(∞) = 1 − 𝐼(∞) = 15/16, or 93.8%. 

This is the fraction of immunity resulting from the epidemic through hidden immunization. At 

𝑚 = 0.4, the total fraction of the hidden immunization increases to 255/256, i.e. up to 99.6%. 

These examples show a strong influence of the probability of mutation 𝑚 on the fraction of those 

who had the initial strain during the epidemic. 

II. SIMR SIMULATION OF THE WUHANI EPIDEMIC (CHINA) 

The SIMR model has two main parameters.  

The first of these is the rate 𝛽 of spread of the virus. This parameter, being large enough, triggers the 

epidemic mechanism. For this, similarly to the basic SIR model, the condition must now be satisfied 

for a slightly different dimensionless parameter 𝑟 = (1 − 𝑚)𝛽/𝛾: 𝑟 > 1. Here 1/𝛾 is the 

characteristic time course of the disease. 

The virus spread rate 𝛽 also determines the duration of the epidemic. In a wide range of other 

parameters, the time for the epidemic to reach a maximum is approximately 10 cycles, the duration 

of each of which is the time of a single act of virus transmission, 1/𝛽. 

The second parameter of the SIMR model is the probability of mutation 𝑚 during virus transmission. 

The main property of this parameter is its determining effect on the maximum level of the epidemic, 

i.e. on the number of cases at its peak. This number rapidly decreases with increasing 𝑚 according to 

the law (1 − 𝑚)10, which corresponds to a decrease in the fraction of the initial strain with factor 

(1 − 𝑚) for each cycle of virus transmission and its replacement with a softened, mutated virus. 

The parameters 𝛽 and 𝑚 should be gained from combining statistics with the prediction of the SIMR 

model. In the case of interest to us, the most complete data are available on the epidemic of the 

COVID-19 virus in Wuhan (China), where it originated and is already close to completion. 
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We will take as a basis the evolution of the current number of sick people for the entire period, and 

overlay the theoretical graph of the SIMR model on these data: 

 

Fig. 3. Comparison of the dynamics of the number of cases during the COVID-19 epidemic in Wuhan 

(China) according to the SIMR model (solid line) with statistical data [3] (line with dots). The SIMR 

parameters are taken as m=0.39, β=0.45, γ=0.071. Here and in all further figures, the line 𝐼(𝑡) shows 

the number of cases, and the line 𝑀(𝑡) is normalized to saturation with the value of 𝑀 = 1 (100% 

hidden immunization). The red line indicates the hidden immunization 𝑀 = 0.9  at the peak of  𝐼(𝑡). 

The code for solving the equations of the SIMR model, giving the theoretical graphs, is presented in 

Appendix B. 

The coincidence shown is achieved with a virus transmission time of 1/ 𝛽 = 2.2 days and a typical 

disease progression time of 1/𝛾 = 14 days. The probability of the viral mutation during its 

transmission based on these data is  

𝑚 = 0.39. 

Later on, we will consider this value a constant, which is an internal property of the virus. 

The dimensionless epidemic factor from here is 𝑟 = (1 − 𝑚)𝛽/𝛾 = 3.8. Thus, the epidemic 

condition 𝑟 > 1 is fulfilled, as it should be. 

The irreparable discrepancy between the theoretical curve and statistics in the vicinity of the 

maximum, between the 15th and 30th days of the epidemic, allows for a fairly simple explanation: it 

was during this period that the Chinese authorities took unprecedented quarantine measures at the 

center of the epidemic, which of course reduced the virus transmission rate 𝛽 by several times. In the 

SIMR model with a constant parameter 𝛽, this is not explicitly taken into account, but the qualitative 

effect of these measures on the dependence 𝐼(𝑡)  is obvious. 

