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SUMMARY 49 

Up to 30% of thyroid nodules cannot be accurately classified as benign or malignant by 50 
cytopathology. Diagnostic accuracy can be improved by nucleic acid-based testing, yet 51 
a sizeable number of diagnostic thyroidectomies remains unavoidable. In order to 52 
develop a protein classifier for thyroid nodules, we analyzed the quantitative proteomes 53 
of 1,725 retrospective thyroid tissue samples from 578 patients using pressure-cycling 54 
technology and data-independent acquisition mass spectrometry. With artificial neural 55 
networks, a classifier of 14 proteins achieved over 93% accuracy in classifying 56 
malignant thyroid nodules. This classifier was validated in retrospective samples of 271 57 
patients (91% accuracy), and prospective samples of 62 patients (88% accuracy) from 58 
four independent centers. These rapidly acquired proteotypes and artificial neural 59 
networks supported the establishment of an effective protein classifier for classifying 60 
thyroid nodules. 61 

Keywords: Thyroid nodule; Proteomics; Data-independent acquisition; Artificial neural 62 
networks; Pressure cycling technology; Mass spectrometry 63 

 64 

INTRODUCTION 65 

 Advances in imaging technology and liberal screening practices have identified 66 
thyroid nodules in up to 50% of the general population, but only a small minority (7-15%) 67 
eventually prove to be malignant by histology, and even fewer among these are 68 
clinically relevant (Burman and Wartofsky, 2015; Jameson, 2012). Beyond clinical 69 
assessment and ultrasonography, fine needle aspiration (FNA) followed by 70 
cytopathology is considered the most reliable pre-surgical technique for differentiating 71 
benign from malignant thyroid tumors (Burman and Wartofsky, 2015; Faquin et al., 72 
2011). Yet up to one-third of thyroid nodules are deemed indeterminate by FNA-73 
cytopathology (Alexander et al., 2012), and surgery remains the only option for accurate 74 
diagnosis. However, the majority of thyroid surgeries are diagnostic procedures 75 
undertaken to exclude thyroid cancer, of which no more than 25% accomplish any 76 
therapeutic purpose (Ahn et al., 2014). Patients whose thyroid glands are removed in 77 
part or entirely often require daily and lifelong thyroxine-replacement therapy and 78 
medical monitoring. Given that only 10% of resected glands prove to be malignant, the 79 
current clinical approach results in substantial over-treatment with unwarranted surgical 80 
risks for patients who could otherwise be treated conservatively (Vaccarella et al., 81 
2016).  82 

Molecular tests adjunctive to FNA-cytopathology have focused on RNA expression 83 
or DNA mutational profiling of aspirates obtained prior to surgery, using small quantities 84 
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of RNA or DNA that can be amplified (Eszlinger et al., 2017). The Afirma® gene 85 
expression classifier (GEC) determines RNA abundances of 142 genes with high 86 
sensitivity and negative predictive value (NPV) of up to 92% and 93%, respectively. 87 
However, positive predictive value (PPV) and specificity for diagnosing malignancy are 88 
only 47% and 52%, respectively (Alexander et al., 2012). The latest version of Afirma® 89 
called GSC has achieved a sensitivity of 91%, but the specificity was only 68% (Patel et 90 
al., 2018). The ThyroSeq (v3.0) test combines mutation and expression profiling for 91 
better accuracy (Nikiforova et al., 2013), but has other limitations i.e. the need for fresh 92 
tissue samples with un-degraded RNA, and test data processing by central ‘black box’ 93 
analysis. A recent review of the GEC test showed sensitivities of 83-100% but low 94 
overall specificity, ranging from 10 to 52% across multiple centers. This may reflect 95 
variability in sample composition, issues with tissue quality and the fragility of nuclei 96 
acid-based testing in general (Wang and Sosa, 2018). While nucleic acid-based 97 
approaches continue to be refined, for example with successive iterations of ThyroSeq 98 
panels, there is evident scope for alternative approaches to address this diagnostic 99 
dilemma. 100 

  101 
Until recently, proteomics-based analyses were limited to large tissue quantities and 102 

fresh/snap frozen samples. Proteotyping hundreds of biopsy-level tissue samples from 103 
clinical cohorts remains unfeasible with conventional methods. We developed a 104 
pressure cycling technology (PCT) protocol for proteomic analysis of tissue biopsy 105 
samples (Guo et al., 2015) which can be performed on minimal amounts (0.2–1 mg) of 106 
fresh-frozen tissue samples (Shao et al., 2016; Shao et al., 2015). The method was 107 
recently extended to generate high quality proteome data from formalin-fixed, paraffin-108 
embedded (FFPE) tissue samples (Zhu et al., 2019), and in this study on fine-needle 109 
thyroid gland aspirates. Coupled with Sequential Window Acquisition of all Theoretical 110 
fragment ions (SWATH) mass spectrometry (MS), a data-independent acquisition (DIA)-111 
MS method (Gillet et al., 2012), this technique now permits practical proteomic analysis 112 
of biopsy size FFPE tissue samples at high sample throughput. In this study we apply 113 
this technology to analyze a large number of tissue samples and show that the high 114 
quality proteotype data generated a robust panel of protein markers which differentiates 115 
benign from malignant thyroid disease with high ‘rule in’ and ‘rule out’ accuracy. 116 
 117 

RESULTS 118 

Study design and clinical characteristics 119 

We applied PCT-DIA on a total of 931 nodules from 911 patients using tissue cores 120 
(1 mm diameter with 0.5-1 mm thickness) punched out from regions of interest marked 121 
on FFPE tissue blocks, or from fine-needle aspiration (FNA) biopsies. The samples 122 
comprise (i) a discovery set from Singapore General Hospital (n = 579 nodules) where 123 
histopathological diagnoses were confirmed on central review by a board-certified 124 
pathologist; and (ii) independent test sets from four hospitals in China consisting of 125 
retrospective test sets of FFPE samples (n = 288 nodules) and prospective test set of 126 
FNA biopsies (n = 64 nodules) (Figure 1A). The discovery set comprised FFPE samples 127 
from 40 normal thyroid tissues (N), 203 multinodular goiters (MNG), 137 follicular 128 
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adenomas (FA), 75 follicular carcinomas (FTC) and 124 papillary carcinomas (PTC) 129 
(Table 1; Table S1). For subsequent analyses, these were divided into benign 130 
(comprising N, MNG and FA) and malignant (comprising FTC and PTC) thyroid nodules. 131 
For each nodule in the discovery set, three punches were obtained from the region of 132 
interest as biological replicates. In total, we analyzed 1,725 samples randomly 133 
distributed into 121 batches to minimize batch effects (Figure 1B) using 45 min DIA-MS, 134 
and an additional 56 randomly selected samples as technical replicates. These 135 
technical replicates distributed randomly in the first 84 batches for the training sample 136 
set. Although higher proteomic depth could be obtained with a longer LC gradient, we 137 
adopted a reasonably fast analysis time to minimize batch effects without substantial 138 
compromise of proteome depth (Sun, 2020), thus facilitating effective downstream 139 
machine learning to establish a robust classifier. 140 

