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Abstract 8 

Conventional epidemiological models require estimates of important parameters including 9 

incubation time and case fatality rate that may be unavailable in the early stage of an epidemic. For 10 

the ongoing SARS-COV-2 epidemic, with no previous population exposure, alternative prediction 11 

methods less reliant on assumptions may prove more effective in the near-term. We present three 12 

methods used to provide early estimates of likely SARS-COV-2 epidemic progression. During the first 13 

stage of the epidemic, growth rate charts revealed the UK, Italy and Spain as outliers, with 14 

differentially increasing growth of deaths over cases. A novel data-driven time-series model was 15 

then used to near-cast 7-day future cases and deaths with much greater precision. Finally, an 16 

epidemio-statistical model was used to bridge from near-casting to forecasting the future course of 17 

the global epidemic. By applying multiple approaches to global SARS-COV-2 data, coupled with 18 

mixed-effects methods, countries further ahead in the epidemic provide valuable information for 19 

those behind. Using current daily global data, we note convergence in near-term predictions for Italy 20 

signifying an appropriate call on the future course of the global epidemic. For the UK and elsewhere, 21 

prediction of peak and eventual time to resolution is now possible. 22 
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 24 

Introduction 25 

Prediction of the ongoing global epidemic of SARS-COV-2 infections1 presents a number of 26 

challenges for epidemiology, notably the apparent susceptibility of the population at large, high 27 

transmissibility of the pathogen, lack of surveillance to estimate accurate incidence, prevalence and 28 

case fatality rate (CFR)2,3,4,5. Classic models of infectious disease transmission describe the processes 29 

using the law of mass action for contact transmission6. Refinements include mixing patterns, age 30 

stratification and spatial distribution. Whilst these models have proven extremely valuable for 31 

decision-making
7
, with validation using extended time-course datasets for multiple pathogens, they 32 

necessarily make strong parametric assumptions, from which prediction may be exponentially 33 

sensitive during the early growth phase of an epidemic. In this paper we present three 34 

complementary methods to inform on immediate, near-term (7- and 14-day) and further projection 35 

of the global SARS-COV-2 epidemic. Each method uses daily European Centre for Disease Prevention 36 

and Control (ECDC) numbers of new cases and deaths (ECDC)
8
, to inform at the individual country-37 

level, the course of the ongoing SARS-COV-2 epidemic.  38 

Early projection using epidemic growth curves and doubling time ratios 39 

During the very earliest stage of a new epidemic, where there is effectively unrestricted transmission 40 

into a new susceptible population, with little known about the underlying disease, an exponential 41 

model of the numbers of cases and deaths is appropriate. The number of cumulative cases, C(t) at 42 

time, t, is well-described using the simple exponential form, C(t) = C0 exp(r(t – t0)), with initial 43 

number of cases C0 at time t0, growth rate, r, incidence rC(t) new cases per day (also exponential) 44 

and doubling time log(2)/r days. The SARS-COV-2 infection has an incubation of approximately 5 45 

days and a typical time from case presentation to death of approximately 14-21 days4,5. For any case 46 

fatality rate (CFR) and duration, T, between presenting as a case and eventual death, the number of 47 

deaths at a function of time is therefore D(t) = CFR C(t – T), which in the exponential phase is D(t) = 48 
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CFR C0 exp(r(t – t0 – T)) = D0 exp(rt). Hence, we predict that for any (unknown) time delay and CFR, 49 

on a log-scale cases and deaths should initially have parallel slopes, with the distance between 50 

curves at any timepoint being defined as log(CFR). Deviations from parallel log-linearity (e.g., deaths 51 

out-pacing cases), may be informative as to when healthcare systems are beginning to fail. The 52 

reported CFR will vary from country to country, hence any global assessment must adjust for 53 

differences in surveillance practice. 54 

The simplest prediction method is a direct comparison of any one country with the population of all 55 

other countries rebased to the same number of cases and deaths. Figure 1a shows this prediction for 56 

the United Kingdom from all data to 21/MAR/2020. Although prediction interval is wide, when every 57 

country’s cases and deaths were rebased to 64 and 4, respectively, early prediction of the UK 58 

epidemic was possible based on the same percentile growth charts familiar to any paediatrician9. 59 