From a comparison of the two lines on the graph, the effect of restrictive measures is visible. They 

lowered the maximum number of cases by about 25,000, which, with a 6 percent mortality rate, is 

about 1,500 saved lives. 
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Further, we can compare the maximum percentage of cases in Wuhan (with a population of 12 

million, this is about 0.5%) with the prediction of a basic SIR model that ignores virus mutations. 

According to the above formula (4), for 𝑟 = 𝛽/𝛾 = 6.3, this value should be 55%, which is completely 

unrealistic. 

It is also extremely important that the SIMR model allows us to track the growth of the percentage of 

hidden immunization 𝑀(𝑡), which is not yet available to direct measurements. According to the SIMR 

model, at the peak of the Wuhan epidemic (on its 25th day) it was already 80%, on the 40th day 

99.98%, and now, on the 70th day, i.e. on 02/02/2020, is almost 100%. This is what allows us to 

consider the Wuhan epidemic to be over. 

III. SIMR-MODELING AND FORECAST OF THE COVID-19 EPIDEMIC IN SEVERAL COUNTRIES  

Next, we will use the SIMR model to analyze the current state of the epidemic in some specific cases. 

We note right away that the model proceeds from constant rather than local parameters, and 

therefore can pretend to describe only the average distribution of the epidemic in each country, 

developing only in time. At the same time, it is clear that in megacities and conglomerates it should 

develop much faster. This is exactly what is observed during the development of the pandemic. In 

order to smooth out this discrepancy between the model and the real situation, we will choose in 

each country the reference region of compact residence, which accounts for the majority of 

infections. For example, in Italy such a region is Lombardy with a population of 10 million people (of 

the total population of Italy 60 million). The following is a summary table of such reference areas / 

megacities for various countries to which the SIMR model will be applied. 

 

Country Population Region Population Initially Infected 

  (Mio.)   (Mio.) Number 

China 1400 Wuhan 12 2000 

          

South Korea 50 Daegu 2.5 200 

  
 

  
 

  

Italy 60 Lombardie 10 1000 

          

Spain 40 Madrid 15 1000 

    Catalonia     

Russia 140 Moscow 20 200 

  
 

  
 

  

USA 330 Top  20 states 200 2000 

          

Germany 80 Bavaria,  NRW,    42 1000 

  
 

Baden-Württemberg 
 

  

World 6400 Top 20 countries 1000 30000 

(without China)         

 

Tab.1. List of reference regions. 
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The initial number of infected in each case is selected from the principle of correspondence between 

the model and statistics. It has a logarithmically weak influence on the result, however, it is given 

here in order to enable complete verification of the model calculations. 

Further, it is understood that the rate 𝛽 of the virus spread during an epidemic can and should be 

reduced by restrictive measures. For this reason, the growth in the number of infected people is 

slowing. Thus, a SIMR model with a constant value of the parameter 𝛽 can only show a pessimistic 

assessment of the course of the epidemic, corresponding to the absence of dependence 𝛽(𝑡). The 

initial value of the parameter 𝛽 will be taken from the initial exponential portion of the observed 

dependence 𝐼(𝑡) in the first 10-15 days of the epidemic. To increase the reliability of this assessment, 

we use the data starting from the moment when the number of sick people exceeds 1000. 

We assume that the probability of a virus mutation is its internal property, does not depend on 

factors of external influence, and therefore can be directly taken from the Wuhan data in all cases: 

𝑚 = 0.39. The time of exit from the disease is on average constant, determined by the average level 

of immunity and is 12-14 days. This corresponds to the rate value 𝛾 = 0.075. The exceptions when 

this parameter is noticeably smaller are Italy and Spain, which have a large percentage of the elderly 

population with weakened immunity due to age. Thus, the expression for the increment of the 

dependence 𝐼(𝑡), having the form of 𝛼 = (1 − 𝑚)𝛽 − 𝛾, allows to find the initial propagation rate of 

the virus β from the established values of 𝛼, 𝛾, and 𝑚. 