 141 

Global proteomic profiling of thyroid nodules 142 

To analyze the DIA data, we built a specific thyroid-tissue spectral library from FFPE 143 
tissues containing 52 DDA files (Table S2) using a 120-min liquid chromatography (LC) 144 
gradient on a Q Exactive Hybrid Quadrupole-Orbitrap mass spectrometer. Relatively 145 
long gradient was adopted for DDA analysis to maximize the isolation of peptide 146 
precursors. We constructed a spectral library containing 33,802 peptides from 5,190 147 
protein groups using our previously established computational pipeline (Zhu, 2020). The 148 
number of proteins in this library is relatively smaller than that of other tissue types 149 
analyzed using a similar workflow (Guo et al., 2015; Shao et al., 2019; Zhu, 2020; Zhu 150 
et al., 2019) or other proteomic protocols (Jiang et al., 2019; Sinha et al., 2019; Zhang 151 
et al., 2016) as thyroid tissue contains a high abundance protein, thyroglobulin, which 152 
weakens the signal for the rest of the proteome (M et al., 2018). Using OpenSWATH 153 
(v2.0) and our thyroid library, we analyzed 1,781 DIA maps (1,725 FFPE cores and 56 154 
technical replicates). We identified and quantified 30,915 peptides from 3,708 high-155 
confidence proteotypic proteins (Table S3). Details on quality control and reproducibility 156 
(Figure S1) are detailed in the respective supplementary sections.  157 

From these, we computed the average intensities of 2,617 proteotypic proteins 158 
which were quantified with high confidence for each thyroid nodule, as visualized in a 159 
tissue-type supervised heatmap (Figure 2A). Malignant tissue samples expressed 160 
higher number of proteins than benign samples, indicating more diverse proteome of 161 
tumor cells. To check whether the thus acquired proteotypes classifies different tissue 162 
types, we applied uniform manifold approximation and projection (UMAP) algorithm to 163 
visualize the 579 proteotypes from five tissue types (Figure 2B). The plot shows that 164 
PTC samples are well isolated from the rest, indicating PTC samples are vastly different 165 
in terms of proteome expression. We then grouped N, MNG and FA as benign group, 166 
while FTC and PTC as the malignant group (Figure 2C). The UMAP visualization shows 167 
that malignant samples are well resolved from benign samples with some overlap. We 168 
further narrowed our focus to the N and MNG groups and found that their proteotypes 169 
share high degree of similarity (Figure 2D). Not surprisingly, FA exhibited significant 170 
overlap with both benign and malignant subsets, particularly between FA and FTC 171 
(Figure 2E), corroborating biological overlap between the two pathologies, while there 172 
were sufficient features that could distinguish FTC from PTC (Figure 2F). FA and FTC 173 
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could not be separated neither (Figure 2E). Pair-wise comparison of each two groups 174 
are shown in Figure S2. The above analyses show that the proteotype maps thus 175 
measured reasonably reflected the clinical phenotype of these samples. 176 

 177 

Feature selection and classifier development 178 

 To derive a protein-based signature to differentiate benign from malignant thyroid 179 
tumors, we developed a customized feature selection process combined with artificial 180 
neural network algorithms based on the discovery dataset of 500 samples (Figure 3A). 181 
The rest 79 samples serve as internal validation set. Here we limited the number of 182 
selected features to no more than 20 so that they may be practically measured by 183 
targeted proteomics or antibodies in clinic. We paid special attention to maximize the 184 
specificity while keeping the sensitivity above 90% since the major problem of thyroid 185 
nodule evaluation is over-diagnosis. Briefly, protein features selected by a genetic 186 
algorithm (Mitchell, 1998) combined with 5-fold cross validation led us to identify a 187 
classifier-panel of 14 proteins (Table 2) to separate benign and malignant nodules. 188 
Individual protein expression levels are shown in Figure 4. Ten of these proteins have 189 
been previously reported in thyroid cancers, including annexin A1 (Ciregia et al., 2016), 190 
galectin-3 (Bartolazzi et al., 2018), SH3 domain-binding glutamic acid-rich-like protein 3 191 
(Martínez-Aguilar et al., 2016), alpha 2-HS glycoprotein (Farrokhi Yekta et al., 2018), 192 
myosin heavy chain 9 (Wang et al., 2017), phosphatidylethanolamine-binding protein 1 193 
(Kim et al., 2010), clusterin (Kashat et al., 2010), LDL receptor related protein 2 (He et 194 
al., 2020), calreticulin (Schürch et al., 2019) and moesin (Smith et al., 2019). In addition, 195 
this list also includes two proteins involved thyroid functions, including tubulin folding 196 
cofactor A (Figliozzi et al., 2017) and histone cluster 1 H1 family member c (Brix et al., 197 
1998). No previous association with thyroid disease has been reported for the remaining 198 
two (Thy-1 cell surface antigen and sialic acid acetylesterase).  199 

We next compared seven different machine learning models for classification using 200 
these 14 selected proteins. Receiver operating characteristics (ROC) plots showed the 201 
model based on artificial neural networks described here achieved the highest area 202 
under the curve (AUC) value of 0.95 and accuracy of 0.91 (Figure 3B). Using the 14 203 
protein features in our established neural network model, each specimen was re-204 
classified into benign or malignant in the 500 samples in the discovery cohort. The 205 
model comprised a ‘feature extraction sub-model’ which extracts and maps features 206 
from protein data into a feature vector in latent space, and a ‘classification sub-model’ 207 
which assigns a score (from 0 to 1) to the feature vector indicating the likelihood of 208 
malignancy for each sample. The ‘feature extraction sub-model’ was trained using 209 
contrastive loss function, while cross-entropy loss function was used to train the 210 
classification sub-model. Details of the neural network model are described in 211 
Supplementary Methods. We validated this model using the 79 internal validation 212 
samples (Table S4; Figure S3A-S3B). ROC plot showed that our model achieved an 213 
AUC value of 0.96 for the training dataset (n=500) used to derive this algorithm and 214 
0.96 for the cross-validation dataset (n=79) (Figure 3C). t-SNE plot of the feature latent 215 
space showed remarkable separation between malignant and benign tissue using the 216 
14-protein panel.  217 

 218 
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Performance of the protein classifier 219 