The effects of global social distancing might be expected to move the trajectory of a country across 60 

percentiles, and this is suggested in more recent analyses (not shown). 61 

A more sensitive analysis is provided using the Doubling Time Ratio (DTR), defined as the ratio of 62 

doubling times of cases compared to deaths. Figure 1b shows the correlation between exponential 63 

growth rates for cumulative cases and deaths estimated from log-linear mixed-effects models of 64 

global epidemic data (Date of analysis 21/MAR/2020), with their ratio shown (i.e., the DTR) plotted 65 

by descending DTR. The global mean exponential rate of growth of cases for the 33 countries and 66 

dependencies having reported 64 or more cases and 4 deaths, for the following 14-day period, was 67 

0.20/day (95% CI 0.16, 0.23), doubling time 3.51 days (94% CI 3.01, 4.33), between-country 68 

variability 36%. The corresponding growth rate for deaths was 0.22/day (95% CI 0.17, 0.27), doubling 69 

time 3.15 days (94% CI 2.57, 4.08), between-country variability 52%. Increased variability in deaths 70 

reflects the early stage of the epidemic. Although the estimated global DTR was 1.02 (95% CI 0.97, 71 

1.08), it is noteworthy that DTR for Italy and Spain, two EU countries particularly affected by COV-72 

SARS-2, and the United Kingdom (DTR: 1.12, 95% CI 1.02, 1.23) were all significantly greater from 73 
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unity. A DTR of greater than unity implies that deaths are outstripping cases (for any CFR), 74 

suggesting intervention measures are necessary to prevent further unrestricted differential 75 

exponential epidemic growth. An up-to-date analysis (Date 08/APR/2020) shows movement in UK 76 

DTR (1.07, 95% CI 1.04, 1.10) relative to the Global average (1.05, 95% CI 1.03, 1.06), suggestive of 77 

the effects of social distancing. 78 

Near-casting using time-series projection 79 

Forward projection time-series methods have been used for many years in multiple disciplines10. 80 

Conventional time-series projections make assumptions regarding correlations in previous data to 81 

inform on future observations. Propagation of uncertainty, however, often limits precision 82 

(predictions are based on predictions not observations). The time-delay between cases and deaths 83 

inherent in the SARS-COV-2 epidemic lends itself to an alternative novel time-series methodology 84 

(Methods). Using past log-case data lagged to 7- and 14-days, and linear mixed-effects models we 85 

predict future cases based on past observations, and further predict deaths using the same model. 86 

All data is analysed in the log domain, with CFR described by a random effect to account for country-87 

to-country variability in reporting practices. The use of dual lag times incorporates a (weekly) rate of 88 

change into the model. The minimum time delay of 7-days means that 7-day predictions are possible 89 

based on past observations (14-day predictions require one observation and one prediction, 90 

predictions beyond that use future predictions). This methodology opens a near-casting window on 91 

future events not available to conventional models, with the mixed-effects approach11 allowing 92 

prediction in countries that are still early in their epidemic.  93 

Figure 2 shows sample predictions for selected countries (cut-off date 08/APR/2020, rebased to 64 94 

cases and 16 deaths, 50 countries included in the analysis dataset) of cumulative cases, deaths and 95 

incidence. The model has a residual error of 11% (Extended Data) and is useful for near-casting of 96 

the SARS-COV-2 epidemic in all countries included, with sufficient precision and sensitivity (to 7- 14-97 

day time delays in actions) for helpful decision-making. The strength of this approach is the 98 
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population-method used. Information from the global epidemic informs on individual country 99 

behaviour, and outlier behaviour can be identified early from individual country posterior model 100 

parameters (not shown). 101 

Long-term prediction using parametric epidemiological models 102 

For long-term prediction, parametric epidemiological models will be necessary to control for 103 

exponential time-series prediction error. However, caution is advised on model selection and 104 

parameter estimation, most notably in the early epidemic phase. Conventional SEIR-type models 105 