A. Italy 

Here the epidemic develops according to the most dramatic scenario. The number of cases has 

already reached 80 thousand, and due to the large number of elderly among the cases, the mortality 

rate is noticeably higher than in Wuhan. The dynamics of the number of cases in Italy is shown in Fig. 

4. 

 

Fig. 4. Comparison of the dynamics of the number of cases during the COVID-19 epidemic in Italy 

according to the SIMR model (the solid line𝐼(𝑡)) with statistical data [3] (the line with dots). The SIMR 

parameters are taken as m=0.39, β=0.39, γ=0.03. Saturation of 𝐼(𝑡) corresponds to 100% hidden 

immunization. 

The initial value of the increment is obtained from the number of sick people on 02.29.2020, I(0) = 

1049 and after 10 days - on 10.03.2020, I(10) = 8514 [3]. Hence, the initial increment is 𝛼 =
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1

10
ln (

8514

1049
) = 0.21. Given the known probability of mutation 𝑚 = 0.39 and a very small value of the 

parameter for the rate of exit from the disease 𝛾 = 0.03, this, in accordance with the relation 

𝛼 = (1 − 𝑚)𝛽 − 𝛾, gives an estimate of the initial virus spread rate at the start of the epidemic: 

𝛽 =
0.21+0.03

1−0.39
= 0.39. It is this value of 𝛽 that leads to the model graph in the Fig.4. 

The dimensionless epidemic factor from here is 𝑟 = (1 − 𝑚)𝛽/𝛾 = 7.9. Thus, the epidemic 

condition 𝑟 > 1 is fulfilled, as it should be. 

It is clearly seen that after the first 2 weeks of the epidemic, the growth in the number of sick people 

slowed noticeably compared to the SIMR model with a constant value of 𝛽. It is natural to consider 

this as a consequence of the restrictive measures taken, leading to the decrease of 𝛽. 

A comparison of the theoretical and observed dependences 𝐼(𝑡) shows a noticeable lag of the latter 

by about 14 days. This indicates a later onset of the peak compared with the case of constant 𝛽, and 

the delay scale has already been determined, although it may slightly increase. Further, it is natural 

to assume that restrictive measures can only reduce the height of the maximum 𝐼(𝑡), which for the 

theoretical curve is at the level of 120 thousand. 

Thus, in this example, we see that the SIMR model is not able to reproduce the exact course of the 

epidemic dependence 𝐼(𝑡), but it gives an obvious upper limit on the height of the maximum and a 

reasonable estimate of the peak time. In this case, we are talking about another two weeks. 

B. Spain 

Here the situation is similar to Italy. The number of cases exceeded 80 thousand and continues to 

grow. The dynamics of the number of sick people in Spain is presented in Fig. 5. 

 

Fig. 5. Comparison of the dynamics of the number of cases during the COVID-19 epidemic in Spain 

according to the SIMR model (the solid line 𝐼(𝑡)) with statistical data [3] (the line with dots). The 

SIMR parameters are taken as m=0.39, β=0.51, γ=0.05. Saturation of 𝑀(𝑡) corresponds to 100% 

hidden immunization. 

The initial value of the increment is obtained from the number of sick people on 09.03.2020, I(0) = 

1169 and after 10 days - on 19.03.2020, I(10) = 16139 [3]. Hence, the initial increment is 𝛼 =
1

10
ln (

16139

1169
) = 0.26. Given the known probability of mutation 𝑚 = 0.39 and a rather small value of 
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the parameter for the rate of exit from the disease 𝛾 = 0.05, this, in accordance with the relation 

𝛼 = (1 − 𝑚)𝛽 − 𝛾, gives an estimate of the initial virus spread rate at the start of the epidemic: 

𝛽 =
0.26+0.05

1−0.39
= 0.51. It is this value of 𝛽 that leads to the model graph in the Fig.5. 

The dimensionless epidemic factor from here is 𝑟 = (1 − 𝑚)𝛽/𝛾 = 6.2. Thus, the epidemic 

condition 𝑟 > 1 is fulfilled, as it should be. 