 In order to validate this 14-protein model in an independent patient cohort, we first 220 
analyzed 288 pathologist-reviewed FFPE tissues (n = 271 patients) from three high-221 
volume hospitals, comprising 144 benign and 144 malignant tissue samples. To ensure 222 
rigorous validation, the diagnoses were blinded during data acquisition and analyses. 223 
Each sample was analyzed using the PCT-DIA workflow in technical duplicates. 224 
Analysis of the resulting 576 DIA maps identified 3,527 high-confidence proteotypic 225 
proteins (Table S3). Individual ROC plots for samples from each of the three hospitals 226 
using the 14-protein model showed AUC of >0.91 for the retrospective FFPE samples 227 
(Figure 3D). Both scatter and t-SNE plots demonstrated distinct separation between 228 
benign and malignant thyroid tissues (Figure 3D; Table S4), although there were 229 
variations between individual sites (Figure S3C). The overall sensitivity and specificity 230 
were 90% and 91%, respectively, with negative- (NPV) and positive-predictive values 231 
(PPV) of 90% and 91%, respectively. Further details are provided in Table 3.  232 
 Given that the eventual objectives were to apply this analysis to pre-surgical FNA 233 
biopsies, we extended validation to a separate prospective cohort of 64 FNA samples 234 
(n=62 patients) obtained from a fourth independent clinical center. Even from these 235 
small amounts of FNA biopsy tissues, we were able to generate a high-quality protein 236 
matrix containing 3,310 proteotypic proteins using PCT-DIA technology (Table S3). The 237 
model achieved an AUC value of 0.89 (Figure 3E) and correctly identified 56 of 64 238 
samples with sensitivity, specificity, PPV and NPV of 87%, 89%, 95% and 73%, 239 
respectively (Table 3). The predictive accuracy for all subtypes exceeded 91% except 240 
FA (89%) and FTC (83%) (Figure 3F), likely due to similarity of histology (and potential 241 
biological overlap) between these two pathologies. 242 
 243 

Biological insights on thyroid tumor subtypes 244 

 We next asked whether the proteomic data could be used to reveal biological 245 
insights of specific subtypes of thyroid neoplasms. In recent years, differentiated thyroid 246 
cancers have been further sub-classified based on specific morphological features or 247 
their expected clinical course. Hürthle cell adenomas and carcinomas are deemed as 248 
distinct entities, with the latter demonstrating a higher propensity for metastasis (Ganly 249 
et al., 2018; Gopal et al., 2018). The proteomic data of this study showed these to be 250 
well-resolved from other neoplasms, even from the closely related FA and FTC subtypes 251 
(Figure 5A; Figure S4A-S4C). Hürthle cell tumors are known for their oncocytic 252 
morphology and increased glucose uptake in FDG-PET scans (Grani et al., 2018), and 253 
indeed, our data showed that 91 of 109 proteins substantially elevated (fold change > 2 254 
and adjusted p-value < 0.01) compared to follicular neoplasms are mitochondrial 255 
proteins participating in multiple metabolic pathways including the TCA cycle and 256 
oxidative phosphorylation (Figure 5B). Our data therefore uncovered biochemical 257 
processes contributing to the elevated metabolism of Hürthle cell tumors. Compared to 258 
the other four complexes in the oxidative phosphorylation pathway, the most strongly 259 
upregulated proteins (7/16) were in complex V which catalyzes ATP synthesis and 260 
potentially enhances tumor growth.  261 

Follicular-variant papillary thyroid cancers (fvPTC) is a subtype with mixed 262 
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morphology, and we therefore examined specific differences between FTC, classical 263 
papillary cancers (cPTC) and fvPTC. There were no significant proteotypic differences 264 
between FTC and fvPTC (Figure S4D). However, 45 proteins were differentially 265 
regulated in fvPTC compared to cPTC (Figure S4D; proteins listed in Table S5). Our 266 
proteotypic data showed that fvPTC overlapped with both FTC and cPTC, but 267 
resembled FTC more closely, indicating that fvPTC is potentially an intermediate entity 268 
between FTC and cPTC (Figure 5C). This is consistent with genomic classifiers which 269 
suggest that FTC and fvPTC share common alterations including in the RAS pathway 270 
(Agrawal et al., 2014). Compared to cPTC, 50 proteins upregulated in histologically 271 
distinct FTC participate in multiple biological processes including endoplasmic reticulum 272 
stress and the unfolded protein response (Figure 5D, S4E), both of which are implicated 273 
in bypassing Ras-driven oncogenic senescence (Blazanin et al., 2017). The signaling 274 
network involving key upregulated proteins in FTC is shown in Figure S4F. In contrast, 275 
the 97 proteins upregulated in cPTC compared to FTC (Figure 5E) mapped to major 276 
oncogenic (TP53, MYC), dendritic cell maturation pathways and inflammatory response, 277 
suggesting that canonical nocogenic pathways and inflammation are involved in the 278 
pathogenesis of cPTC, which has been associated with thyroid inflammation (Figure 279 
5F). Consistent with this suggestion, three proteins involved in inflammation, ANXA1, 280 
LGALS3 and SOD2, showed greatest fold-change among proteins that mapped to the 281 
TP53- and MYC- related networks in cPTC (Figure 5G). Intercellular adhesion molecule 282 
1 (ICAM-1) and signal transducer and activator of transcription 1 (STAT1) are over-283 
expressed in cPTC and are potential immune-modulating targets.  284 
 285 

DISCUSSION 286 

Molecular diagnostics for thyroid nodules have been limited to nucleic acid-based 287 
testing thus far due to the feasibility of analyzing small clinical samples and the 288 
increasing affordability of next-generation sequencing. Several nucleic acid-based tests 289 
are commercially available through central-lab testing, their performance in clinic is 290 
suboptimal in terms of specificity, especially in malignancies with low mutational burden 291 
as rigorously examined by Wang et al (Wang and Sosa, 2018). Since proteins are more 292 
stable than RNA in biopsy tissue samples (Shao et al., 2019), we posit that our protein 293 
panel can be developed as future point-of-care diagnostic tests through widely available 294 
techniques such as mass spectrometry and/or immunohistochemistry, as a complement 295 
to the nucleic acid-based test. The FFPE-PCT-DIA methodology used here was able to 296 
derive protein abundance data of 3,779 proteins in 931 samples, generating 2,421 DIA 297 
proteome data sets, including replicates. The pipeline generated the first repository of 298 
proteome data of various thyroid pathologies. This enabled artificial neural network 299 
analysis to mine large proteomic datasets for protein biomarkers of thyroid cancers. A 300 
panel of 14 proteins differentiated benign from malignant disease with diagnostic 301 
accuracy over 90% with sensitivity and specificity over 91% for retrospective test sets 302 
and accuracy of 89% for prospective FNA-derived test set. The fact that 12 out 14 of 303 
these have been previously implicated in thyroid physiology or pathology provides 304 
orthogonal validation for the inclusion of these proteins in our classifier. These metrics 305 
from proteomics data exhibited high degree of both sensitivity and specificity as shown 306 
in Table 3. Our method works for small tissue samples obtained from both FFPE tissues 307 
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and FNA biopsies, making it broadly applicable for standard clinical practice, bypassing 308 
RNA assays due to the fragility of RNA integrity.  309 