assume a law of mass action to estimate case reproductive number, R0, which measures the 106 

transmissibility of the disease. Although intuitive, the notion of mass action, particularly in the 107 

presence of significant population-level social distancing (currently in place globally), may be 108 

limiting. Instead, we use the Gompertz model of epidemic growth, a limiting form of the logistic 109 

model, in which log-cumulative cases is described by the differential equation dlogC(t)/dt = r – 110 

slogC(t); r again being the unrestricted exponential growth rate, and r/s the eventual log-carrying 111 

capacity. The cumulative number of log-deaths is logD(t) = logCFR + logC(t – T), where the logCFR is a 112 

country-level case fatality rate, again modelled as a random effect to account for case reporting 113 

practices. The principal deviations of this model from conventional mass-action are the brake on 114 

epidemic growth (proportional to logC(t)) and log-carrying capacity. Transformation to the log-115 

domain makes solution and model-fitting straightforward, controls for variability in highly non-linear 116 

processes and permits log-normally distributed random effects. The use of random effects describes 117 

country-to-country variability, particularly in surveillance and reporting methods, provided practices 118 

remain relatively consistent within a country during the epidemic. 119 

Solution of the model for cumulative log(Cases) and log(Deaths) for country, i, with addition of 2018 120 

population as a possible covariate in the model gives: 121 

logCi(t) = (ri/s)(1-exp(–st)) + a0i exp(–st) + a1i logNi, 122 
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logDi(t) = logCFRi + (ri/s)(1-exp(–s(t – T))) + a0i exp(–s(t – T)) + a1i logNi, 123 

where (ri/s) is the log-final epidemic size (ri being a random effect), a0i the intercept (epidemic 124 

initiation, also a random effect), logNi the reported 2018 World Bank population, and logCFRi the 125 

individual country log-case fatality rate. The three random effects presume log-normal global 126 

distributions for epidemic initiation, eventual epidemic size and CFR. 127 

Figure 3 shows results of the individual country predictions selected countries from analysis of global 128 

ECDC data (08/APR/2020 rebased to 128 cases and 32 deaths, 50 countries included in the analysis 129 

dataset). Overlaid is the time-series near-casting prediction for comparison and quality control. 130 

Where the epidemic shows significant curvature, estimation of peak incidence of death and overall 131 

epidemic size is possible. At the global level, population parameters are all well-estimated (Extended 132 

Data), without significant correlation for projection. The estimated global unrestricted epidemic 133 

growth rate is 0.69/day (95% CI 0.65, 0.73) – in a Gompertzian model, observed exponential growth 134 

is always less than r, between-country variability 73%, with CFR 6.3% (95% CI 4.9, 7.7), between-135 

country variability 69%. Model residual for cases and deaths (modelled simultaneously with equal 136 

log-residual) is only 12%. Caution is necessary, however, regarding model interpretation – 137 

particularly eventual epidemic size, because model selection (as opposed to parameter estimation) 138 

may be invalid if unqualified by the near-casting model. 139 

Discussion 140 

In the ongoing SARS-COV-2 epidemic, multiple methods are available for projection of numbers of 141 

cases and deaths. Without a means of projection, evaluation of the effectiveness (or otherwise) of 142 

intervention methods will prove challenging. Traditional epidemiology models based on contact and 143 

transmission patterns are important for planning intervention policies (e.g., mass vaccination and 144 

treatment), but they may struggle with calibration in a new setting when key parameters for their 145 

evaluation are poorly known. SARS-COV-2 presents such an example; an emergent global epidemic 146 

where previous immunity is absent. Robust intervention decisions will, however, be insensitive to 147 
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parameter assumptions, and the predictions of Ferguson et al7, that there are no good outcomes 148 

without population intervention are therefore robust. In this analysis, we show that even in the 149 

absence of (key) epidemiological parameters (accurately known incubation time, underlying case 150 

fatality rate and transmissibility), by taking a global approach to the epidemic, it is possible to 151 

provide an early accurate assessment. We have shown that a simple “growth chart”, calculated from 152 