It is clearly seen that after the first week of the epidemic, the growth in the number of sick people 

slowed noticeably compared to the SIMR model with a constant value of 𝛽. It is natural to consider 

this as a consequence of the restrictive measures taken, leading to the decrease of  𝛽. 

A comparison of the theoretical and observed dependences 𝐼(𝑡) shows a noticeable lag of the latter 

by about 10 days. This indicates a later onset of the peak compared with the case of constant 𝛽, and 

the delay scale has already been determined, although it may slightly increase. Further, it is natural 

to assume that restrictive measures can only reduce the height of the maximum 𝐼(𝑡), which for the 

theoretical curve is at the level of 120 thousand. 

С. Germany 

In Germany the epidemic is developing much slower than in other European countries and in the 

USA. The number of sick people here has already reached a maximum of 70 thousand and has 

stopped growing. The dynamics of changes in the number of cases in Germany is presented in Fig. 6. 

 

Fig. 6. Comparison of the dynamics of the number of cases during the COVID-19 epidemic in 

Germany according to the SIMR model (the solid line 𝐼(𝑡)) with statistical data [3] (the line with 

dots). The SIMR parameters are taken as m=0.39, β=0.53, γ=0.075. Saturation of 𝑀(𝑡) corresponds 

to 100% hidden immunization. 

The initial value of the increment is obtained from the number of sick people for 08.03.2020, I(0) = 

1022 and after 10 days - for 18.03.2020, I(10) = 12194 [3]. Hence, the initial increment is 𝛼 =
1

10
ln (

12194

1022
) = 0.323. Given the known probability of mutation 𝑚 = 0.39 and the standard value of 

the rate of exit from the disease γ = 0.075, this, in accordance with the relation 𝛼 = (1 − 𝑚)𝛽 − 𝛾, 

gives an estimate of the initial virus spread rate at the start of the epidemic: 𝛽 =
0.323+0.075

1−0.39
= 0.53. 

It is this value of β that leads to the model graph in the Fig.6. 
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The dimensionless epidemic factor from here is 𝑟 = (1 − 𝑚)𝛽/𝛾 = 4.3. Thus, the epidemic 

condition 𝑟 > 1 is fulfilled, as it should be. 

It is clearly seen that after the first week of the epidemic, the growth in the number of sick people 

slowed noticeably compared to the SIMR model with a constant value of 𝛽. It is natural to consider 

this as a consequence of the restrictive measures taken, leading to the decrease of  𝛽. 

A comparison of the theoretical and observed dependences 𝐼(𝑡)  shows a decrease in the height of 

the maximum by about 45 thousand and its delay by about 6 days. Both effects are an obvious 

consequence of the severe restrictive measures taken at the beginning of the epidemic. The flip side 

of such an effective restrictive approach is, from the point of view of the SIMR model, a certain 

slowdown in the growth of the hidden immunization and thereby delaying the maximum point of the 

epidemic - and hence its cessation. 

However, as the epidemic maximum is already reached, the hidden immunization at this point is 

about 75%. This indicates the end of the epidemic within the next 10 days. 

D. Russia 

In Russia the epidemic started much later as compared with other European countries and in the 

USA. From this reason the number of sick people is not high (about 9000) but grows rapidely. The 

dynamics of changes in the number of cases in Russia is presented in Fig. 7. 

 

Fig. 7. Comparison of the dynamics of the number of cases during the COVID-19 epidemic in Russia 

according to the SIMR model (the solid line 𝐼(𝑡)) with statistical data [3] (the line with dots). The 

SIMR parameters are taken as m=0.39, β=0.40, γ=0.075. Saturation of 𝑀(𝑡)  corresponds to 100% 

hidden immunization. 