Despite the accuracy in distinguishing benign from malignant thyroid nodules, the 310 
major limitation for most algorithms is distinguishing FA from FTC. Indeed, the 311 
proteotype data presented here even suggests that this entity may represent a 312 
continuum of disease, in which differences exist at the extremes of phenotypes, but with 313 
significant overlap in-between. Alternatively, the overlapping benign categories may 314 
represent precursor lesions diagnosed prior to overt capsular or vascular invasion, even 315 
though pre-requisite conditions for invasion are already present in the tumors.  316 

In conclusion, we present the first protein-based artificial neural networks classifier 317 
for classifying thyroid nodules. Although this test has been retrospectively validated in 318 
three clinical centers and prospectively validated in a fourth independent center, further 319 
validation using FNA biopsy specimens from larger prospective cohorts are required. 320 
This large-scale thyroid proteome profile of 931 thyroid nodules coupled with artificial 321 
neural networks demonstrates the power of a protein-based disease classifier with rapid 322 
potential to be translated into clinical practice. The thus established protein classifiers 323 
may complement nucleic acid-based tests in multiple clinical applications. Expanding 324 
this robust workflow to other carefully curated clinical cohorts may offer unprecedented 325 
opportunities to gain fundamental insights into molecular pathogenesis of diseases and 326 
address critical unmet clinical needs beyond thyroid cancer.  327 

 328 
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Table 1. Clinico-pathologic characteristics of the study cohorts. 472 

 

  Discovery 
dataset  

Independent test datasets 
All 

  
Retrospective 
test datasets 

Prospective 
test dataset 

Total no. 

 Clinical centers 1 3 1 5 

 patients 578 271 62 911 

 nodules 579 288 64 931 

 FFPE punches 1725 288 0 2013 

 Fine needle aspiration biopsies 0 0 64 64 

 DIA files 1781 576 64 2421 
Histopathology diagnosis 

 Normal thyroid tissues 40 (6.9%) 16 (5.6%) 0 (0.0%) 56 (6.0%) 

 Multinodular goiter 203 (35.1%) 44 (15.3%) 13 (20.3%) 260 (27.9) 

 Follicular adenomab 137 (23.7%) 84 (29.2%) 5 (7.8%) 226 (24.3%) 

 Follicular thyroid carcinomab 75 (13.0%) 52 (18.1%) 0 (0.0%) 127 (13.6%) 

 Papillary thyroid carcinoma 124 (21.4%) 92 (31.9%) 46 (71.9%) 262 (28.1%) 
Diagnosis age 

 Mean 52.8 47.5 43.6 50.6 

 Median 54 49 44 52 

 Range 13-85 15-82 24-74 13-85 

 ＜18 y 7 (1.2%) 1 (0.4%) 0 (0.0%) 8 (0.9%) 

 18-55 y 288 (49.8%) 173 (63.8%) 48 (77.4%) 509 (55.9%) 

 ≥55 y 283 (49.0%) 97 (35.8%) 14 (22.6%) 394 (43.2%) 
Gender 

 Female 433 (74.9%) 191 (66.3%) 54 (87.1%) 678 (74.4%) 

 Male 145 (25.1%) 80 (27.7%) 8 (12.9%) 233 (25.6%) 
Nodule sizea on ultrasonography 

 Mean 3.3 2.9 2.5 3.1 

 Median 3.0  2.6 2.2 2.9 

 Range 0.2-13.0 0.2-8.9 0.6-5.5 0.2-13.0 

 ＜1 cm 15 (2.8%) 37 (14.0%） 2 (3.1%) 54 (6.3%) 

 1~4 cm 342 (64.5%) 143 (54.0%) 53 (82.8%) 538 (62.6%) 

 ≥4 cm 173 (32.6%) 85 (32.1%) 9 (14.1%) 267 (31.1%) 
aNodule size information of nine patients in discouvery dataset and seven patients in test dataset were not 473 
record. 474 
bHurthle cell adenoma and carcinoma were allocated into follicular thyroid adenoma and carcinoma, 475 
respectively. 476 
 477 
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Table 2. Fourteen proteins selected by genetic algorithm, functional pathways and 479 
previously known associated thyroid physiology or pathology. 480 
 481 

Uniprot 
ID 

Symbol Entrez Gene Name 
Thyroid 
cancer 
related 

Thyroid 
function 
related 

O75347 TBCA tubulin folding cofactor A - Yes 
P02765 AHSG alpha 2-HS glycoprotein Yes - 
P04083 ANXA1 annexin A1 Yes Yes 
P04216 THY1 Thy-1 cell surface antigen - - 
P10909 CLU clusterin Yes - 
P16403 HIST1H1C histone cluster 1 H1 family member c - Yes 
P17931 LGALS3 galectin 3 Yes - 
P26038 MSN moesin Yes - 
P27797 CALR calreticulin Yes Yes 
P30086 PEBP1 phosphatidylethanolamine binding protein 1 Yes Yes 
P35579 MYH9 myosin heavy chain 9 Yes - 
P98164 LRP2 LDL receptor related protein 2 Yes - 
Q9H299 SH3BGRL3 SH3 domain binding glutamate rich protein like 3 Yes Yes 
Q9HAT2 SIAE sialic acid acetylesterase - - 

 482 
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Table 3. Performance of the protein classifier. 483 
 484 

Center 
Retrospective test sets Prospective test set All 

ZY ZE DL All retrospective study FNA  

Sample type FFPE FFPE FFPE FFPE Biopsy FFPE+Biopsy 
Malignant 

nodules No. 
35 61 48 144 46 190 

Benign 
nodules No. 

19 79 46 144 18 162 

Prevalencea 64.81 (53.62 - 74.59) 43.57 (36.84 - 50.54) 51.06 (42.65 - 59.42) 50.00 (45.16 - 54.84) 71.88 (61.86 - 80.11)  53.98 (49.58 - 58.31) 
Predict M/Mb 31 58 41 130 40 170 
Predict B/Bc 17 71 43 131 16 147 
Sensitivity 88.57 (76.80 - 94.78) 95.08 (88.29 - 98.02) 85.42 (75.12 - 91.91) 90.28 (85.43 - 93.63) 86.96 (76.67 - 93.12) 89.47 (85.23 - 92.61) 
Specificity 89.47 (72.59 - 96.46) 89.87 (82.88 - 94.21) 93.48 (84.73 - 97.37)  90.97 (86.23 - 94.19) 88.89 (71.30 - 96.26) 90.74 (86.28 - 93.85) 

PPV 93.94 (86.86 - 97.76) 87.88 (82.57 - 91.70) 93.18 (88.11 - 96.67) 90.91 (87.79 - 93.39) 95.24 (88.81 - 98.12) 91.89 (89.01 - 93.87) 
NPV 80.95 (71.33 - 88.61) 95.95 (91.91 - 97.77) 86.00 (79.27 - 91.03) 90.34 (87.01 - 92.79) 72.73 (63.51 - 81.45) 88.02 (84.92 - 90.63) 