rebased case and death data from all countries other than the one of interest, was able to make an 153 

early prediction of the course of the UK SARS-COV-2 epidemic. This analysis, coupled with estimation 154 

of global log-linear growth rates for cases and deaths showed that the UK was likely to be an outlier, 155 

and that intervention was likely necessary. The Doubling Time Ratio for the UK showed that deaths 156 

were doubling 12% faster than cases, and faster than the global average, during the initial 157 

exponential phase (P<0.05 compared with a global estimate of equality), possibly implicating strain 158 

on healthcare services from an early stage of the epidemic. Similar findings were noted in both Italy 159 

and Spain. 160 

Such a simple model is useful for immediate prediction but makes a strong assumption regarding 161 

future time course and is obviously unsuited to the first outbreak (in this case in Wuhan). It only 162 

assumes that progression (on a log scale) will follow other countries when rebased to the same point 163 

in the epidemic. Prediction intervals are necessarily very wide but still useful for the immediate (7- 164 

to 14-day time-frame) near-casting. Refinements such as scaling for population size (which was not 165 

available in the original ECDC dataset) may be unnecessary when an early epidemic is confined to 166 

the regional scale with population size of order 10
6
 (i.e., Wuhan Province, Northern Italy, London). 167 

Once in the exponential growth phase, data-driven prediction is necessary. The characteristics of the 168 

epidemic (pseudo-exponential growth and an incubation from case presentation to eventual death) 169 

lend themselves to novel time-series analysis. We find that rebasing global data to a common 170 

number of cases, using 7- and 14-day lagged log-cumulative cases, and application of linear mixed-171 

effects models (accounting for country-to-country variability), can be used to near-cast epidemic 172 
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direction. The advantage over traditional time-series approaches is that the first 7-days of 173 

predictions are founded on past observations (not future predictions), thereby reducing 174 

(exponential) error. Case fatality rate differences were well-described at the country level by a log-175 

linear random effect. 176 

For eventual long-term forecasting, a parametric epidemiological model is necessary. Without such a 177 

model, a call on the location and size of the peak, and eventual size and duration of the epidemic, is 178 

not possible. These parametric models suffer from uncertainties and parameter correlations that 179 

make initial estimation and future very challenging from single country data. However, we find that 180 

using global, rather than individual country, data, a non-linear mixed-effects Gompertz epidemio-181 

statistical model can describe the epidemic well with excellent parameter estimation and low 182 

residual. Providing a prediction of the time course for any single country from the model, however, 183 

requires some form of quality control. That quality control is provided by the near-casting model. 184 

Once near-term prediction intervals for the two modelling approaches coalesce, it is possible to 185 

move from near-casting to forecasting with confidence. Based on our most up-to-date analysis, this 186 

coalescence has happened in Italy, and it is now possible to provide more confident forward 187 

projections for that country and others. 188 

The power of the epidemio-statistical global mixed-effects analysis is that, like the two previous 189 

approaches, countries further advanced in their epidemic inform on those following behind. We find 190 

concordance between the two approaches in Italy, with support for an eventual epidemic size of 191 

approximately 31.8k (95% CI 28.8k, 35.2k) deaths, with resolution by the beginning of July 2020. 192 

Using the model, we also find support for a peak in the UK epidemic somewhere from 7/APR/2020 193 

to 21/APR/2020, approximately 22.6k (95% CI 12.3, 26.5k) deaths, and resolution also by July 2020. 194 

It is still too early to call the eventual global epidemic size, although values are predicted for every 195 

country in the analysis dataset. All predictions are founded on a continuation of the current global 196 

social distancing intervention program, which supports the use of a Gompertz epidemiological 197 
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model. A relaxation of restrictions would release the brake on contacts, increase  transmission, 198 

invalidate future model assumptions, and most-likely lead to an extension of the epidemic duration. 199 

Such predictions are out of scope for this analysis. 200 

Methods 201 

Daily global data on new cases and deaths was downloaded from EDCD. Cumulative cases and 202 

deaths were log-transformed for analysis. Data was selected based on number of rebased cases, and 203 

time rebased from this point. Growth rate charts were calculated from geometric mean and 204 

percentiles assuming log-normal distribution, with doubling time estimated by log-linear regression. 205 