The initial value of the increment is obtained from the number of sick people for 29.03.2020, I(0) = 

1462 and after 10 days - for 08.04.2020, I(10) = 8029 [3]. Hence, the initial increment is 𝛼 =
1

10
ln (

8029

1462
) = 0.17. Given the known probability of mutation 𝑚 = 0.39 and the standard value of 

the rate of exit from the disease γ = 0.075, this, in accordance with the relation 𝛼 = (1 − 𝑚)𝛽 − 𝛾, 

gives an estimate of the virus spread rate at the start of the epidemic: 𝛽 =
0.17+0.075

1−0.39
= 0.40. It is this 

value of β that leads to the model graph in the Fig.7. 
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The dimensionless epidemic factor from here is 𝑟 = (1 − 𝑚)𝛽/𝛾 = 3.25. Thus, the epidemic 

condition 𝑟 > 1 is fulfilled, as it should be.  

The epidemic in Russia in still in development and exhibits very good coincidence with forecast of the 

SIMR model, with no delay. The pick is expected in 7 days on the level of 20,000 sick people.  

E. USA 

In USA the epidemic is developing faster than in China and Europa, the number of cases has already 

exceeded 300 thousand and continues to grow. The dynamics of changes in the number of sick 

people in the USA is presented in Fig. 8. 

 

Fig. 8. Comparison of the dynamics of the number of cases during the COVID-19 epidemic in USA 

according to the SIMR model (the solid line 𝐼(𝑡)) with statistical data [3] (the line with dots). The 

SIMR parameters are taken as m=0.39, β=0.57, γ=0.065. Saturation of 𝑀(𝑡) corresponds to 100% 

hidden immunization. 

The initial increment value is obtained from the number of sick people for 13.032020 I(0) = 2126 and 

after 15 days for 27.03.2020 I(10) = 99909 [3]. Hence, the initial increment is 𝛼 =
1

14
ln (

99909

2126
) =

0.275. Given the known probability of mutation m = 0.39 and the rate of exit from the disease γ = 

0.065, this, in accordance with the relation 𝛼 = (1 − 𝑚)𝛽 − 𝛾, gives an estimate of the initial virus 

spread rate at the start of the epidemic: 𝛽 =
0.275+0.075

1−0.39
= 0.57. It is this value of 𝛽 that leads to the 

model graph in the Fig.7. 

It is clearly seen that after the first 2 weeks of the epidemic, the growth in the number of sick people 

slowed noticeably compared to the SIMR model with a constant value of 𝛽. It is natural to consider 

this a consequence of the restrictive measures taken, leading to a decrease in 𝛽. 

Comparison of the theoretical and observed dependences  𝐼(𝑡)  shows the lag of the latter by about 

8 days. This indicates a later onset of the peak compared with the case of constant 𝛽, and the delay 

scale has already been determined, although it may slightly increase. Further, it is natural to assume 

that restrictive measures can only reduce the height of the maximum  𝐼(𝑡), which for the theoretical 

curve is at the level of 500 thousand. 
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F. South Korea 

In South Korea, as in other countries of Southeast Asia, the epidemic developed much more slowly 

than in the West. The data of South Korea, presented in Fig. 8, are very different from the data of the 

South of Europe and the USA. At the maximum of the epidemic, the number of infected people did 

not reach here even 8 thousand. 

 

Fig. 9. Comparison of the dynamics of the number of cases during the COVID-19 epidemic in South 

Korea according to the SIMR model (the solid line 𝐼(𝑡)) with statistical data [3] (the line with dots). 

The SIMR parameters are taken as m=0.39, β=0.46, γ=0.03. Saturation of 𝑀(𝑡) corresponds to 100% 

hidden immunization. Fraction of the mutated virus in the total initial infection is taken to be f=0.9. 

To understand the reason for this difference, two facts must be taken into account: 1) the 

geographical proximity of South Korea and Wuhan, and 2) the epidemic in South Korea began in mid-

February, when it was at its peak in Wuhan. As shown earlier in section II, the red line in Fig.3, the 

hidden immunization in Wuhan at this point was 90%. This means that 90% of Wuhan in South Korea 

came already mutated virus. This was exactly the composition of the virus population got in South 

Korea from Wuhan. 