Accuracy 88.89 (79.89 - 94.16) 92.14 (87.54 - 95.14) 89.36 (82.96 - 93.54) 90.62 (87.40 - 93.09) 87.50 (79.12 - 92.82) 90.06 (87.11 - 92.39) 
Youden’s index 0.78  0.85  0.74  0.81  0.76  0.80  

Each value was calculated to 95% Wilson confidence intervals. 485 
aThe ratio of carcinoma in total nodules. 486 
bThe number of benign nodules identified as benign. 487 
cThe number of malignant nodules identified as malignant. 488 
  489 
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FIGURE LEGEND 490 

Figure 1. Schematic view of the study and batch design. (A) The project design and 491 
workflow of the FFPE PCT-DIA pipeline. (B-C) Batch design (B) The discovery group of 492 
579 thyroid nodules from 578 patients consisted of 40 normal thyroid, 203 multinodular 493 
goiter, 137 follicular thyroid adenoma, 75 follicular thyroid carcinoma and 124 papillary 494 
thyroid carcinomas with unblinded diagnoses. Each nodule was represented by three 495 
cores as biological replicates. 1,781 thyroid FFPE punches and 56 technical replicates 496 
were randomly allocated into 121 discovery batches in order to minimize batch effect for 497 
this large-scale sample preparation. (C) The independent test group contained two 498 
parts, one is retrospective test group and the other is prospective test group. 499 
Retrospective test group included 288 thyroid nodules of blinded diagnoses from 271 500 
patients. Each nodule was analyzed in technical duplicates, without biological replicates. 501 
A total of 288 FFPE cores and 288 corresponding technical duplicates were divided into 502 
44 batches for analysis. Prospective test group contained 64 fine needle aspiration 503 
biopsies of thyroid nodules from 64 patients which were divided into 5 batches. Each 504 
batch consisted of 15 thyroid samples, one mouse liver sample and one pooled thyroid 505 
sample. 506 
 507 
Figure 2. Global thyroid proteome profile. (A) Heatmap showing global protein 508 
expression profiles of the five main histological types of thyroid tissues. 579 thyroid 509 
tissues from 578 patients are in columns and 2,617 proteins (missing value <90%) in 510 
rows. The color bar indicates the intensity of the proteins. (B-F) UMAP plots showing 511 
global snapshots comparing the indicated types thyroid tissues using 2,617 proteins for 512 
(B) all subtypes; (C) benign versus malignant; (D) only benign; (E) FA versus FTC; and 513 
(F) only malignant tissue types.  514 
 515 
Figure 3. Classifier development, performance testing and validation in 516 
independent blinded datasets. (A) Schematic of principal classifier model (details in 517 
Supplementary Methods). (B) ROC plots of seven different machine learning model 518 
under 14 selected features. (C) t-SNE plot showing the separation between benign 519 
malignant groups in the discovery set using 14 protein features with latent space; and 520 
ROC plots of the training and validation sample subgroups of the discovery set. (D-E) t-521 
SNE and ROC plots of the performance for (D) retrospective test sets; and (E) 522 
prospective test set (total cohort and individual hospital sites as indicated). (F) Overall 523 
performance metrics of prediction of the neural network model for five specific 524 
histopathological types per site. Graduated colors in the shaded bar indicate accuracy 525 
levels. Numbers in the boxes indicate the number of correctly identified samples/total 526 
sample number. 527 
 528 
Figure 4. Protein expression plots for 14 selected protein features in the five 529 
types of thyroid tissues in the discovery cohort. Y-axis shows Log2 values of 530 
protein expression intensity and x axis indicates tissue type. P-value was calculated by 531 
one-way ANOVA. Further protein details are listed alongside each plot. 532 
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 533 
Figure 5. Biological insights of thyroid tumor subtypes based on proteotypic data. 534 
(A) UMAP plot for 109 proteins distinguishing Hürthle cell from other follicular 535 
neoplasms. (B) Network map showing expression of key mitochondrial proteins 536 
implicated in Hürthle cell neoplasms. (C) UMAP plot for 175 proteins distinguishing FTC 537 
from cPTC, with fvPTC as an intermediate phenotype. (D) Heatmap showing 538 
differentially expressed proteins in FTC compared with fvPTC and cPTC, with pathways 539 
as indicated. X-axis of the vertical bar plot indicates -log2(p-value) based on right-tailed 540 
Fisher’s exact test from the IPA database. (E) Volcano plot showing 50 up-regulated 541 
proteins in FTC and 97 up-regulated proteins in cPTC with two-fold-change cutoff and 542 
adjusted p-value threshold less than 0.01. (F) Proteins in the cPTC network participate 543 
in immune pathways and oncogenesis (MYC and TP53 pathways). (G) Box plots 544 
showing three proteins specifically overexpressed in cPTC compared to other 545 
histological subtypes.  546 
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MATERIALS AND METHODS 548 

Patients and tissue samples 549 

Tissue cores (1 mm diameter, approximate weight 0.6 mg, including was) were 550 
punched from blocks of formalin-fixed paraffin embedded (FFPE) thyroid tissues 551 
obtained from four clinical centers in Singapore and China spanning 2011-2019, with 552 
ethics approval of each hospital. 553 

The discovery sample set of 579 thyroid nodules from 578 patients comprised 554 
follicular adenomas (FA, 137 cases), multinodular goiters (MNG, 203 cases), papillary 555 
thyroid carcinoma (PTC, 124 cases) and follicular thyroid carcinoma (FTC, 75 cases) 556 
from the Singapore General Hospital. Hematoxylin and eosin-stained slides from tissue 557 
blocks of each patient were reviewed by an experienced histopathologist who marked 558 
out the disease region for tissue coring. Normal thyroid tissues (N, 40 cases) were taken 559 
from cases of laryngectomy or pharyngo-laryngo-esophagectomy in which the thyroid 560 
gland was surgically removed incidental to radical surgery. These patients had no 561 
history of thyroid disease, prior chemotherapy or radiation. Three tissue cores were 562 
made for each case as biological replicates. 563 

For multi-center blinded test sets, we firstly analyzed a total of 288 FFPE tissue 564 
cores from 271 cases composed of 44 MNG, 84 FA, 52 FTC and 92 PTC cases in 565 
retrospective test sets. Sixteen cores were of adjacent normal thyroid tissue (N). A 566 
single punch was made from each case. Furthermore, we tested 64 fine needle 567 
aspiration biopsies containing 13 MNG, 5 FA and 46 PTC cases in prospective test set. 568 
Histological diagnoses of these cores were blinded during the entire validation workflow 569 
of sample processing, mass spectrometry analysis and predictive data analysis.  570 

Cases of microcarcinoma, extensive thyroiditis and/or inflammation were excluded 571 
from the discovery sample set.  572 

 573 

Batch design 574 

To minimize batch effects among different lots of analyzed samples, 1,725 FFPE 575 
cores from 579 thyroid nodules and 56 peptides extracted from cores selected as 576 
technical replicates from the discovery sample set were randomly distributed into 121 577 
batches. Each batch contained 15 thyroid samples, one mouse liver sample as quality 578 
control (QC) for PCT and one thyroid pooled sample containing all five types of thyroid 579 
tissues for mass spectrometry (MS). In this discovery phase analysis, the histopathology 580 
diagnosis of each tissue core was known from which models of data segregation were 581 
established.   582 