Doubling Time Ratio was estimated by separate log-linear random effects models, growth rates 206 

merged, and 95% confidence intervals calculated. For time-series projection, log-cumulative cases 207 

were lagged by 7- and 14-days prior to fitting a log-linear mixed-effects model with random 208 

intercept and slopes. Log-cumulative deaths was fitted to predicted number of cases, also with 209 

random intercept and slope. The epidemio-statistical Gompertz model was fitted to the same 210 

analysis dataset. Predictions (mean and 95% CI) were back-transformed, differenced (for incidence 211 

calculation) and overlaid with observation. Model goodness of fit was assessed visually and by Bayes 212 

Information Criteria. All analyses were conducted in SAS 9.4 proc mixed and proc nlmixed, 213 

automated by scripting and available from the author. At the time of publication, daily updated 214 

global projections are ongoing. 215 
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Extended data 255 

Time-Series model 256 

Final parameters for linear mixed-effects Time-Series model of log(Cases); var1 = 7-day lagged 257 

log(Cases), var2 = 14-day lagged log(Cases). GeoID = Country ID. 258 

 
Solution for Fixed Effects 

Effect Estimate 
Standard 

Error DF t Value Pr > |t| 

Intercept 3.0981 0.4699 27 6.59 <.0001 

var1 0.7920 0.08559 26 9.25 <.0001 

var2 -0.07047 0.04846 21 -1.45 0.1607 
 259 

Covariance Parameter 
Estimates 

Cov Parm Subject Estimate 

UN(1,1) geoId 4.1598 

UN(2,1) geoId -0.5955 

UN(2,2) geoId 0.1002 

UN(3,1) geoId 0.1834 

UN(3,2) geoId -0.03779 

UN(3,3) geoId 0.01943 

Residual  0.002510 
 260 

Final parameters for linear mixed-effects Time-Series model of log(Deaths); var1 = 7-day lagged 261 

log(Cases), var2 = 14-day lagged log(Cases). 262 

 263 

Covariance Parameter 
Estimates 

Cov Parm Subject Estimate 

UN(1,1) geoId 27.4397 

UN(2,1) geoId -3.2088 

UN(2,2) geoId 0.4123 

UN(3,1) geoId 0.4031 

UN(3,2) geoId -0.07932 

UN(3,3) geoId 0.04143 

Residual  0.002019 
 264 
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Solution for Fixed Effects 

Effect Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

Intercept -1.5271 1.0530 27 -1.45 0.1585 0.05 -3.6876 0.6334 

var1 0.7129 0.1448 26 4.92 <.0001 0.05 0.4152 1.0107 

var2 0.1953 0.06690 21 2.92 0.0082 0.05 0.05621 0.3345 
 265 

 266 

Gompertzian epidemio-statistical model 267 

Estimated model parameters and correlation matrix (population was excluded by BIC criteria) 268 