Accordingly, it is necessary to introduce this fact into the initial conditions of infection in South 

Korea: instead of the initial condition 𝑀(0) = 0 common to all previous cases, here it is necessary to 

take 𝑀(0) = 9𝐼0. This means that the hidden immunization with mutated virus from Wuhan has 

been taking place in South Korea since the very start of the epidemic. 

The initial increment value in South Korea is obtained from the number of sick people for 22.02.2020 

I(0) = 416 and after 10 days for 03.03.2020 I(10) = 5120 [3]. Hence, the initial increment is 𝛼 =
1

10
ln (

5120

416
) = 0.25. Given the known probability of mutation m = 0.39 and the rate of exit from the 

disease γ = 0.03, this, in accordance with the relation 𝛼 = (1 − 𝑚)𝛽 − 𝛾, gives an estimate of the 

initial virus spread rate at the start of the epidemic: 𝛽 =
0.25+0.03

1−0.39
= 0.46. It is this value of 𝛽 that 

leads to the model graph in the Fig.8. 

It is important to understand that South Korea did not go through one, but two epidemics at once - 

the initial aggressive and the new mutated virus. The same SIMR model shows that if South Korea 

entered the epidemic along with Wuhan and got only the original strain of the virus, the number of 
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cases at the peak of the epidemic would not be 8, but 30 thousand. It is the entry of the mutated 

virus into the epidemic that explains the SIMR model of a much milder course of the epidemic in the 

entire region of Southeast Asia. 

E. World (without China) 

At last, we consider the summary data starting on March 10, which we will conditionally consider as 

the beginning of the post-Wuhan pandemic. Let's combine them with the result of the SIMR model, 

as shown in Fig. 10. 

 

 

Fig. 10. Comparison of the dynamics of the number of cases during the COVID-19 epidemic in the 

World (without China) according to the SIMR model (the solid line 𝐼(𝑡)) with statistical data [3] (the 

line with dots). The SIMR parameters are taken as m=0.39, β=0.33, γ=0.075. Saturation of 

𝑀(𝑡) corresponds to 100% hidden immunization. 

The initial value of the increment is obtained from the number of sick people for 10.03.2020, I(0) = 

48031 and after 10 days for 20.03.2020, I(10) = 172591 [3]. Hence, the initial increment is 𝛼 =
1

10
ln (

172591

41648031
) = 0.128. Given the known probability of mutation m = 0.39 and the standard value 

of the rate of exit from the disease γ = 0.075, this, in accordance with relation 𝛼 = (1 − 𝑚)𝛽 − 𝛾, 

gives an estimate of the initial virus spread rate at the start of the epidemic: 𝛽 =
0.128+0.075

1−0.39
= 0.33. 

It is this value of β that leads to the model graph in the figure. 

The dimensionless epidemic factor from here is 𝑟 = (1 − 𝑚)𝛽/𝛾 = 2.7. Thus, the epidemic 

condition 𝑟 > 1 is fulfilled, as it should be. 

It is clearly seen that after the first 2 weeks of the epidemic, the growth in the number of sick people 

slowed noticeably compared to the SIMR model with a constant value of 𝛽. It is natural to consider 

this as a consequence of the restrictive measures taken, leading to the decrease of 𝛽. 

A comparison of the theoretical and observed dependences 𝐼(𝑡) shows a noticeable lag of the latter 

by about 3 days. This indicates a later onset of the peak compared with the case of constant 𝛽, and 

the delay scale has already been determined, although it may slightly increase. Further, it is natural 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 14, 2020. ; https://doi.org/10.1101/2020.04.09.20059782doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.09.20059782
http://creativecommons.org/licenses/by/4.0/


to assume that restrictive measures can only reduce the height of the maximum 𝐼(𝑡), which for the 

theoretical curve is at the level of 1,300 thousand. 