In the test phase analysis, 288 FFPE cores were analyzed in technical duplicates 583 
for a total of 576 samples in 44 batches for retrospective test sets and 64 fine needle 584 
biopsies in 5 batches for prospective test set (Figure S1). 585 

 586 

Dewaxing, rehydration and hydrolysis of FFPE tissues 587 
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For each case in the discovery sample set, three biological replicates of FFPE 588 
tissue cores were processed. Sample weights were recorded before dewaxing in 589 
heptane (Sigma) and successively in 100% ethanol (Sigma), 90% ethanol, 75% ethanol 590 
at room temperature. Formic acid (0.1%) (Sigma) was added next for achieve C-O 591 
hydrolysis of protein methylol products and then washed with 100 mM Tris-HCl (pH10, 592 
Sigma) to establish conditions for base hydrolysis at 95℃. The sample was then snap 593 
cooled to 4℃. 594 
 595 

Tissue lysis, protein extraction and protein digestion 596 

Dewaxed samples were lysed in 6M urea (Sigma) and 2M thiourea (Sigma) using 597 
pressure cycling technology (PCT) programmed for 90 cycles of 25 s at 45,000 p.s.i. 598 
and 10 s at ambient pressure at 30℃. After lysis, 10 mM Tris(2-carboxyethyl) phosphine 599 
hydrochloride and 40 mM iodoacetamide were simultaneously added to the solution and 600 
incubated in the dark with gentle vortexing for 30 min, after which lysC (Hualishi 601 
Scientific) was added at a ratio of 40:1 (protein to lysC). PCT-assisted lysC digestion 602 
was performed with the following setting: 45 cycles of 50 s at 20,000 p.s.i. and 10 s at 603 
ambient pressure at 30℃. Final tryptic digestion was performed at a ratio of 40:1 604 
(protein to trypsin) by PCT with the following setting: 90 cycles of 50 s at 20,000 p.s.i. 605 
and 10 s at ambient pressure at 30℃. Peptides were desalted before LC-MS analysis. 606 
 607 

DIA library construction 608 

DIA (data-independent acquisition) library was built as described previously (Guo et 609 
al., 2015; Schubert et al., 2015). To build the spectral library for analyzing DIA files from 610 
thyroid tissue samples, we collected tissue samples from the all five types of patient 611 
groups into a single pool. The tissue samples were either fractionated into six fractions 612 
using strong cation exchange (SCX) or processed with PCT-assisted lysis and in-613 
solution digestion, or PCT-assisted lysis and PCT-assisted digestion. Finally, peptides 614 
were desalted on C18 columns.  615 

Desalted peptides were separated by Ultimate 3000 nanoLC-MS/MS system 616 
(Dionex LC-Packing, Amsterdam, The Netherlands) equipped with 15 cm* 75 μm ID 617 
fused silica column custom packed with 1.9 μm 100 Å C18 AQUA. Peptides were 618 
separated on a 120 min (148 min inject-to-inject) LC gradient at 300 nL/min in a 3-25% 619 
linear gradient (buffer A: 2% acetonitrile,0.1% formic acid; buffer B: 98% acetonitrile, 620 
0.1% formic acid). Eluted peptides were ionized at a potential of +2.0 kV into Q Exactive 621 
HF mass spectrometer (Thermo Fisher, Bremen, Germany). The full MS was measured 622 
at resolution 60,000 (at m/z 200) in an Orbitrap using an AGC target value of 3E6 623 
charges. The top 20 peptide signals (charge-states +2 and higher) were submitted to 624 
fragmentation in HCD cell (higher-energy collision, 27% normalized collision energy), 625 
and then transferred to Orbitrap for MS/MS analysis. MS/MS spectra were acquired at 626 
resolution 30,000 (at m/z 200) in Orbitrap using an AGC target value of 1E5 charges, a 627 
maxIT of 80 ms and the dynamic exclusion time was 30 s. 628 

In total, we acquired 52 DDA files including 20 SCX fraction files, 18 in-solution 629 
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digestion files and 14 PCT-assisted digestion files on a QE-HF mass spectrometer in 630 
DDA mode (Table S2). All DDA files were centroided and converted to mzXML using 631 
msConvert from ProteoWizard with parameters ‘—mzXML --filter “peakPicking true 632 
[1,2]”’. We analyzed DDA files using pFind version 3.1.3 with SwissProt fasta files 633 
(20,269 protein sequences), and identified 47,229 transition groups, 33,802 peptides, 634 
5,190 protein groups and 4,048 proteotypic proteins.  635 
 636 

DIA-MS data analysis 637 

Peptides were separated by using Ultimate 3000 or nanoLC-MS/MS system 638 
(DIONEX UltiMate 3000 RSLCnano System, Thermo Fisher Scientific™, San Jose, 639 
USA) equipped with 15cm*75 μm ID fused silica column custom packed with 1.9 μm 640 
120 Å C18 aqua. Peptides were separated on a 45 min (68 min inject-to-inject) LC 641 
gradient at 300 nL/min in a 3-25% linear gradient (buffer A: 2% acetonitrile,0.1% formic 642 
acid; buffer B: 98% acetonitrile, 0.1% formic acid). Peptides eluted from analytical 643 
columns were ionized at a potential +2.0 kV into Q Exactive HF mass spectrometer (Q 644 
Exactive Hybrid Quadrupole-Orbitrap, Thermo Fisher Scientific™, San Jose, USA). A 645 
full MS scan was acquired analyzing 390-1010 m/z at resolution 60,000 (at m/z 200) in 646 
the Orbitrap using an AGC target value of 3E6 charges and maximum injection time of 647 
100 ms. After the full MS scan, 24 MS/MS scans were acquired, each with a 30,000 648 
resolution (at m/z 200), AGC target value of 1E6 charges, normalized collision energy of 649 
27%, with the default charge state set to 2, maximum injection time set to auto. The 650 
cycle of 24 MS/MS scans (center of isolation window) with three kinds of wide isolation 651 
window was as follows (m/z): 410, 430, 450, 470, 490, 510, 530, 550, 570, 590, 610, 652 
630, 650, 670, 690, 710, 730, 770, 790, 820, 860, 910, 970. The entire cycle of MS and 653 
MS/MS scan acquisition took approximately 3 seconds and was repeated throughout 654 
the LC/MS analysis. DIA raw files were analyzed using OpenSWATH v2.0 (Rost et al., 655 
2014). 656 