 269 

Parameter Estimates 

Parameter Estimate 
Standard 

Error DF t Value Pr > |t| 
95% Confidence 

Limits Gradient 

r 0.6919 0.02010 34 34.43 <.0001 0.6510 0.7327 -0.00005 

s 0.06620 0.001062 34 62.34 <.0001 0.06404 0.06836 -0.00290 

a0 7.9252 0.1091 34 72.67 <.0001 7.7036 8.1469 0.000011 

eps 0.01455 0.000672 34 21.65 <.0001 0.01318 0.01591 0.002434 

s2b1 0.4351 0.1023 34 4.25 0.0002 0.2273 0.6430 0.000321 

s2b2 0.01102 0.002862 34 3.85 0.0005 0.005200 0.01683 0.003451 

s2b1b2 0.04661 0.01427 34 3.27 0.0025 0.01761 0.07561 -0.00046 

s2b3 0.3981 0.09627 34 4.14 0.0002 0.2024 0.5938 0.000270 

ALAG 4.7195 0.1542 34 30.60 <.0001 4.4061 5.0329 -0.00006 

CFR -2.7634 0.1083 34 -25.52 <.0001 -2.9835 -2.5434 -0.00019 
 270 

Correlation Matrix of Parameter Estimates 

 r s a0 eps s2b1 s2b2 s2b1b2 s2b3 ALAG LNCFR 

r 1.0000 0.4697 0.5587 -0.0006 0.0019 0.0473 0.0234 -0.0148 -0.2684 -0.0092 

s 0.4697 1.0000 -0.0235 -0.0070 -0.0092 0.0970 0.0320 -0.0118 -0.5106 -0.0890 

a0 0.5587 -0.0235 1.0000 -0.0012 0.0005 0.0061 0.0045 -0.0009 0.0488 -0.0027 

eps -0.0006 -0.0070 -0.0012 1.0000 -0.0045 -0.0047 -0.0043 -0.0048 0.0021 0.0037 

3 4 5 6 7 8 9 10 11 12 13 14

Predicted

3

4

5

6

7

8

9

10

11

12

13

14

IdentityDeathsCases

Global COVID19 Time-Series model goodness of fit

Prediction based on global Time-Series model rebased to 64 cases and 16 deaths onw ards

Data from ECDC https://w w w .ecdc.europa.eu dated 2020-04-08
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Correlation Matrix of Parameter Estimates 

 r s a0 eps s2b1 s2b2 s2b1b2 s2b3 ALAG LNCFR 

s2b1 0.0019 -0.0092 0.0005 -0.0045 1.0000 0.3962 0.7580 0.0167 0.0134 0.0081 

s2b2 0.0473 0.0970 0.0061 -0.0047 0.3962 1.0000 0.7896 -0.0685 -0.0635 -0.0122 

s2b1b2 0.0234 0.0320 0.0045 -0.0043 0.7580 0.7896 1.0000 -0.0467 0.0027 0.0083 

s2b3 -0.0148 -0.0118 -0.0009 -0.0048 0.0167 -0.0685 -0.0467 1.0000 0.0157 -0.0075 

ALAG -0.2684 -0.5106 0.0488 0.0021 0.0134 -0.0635 0.0027 0.0157 1.0000 0.1780 

LNCFR -0.0092 -0.0890 -0.0027 0.0037 0.0081 -0.0122 0.0083 -0.0075 0.1780 1.0000 
 271 

Parameters are: r= growth rate, r/s = log-carrying capacity, a0 = initial condition, eps = residual, s2b1 = 272 

variance(r), s2b2 = variance(a0), s2b3 = variance(logCFR), ALAG = lag time between cumulative cases 273 

and deaths, LNCFR = log(case fatality rate). 274 

  275 
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Figure 1 276 

a) Growth curve for 2020 SARS-COV-2 global epidemic with UK data (not included in curve 277 

estimation) overlaid rebased to 64 cases and 4 deaths. Geometric mean and 95% CI, median, 278 

interquartile and interdecile ranges indicated. Data to 21/MAR/2020. b) Global exponential growth 279 

rates for cumulative cases and deaths with UK indicated (21/MAR/2020, data rebased to 64 cases 280 

and 4 deaths and fitted with a log-linear mixed effects model). c) Growth Rate Ratios for all 281 

countries, values greater than unity indicate that the rate of growth of deaths is greater than cases 282 

and may signify strains on healthcare (Data to 21/MAR/2020). 283 
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b) 286 
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c) 288 
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Figure 2 290 

Near-term prediction of the ongoing UK SARS-COV-2 epidemic (mean and 95% prediction interval) 291 

for the dual-lagged linear mixed effects model. Model shows cumulative cases and deaths and daily 292 

case and mortality incidence. Near-casting (7-day) projection indicated. Data to 08/APR/2020.293 
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Figure 3 296 

Posterior predicted course of the SARS-COV-2 epidemic for selected countries with near-term dual 297 

lagged model predictions overlaid. Concordance in short-term predictions improves confidence in 298 

the long-term projection Lack of concordance between prediction methods means that it is too early 299 

to call the final size and shape of the UK epidemic. 300 
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