IV. CONCLUSIONS 

The SIMR model constructed in our work is a direct generalization of the basic SIR model that takes 

into account the accelerated evolution of the virus during an epidemic within the framework of the 

simplest approximation of two strains. However, it has the same limitations as the base model. It 

does not take into account two circumstances: 1) heterogeneity of parameters even within one 

country, and 2) the age structure in the population. 

The first of them should lead to territorial heterogeneity of the rate of spread of the virus, 𝛽, which, 

apparently, increases with increasing population density. We smooth out this factor by considering 

the reference regions with the highest concentration of the population. 

The second is related to the age-dependent level of immunity, which determines the rate of 𝛾 at 

which the body emerges from the disease. This requires a separate consideration, going beyond the 

framework of the constructed simple SIMR model. At the same time, even it allows one to 

qualitatively assess the effect of the average age of the population on the course of the epidemic. In 

countries with a predominantly elderly population (Italy, Spain), there is a longer course of the 

epidemic with a higher gentle maximum and a longer exit from it. This is due precisely to the low 

value of the average immunity parameter 𝛾 in elderly patients. 

We emphasize once again that the main property of the solutions of the SIMR model is the 

avalanche-like spread of the mutated strain, which is faster than the epidemic itself. The hidden 

immunization of the population resulting from this spread stops the epidemic. 

Now we are in a position to evaluate the effect of all three model parameters on the incidence curve 

𝐼(𝑡) in an epidemic. It always begins with an ascent, then turning to a maximum and a descent.  

The steepness of the rise is determined by the spread rate, 𝛽. This is exactly the parameter that is 

influenced by quarantine measures. 

The height of the maximum in the SIMR model is determined by the virus mutation factor, 𝑚. It is 

impossible to influence this factor, but knowing that it is possible to forecast the course of the 

epidemic, which allows us to plan and allocate resources. We consider this parameter as inherent 

property of the virus, a kind of epidemic index, which determines its extent. 

 The steepness of the descent depends on the 𝛾-parameter that is on the rate of gaining immunity of 

the sick persons and - to some extent - on the quality of medical care.  

The experience of the Wuhan epidemic shows that it is quarantine measures that can have a 

significant - albeit limited - impact on the height of the maximum epidemic. In this particular case, 

according to our model, it was reduced by about 1/3, i.e. for 25 thousand infected. Accordingly, with 

an average mortality rate of 6%, this saved approximately 1,500 lives. 

In general, the development of a pandemic has a limited time frame, practically independent of 

efforts in a particular country. However, the height of the maximum epidemic in each country is 

determined by the intensity of timely quarantine measures. This reduces the steepness of the rise 
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and allows to go through the epidemic without rising to its top, but to make it in a "tunnel" way. As  

it was in China and, apparently, in Germany (see Fig.3 and Fig.6). 
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APPENDIX A 

The role of mutation factor m is conveniently studied in the absence of immunity (𝛾 = 0, 𝑅 = 0). 

We choose a unit of time so that 𝛽 = 1. Then the SIMR model turns into a precisely solvable three-

component SIM model  

𝑑𝑆

𝑑𝑡
= −𝑆(𝐼 + 𝑀) (A1) 

 

𝑑𝐼

𝑑𝑡
= (1 − 𝑚)𝑆𝐼 (10) 

 

𝑑𝑀

𝑑𝑡
= (𝑚𝐼 + 𝑀)𝑆 (A3) 

 

keeping the sum  𝑆 + 𝐼 + 𝑀 = 1. The equation for 𝑆 is separated: 

𝑑𝑆

𝑑𝑡
= −𝑆(1 − 𝑆) (A4) 

 

and has a solution 

𝑆(𝑡) =
1

1 + 𝑒𝑡−𝑎
 (A5) 

 