 657 

Data quality control  658 

We first assessed data quality by analyzing samples. The QC samples were mouse 659 
liver samples (PCT-QC) and pooled thyroid samples (DIA-QC) in each batch. Additional 660 
QC samples were analyzed as technical replicates for MS. Biological replicates were 661 
also analyzed to determine the extent of heterogeneity of thyroid diseases. 662 
Reproducibility of spiked-in mouse liver samples and thyroid pooled samples showed 663 
that PCT and MS instruments were stable during data acquisition (Figure S2A and B), 664 
with median coefficient of variance (CV) less than 0.03. MS data of 56 randomly 665 
selected paired thyroid samples in the discovery cohort had a median Spearman 666 
correlation coefficient of 0.9 (Figure S2C). CV for proteins in biological replicates was 667 
0.2, indicating minimal tissue heterogeneity in the biology of thyroid disease (Figure 668 
S2D). Spearman correlations of four pooled samples and mouse liver samples are 669 
higher than 0.9 in prospective test set (Figure S2E and F)  670 

 671 
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Development of neural network classifier  672 

A neural network classifier is developed to classify any given proteome data sample 673 
(of 14 features) into one of two classes, benign (B) or malignant (M), so as to achieve 674 
the best accuracy. This comprises 4 stages: 675 

(1) Protein data preprocessing;  676 
(2) Protein feature selection using a genetic algorithm (GA);  677 
(3) Learning a neural network (DNN)-based classifier; 678 
(4) Using the trained DNN for sample classification. 679 

The following details the algorithms for the 4 stages. 680 
Stage 1: Data preprocessing 681 
Four datasets from 5 cohorts, denoted SG, ZY, ZE, DL, FNA, were used for the 682 

development of the DNN model. There, 500 random samples from the SG cohort were 683 
used to train the model, 79 from the same cohort were used for internal validation, and 684 
data from the ZY, ZE, DL and FNA cohorts were used for external validation. Note that 685 
the external validation datasets are different those of training and internal validation. A 686 
data sample in these datasets consists of 3,708 proteins. 687 

The preprocessing consists of two steps: (1) missing value imputation and (2) 688 
normalization. Missing values are inevitably a feature of protein intensity data. 689 
Considering most missing values occur when the protein content is below a detection 690 
threshold, the imputation is done by filling in all the missing values with 0.8*"!"#, where 691 
"!"# is the minimum of all feature values in the training and validation sets and for this 692 
work, "!"# = 13. 693 

Thereafter, for each feature " after the imputation step, the mean & and variance 694 
' of that feature are estimated from the training and validation sets, and the feature of 695 
every training sample is normalized according to the following 696 

"# =
" − &
'

(*) 697 

where "# is the normalized feature. The obtained & and ' are applied to the 698 
corresponding protein features in the testing phase afterwards. 699 
 Python’s pandas library is used to complete data preprocessing. 700 

Stage 2: Features selection 701 
Feature selection is needed for two reasons: (1) most of the 3,708 proteins are 702 

useless or may be conflicting for the classification and they should be removed from 703 
consideration in DNN-based classifier learning; (2) it is desired to minimize the number 704 
of proteins in clinical applications. It is done in two steps (Figure S5A). 705 

The first step is feature screening. Out of the initial 3,708 protein features, 521 were 706 
selected from differentially expressed protein of benign and malignant samples in the 707 
SG dataset and from published literatures related to thyroid or thyroid cancer. Among 708 
the 521, 64 did not appear in our datasets and are excluded, with 477 candidates 709 
remaining. Further, if such a protein has a deletion rate greater than 45%, then it is 710 
removed, with 275 proteins left. Even further, a pair of protein are removed if the 711 
absolute value of the Pearson correlation between them is less than 0.1, yielding the 712 
243 candidate proteins. 713 
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As the second step, a combinatorial optimization is performed to select a best 714 
combination of 14 proteins from the 243. While no algorithms can guarantee a globally 715 
optimal solution with efficiency, here a genetic algorithm (GA)(Mitchell, 1998) was used 716 
to find the best 14 proteins.  717 

In GA, evolutionary operation (crossover, mutation, and selection operations) are 718 
used to generate new protein feature combinations from existing protein features 719 
combinations. At every iteration, the GA eliminates the low fitness combinations, and 720 
generates new combinations based on the remaining high fitness combinations. 721 

A fitness value is calculated for each candidate combination solution (gene chain). 722 
For gene chain ,, it is defined as 723 

-$ =
1
5
/0%

$
&

%'(
(1) 724 

where 0%) is the accuracy of the 	6-th cross-validation(Kohavi, 1995), which is 725 
computed from the difference between the output of the classifier and the true label. 726 
 Python’s deap library is used to complete features selection. 727 

Stage 3: Model training 728 
The DNN classifier is a nonlinear function which takes a vector of 14 selected 729 

protein features as the input and produces a class label of either 1 (for malignant) or 0 730 
(for benign) as the output. This consists of the following 3 steps: (1) model structure 731 
design; (2) loss function design; and (3) model training.  732 

A multi-layer perceptron (MLP) structure is chosen for the DNN, shown in Figure 733 
S5B, The MLP model is divided into feature extraction sub-model and classification sub-734 
model, trained in sequence as will be described below. The feature extraction sub-735 

model extracts effective feature vectors (V*), and the classification sub-model completes 736 

classification diagnosis based on the classification information.  737 
Once the DNN structure is defined, the parameterized nonlinear function is trained 738 

to achieve the best objective value as measured by a loss function. The loss function of 739 
the MLP is defined as 740 

8 = 9(8+ + 9,8- + 9.8/ (;) 741 
where 8+ is a contrastive loss (Becht et al., 2018) for training the feature extraction 742 
sub-model, 8- is a cross-entropy loss for training the classification sub-model, 8/ is an 743 
L2 regularization loss for reducing overfitting, and α(, 	α,, 	α. 	> 	0 are the weights. 744 

The contrastive loss 8+ is defined under the Siamese Network (SN) structure. The 745 
contrastive loss 8+ is calculated as  746 

8+(@, A) = B
∥∥D0 − D1∥∥

,																															 EF	p, q	EI	JℎL	M*NL	;O*MM	

N*P(Q − ∥∥D0 − D1∥∥
,, 0), 																																	RJℎLSM

(T) 747 

where feature vectors D0, D1 extracted from protein samples U0 and U1, ∥∥D0 − D1∥∥ is 748 

the distance, and Q is the margin (M=1 in this work),. The contrastive loss encourages 749 
reduction of within-class feature scatter and increase of between-class feature scatter. 750 
The cross-entropy loss 8- is calculated as  751 
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8- = −VW(XlogXY + W,(1 − X)logZ1 − XY[\ (L) 752 

where X is the real label of the patient, XY is the classification score predicted by 753 
classification sub-model, and	β(, β, are penalty parameters (β( = 0.725, β, = 1.275 in 754 
this work). The L2 regularizer is defined as the 2-norm of MLP weight a as follows 755 

8/ = ‖W‖,
, =/d"

,
2

"'(
(F) 756 

where	e is the number of the layer. 757 
The MLP training is done with the help of the training dataset (SG), in which the 758 

class label is provided for each sample as the supervisor to guide the training process. 759 
The MLP training process consists of two parts. The first part trains the feature 760 
extraction sub-model for 100 epochs, with α( = 1, 	α, = 0, 	α. = 0.04	and		learning rate 761 
1 × 103&	. The second part uses the cross-entropy loss training the classification sub-762 
model for 900 epochs, with α( = 0, 	α, = 1, 	α. = 0.029	 and learning rate 5 × 1034, 763 
while the feature extraction sub-model parameters are not frozen for faster 764 
convergence. The obtained accuracy for the training set is 93%, and that for the 765 
validation set is 91%.  766 

Python's pytorch library is used to complete model training. 767 
Stage 4: Classification 768 
The trained MLP is used as the classifier for diagnosis of unknown samples. 769 

Given the 14 features, the MLP outputs a classification score XY between 0 and 1 770 
and the class prediction l is calculated as follows 771 

l = m
1 EF	XY > 0.5
0 EF	XY < 0.5

(o) 772 

where P=0 means the tissue is predicted to be benign, and P=1 malignant. 773 
 774 

Statistical analysis 775 

Statistical analysis was performed using R software (version 3.5.1) with pheatmap, 776 
UMAP and R package plot functions. CV was calculated as the ratio of the standard 777 
deviation to the mean. The prevalence for each cohort was based on the ratio of 778 
malignant to total tissues.  Sensitivity, specificity, PPV and NPV values were calculated 779 
following the established methodology and each value was calculated with 95% Wilson 780 
confidence intervals (Steward et al., 2019). Biological insights were analyzed by 781 
Ingenuity Pathway Analysis (IPA version 49309495). P values were calculated by one-782 
way ANOVA in the expression of 14 protein features.  783 
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Figure S1. Data quality evaluation. (A) CV of identified protein numbers for 116 and 784 
36 pooled thyroid samples in the discovery set and retrospective test sets, respectively. 785 
(B) CV of identified protein numbers for 112 and 18 mouse liver samples in discovery 786 
and retrospective test sets, respectively. (C) Spearman correlation of paired technical 787 
replicates from 56 randomly selected thyroid samples in the discovery group and 288 in 788 
the retrospective test sets. (D) CV for the number of proteins in biological replicates of 789 
the discovery set. (E) Spearman correlation of four pooled samples in prospective test 790 
set. (F) Spearman correlation of four mouse liver samples in prospective test set. 791 
 792 
Figure S2. Uniform manifold approximation and projection (UMAP) analysis of 793 
five subtypes of thyroid tissues. 2,617 proteins for which missing value was less than 794 
90% were used in data analysis. (A) All tissue types, showing FA distributed across 795 
benign (N and MNG) and malignant (FTC and PTC) tissues, (B) FA, (C) FTC, (D) PTC 796 
vs N, respectively, and (E) FA, (F) FTC and (G) PTC vs MNG, respectively. Normal 797 
tissue is generally well separated from all other lesional tissue, while MNG shows some 798 
overlap with FA, FTC and PTC.  799 
 800 
Figure S3. Cross-validation of the classifier on discovery set and performance on 801 
test sets. (A) Scatter diagram showing the predicted malignancy scores for discovery 802 
(training and validation), and tests sets (retrospective and prospective test sets), and the 803 
probability for each sample to be malignant. X axis indicates the probability of 804 
malignancy. Y axis represents the number of thyroid tissues in different sets. (B) t-SNE 805 
plots showing specific tissue types (benign and malignant) based on the 14 protein 806 
features in the training set, validation set, retrospective and prospective test sets, 807 
labeled by each of the 5 subtypes. (C) t-SNE plots based on the 14 proteins for each of 808 
the four clinical sites for the different test sets. 809 
 810 
Figure S4. Biological insights into Hürthle cell tumors, follicular (FTC), classical 811 
papillary (cPTC) and follicular-variant PTC (fvPTC). (A) Heatmap showing proteotype 812 
expression of thyroid tissue samples highlighting differentially expressed proteins in the 813 
Hürthle cell neoplasm marked in red frames. The subtype label of heatmap were based 814 
on reviewed slides by experienced pathologist. (B) Graph showing cellular component 815 
analysis of the 109 over-expressed proteins in Hürthle cell neoplasms. Mitochondrial 816 
proteins are the most dominant group. (C) Graph showing enriched pathways based on 817 
109 over-expressed proteins of Hürthle cell tumors by IPA analysis. Y-axis shows -818 
log2(p-value) based on right-tailed Fisher’s exact test (IPA) based on the IPA database. 819 
(D) Volcano plots showing differentially expressed proteins between fvPTC vs FTC and 820 
cPTC vs fvPTC. Protein intensities used were from the average intensity of three 821 
biological replicates. We compared pair-wise groups, and highlighted proteins that were 822 
significantly different with two-fold-change cutoff and adjusted p-value threshold less 823 
than 0.01. (E) Pathway enrichment of 50 upregulated proteins in FTC compared with 824 
cPTC as analyzed by IPA. Y axis indicates -log2(p-value) based on right-tailed Fisher’s 825 
exact test based on the IPA database. (F) Network map showing overexpressed 826 
proteins in FTC.  827 
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 828 
Figure S5. Structures of models. (A) Flow diagram of genetic algorithm for protein 829 

features selection, i is the index of iteration, g is the index of gene chains. N5 is the 830 

population size (number of the gene chains), N6 is the maximum number of iterations. 831 

C6,5
8  is the binary codes of i-th iteration g-th gene chian. F$!,#

$
 is the fitness function of 832 

C6,5
8 . (B) DNN’s structure diagram with optimal parameters. @ is the index of the 833 

patients, U0 is the protein feature inputting to the feature extraction sub-model, D0 is 834 

the output of the extraction sub-model, XY0 is the output of the classification sub-model 835 

and the classification score predict by DNN, e is the number of neurons in the layer.  836 
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Figure 1. Schematic view of the study and batch design. 837 

 838 

  839 
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Figure 2. Global thyroid proteome profile. 840 

 841 
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Figure 3. Classifier development, performance testing and validation in 843 
independent blinded datasets. 844 

 845 
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Figure 4. Classifier development, performance testing and validation in 847 
independent blinded datasets. 848 

 849 
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Figure 5. Biological insights of thyroid tumor subtypes based on proteotypic data. 851 
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Figure S1. Data quality evaluation. 854 

 855 

  856 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 14, 2020. ; https://doi.org/10.1101/2020.04.09.20059741doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.09.20059741


Protein Classifier for Thyroid Nodules 31 

Figure S2. Uniform manifold approximation and projection (UMAP) analysis of 857 
five subtypes of thyroid tissues. 858 
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Figure S3. Cross-validation of the classifier on discovery set and performance on 861 
test sets. 862 
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Figure S4. Biological insights into Hürthle cell tumors, follicular (FTC), classical 865 
papillary (cPTC) and follicular-variant PTC (fvPTC). 866 
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Figure S5. Structures of artificial neural network models. 869 
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