The initial conditions 𝐼(0) = 𝐼0 and 𝑆(0) = 1 − 𝐼0 fix the value of parameter 𝑎 by the relation 

𝐼0 =
1

1 + 𝑒𝑎
 (A6) 

 

After that, the second equation for 𝐼(𝑡) is integrated: 

𝐼(𝑡) = 𝐼0 exp [(1 − 𝑚) ∫ 𝑆(𝜏)𝑑𝜏

𝑡

𝑜

] 

=  𝐼0 exp [(1 − 𝑚) ∫
𝑑𝜏

1 + 𝑒𝜏−𝑎

𝑡

𝑜

] 

=
 𝐼0

[ 𝐼0 + (1 −  𝐼0)𝑒−𝑡]1−𝑚
 (A7) 

 

Of interest is the asymptotic behaviour of the fraction of sick people  𝐼(𝑡) at 𝑡 → ∞, that is expressed 

as 

𝐼(∞) = (𝐼0)𝑚. (A8) 
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It is Eq.(9) of the main text. For example, for  𝐼0 = 10−6  we have for the asymptotic of the sick 

people fraction 𝐼(∞) 

𝑚 = 0.2 =>  𝐼(∞) = 1/16 

𝑚 = 0.4 =>  𝐼(∞) = 1/256 

Accordingly, the asymptotic of the hidden immunization  𝑀(∞) = 1 − 𝐼(∞)  in the same cases are 

𝑚 = 0.2 =>  𝑀(∞) = 15/16 

𝑚 = 0.4 => 𝑀(∞) = 255/256 

These examples show how the epidemic outcome changes with increasing mutation parameter 𝑚. 

Note that the found relation (A8) holds for any monotonic dependence 𝛽(𝑡) corresponding to a 

change in the transmission rate 𝛽 during the course of the epidemic due to quarantine restrictions. 

The only condition is the fulfilment of the relation  𝑟 = (1 − 𝑚)𝛽/𝛾 ≫ 1, which allows neglecting 

the immunity factor 𝛾, as done in equations (A1-A3). 
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APPENDIX B 

Below we present the code for Mathematika, which solves the system of equations of the SIMR 

model (5-8) and represents the solution in the form of a graph. 

Manipulate[ 

 Block[{eq, sol}, 

    eq =  

   {x1'[t] == -b*(x2[t] + x3[t])*x1[t], 

    x2'[t] ==  b*(1 - m)*x2[t]*x1[t] - c*x2[t], 

    x3'[t] ==  b*(m*x2[t] + x3[t])*x1[t],  

    x4'[t] ==  c*x2[t], 

     x1[0] ==  1 - IN0/N/(1 - f),  

     x2[0] ==  (IN0/N), 

     x3[0] ==  (IN0/N)*f/(1 - f),  

     x4[0] ==  0}; 

  sol = NDSolve[eq, {x1, x2, x3, x4}, {t, 0, tmax}]; 

  Plot[{{N*x1[t],N*x2[t],N*x3[t],N*x4[t]}/. sol},{t, 0, tmax}]], 

     {{N,1000000},  0, 10000000}, 

     {{IN0, 1000},  0,    10000}, 

     {{f,      0},  0,        1},  

     {{m,    0.1},  0,        1},  

     {{b,    0.6},  0,        1},  

     {{c,    0.1},  0,        1},  

     {{tmax, 100}, 20,      200} 

] 

Legend: 

x1[t] = 𝑆(𝑡) 

x2[t] = 𝐼(𝑡) 

x3[t] = 𝑀(𝑡) 

x4[t] = 𝑅(𝑡) 

    N = population                         (1,000,000...10,000,000) 

  IN0 = initial number of infected                 (1,000...10,000) 

    f = initial share of mutated virus in the strain        (0...1)     

    m = probability of the viral mutation                   (0...1)        

    b = spread rate = β                                     (0...1) 

    c = recovery rate = γ                                   (0...1) 

  tmax = length of the time axis                          (20...200) 
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