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We argue that frequent sampling of the fraction of infected people (either by random testing or by
analysis of sewage water), is central to managing the COVID-19 pandemic because it both measures
in real time the key variable controlled by restrictive measures, and anticipates the load on the
healthcare system due to progression of the disease. Knowledge of random testing outcomes will (i)
significantly improve the predictability of the pandemic, (ii) allow informed and optimized decisions
on how to modify restrictive measures, with much shorter delay times than the present ones, and
(iii) enable the real-time assessment of the efficiency of new means to reduce transmission rates.

Here we suggest, irrespective of the size of a suitably homogeneous population, a conservative
estimate of 15’000 for the number of randomly tested people per day which will suffice to obtain
reliable data about the current fraction of infections and its evolution in time, thus enabling close to
real-time assessment of the quantitative effect of restrictive measures. Still higher testing capacity
permits detection of geographical differences in spreading rates. Furthermore and most importantly,
with daily sampling in place, a reboot could be attempted while the fraction of infected people is
still an order of magnitude higher than the level required for a relaxation of restrictions with testing
focused on symptomatic individuals. This is demonstrated by considering a feedback and control
model of mitigation where the feed-back is derived from noisy sampling data.

I. INTRODUCTION

The COVID-19 pandemic has led to a worldwide shut-
down of a major part of our economic and social ac-
tivities. This political measure was strongly suggested
by epidemiologic studies assessing the cost in human
lives depending on different possible policies (doing noth-
ing, mitigation, suppression) [1–4]. Mitigation can be
achieved by combinations of different measures, includ-
ing physical distancing, contact tracing, restricting public
gatherings, and the closing of schools, but also the test-
ing for infections. The quantitative impact of very fre-
quent testing of the entire population for infectiousness
has been studied in a recent unpublished work by Jenny
et al. in Ref. [5]. We will estimate in Sec. III that to fully
suppress the COVID-19 pandemic by widespread testing
for infections, one needs a capacity to test millions of peo-
ple per day in Switzerland. This should be compared to
the present number of 7’000 tests per day across Switzer-
land. 1 Here we suggest that by testing a much smaller
number of randomly selected people per day one can ob-
tain important quantitative information on the rates of
transmission, so as to enable well-informed decisions.

Figure 1 summarizes the key concept of the paper,
namely a feedback and control model for the pandemic.
The essential output from random testing is the growth
rate of the number of currently infected people, which it-

∗ Markus.Mueller@psi.ch
1 As of early April 2020, according to the liveticker of the Swiss

radio and television https://www.srf.ch/.

self is regulated by measures such as those enforcing phys-
ical distances between persons (physical distancing), 2

and whose tolerable values are fixed by the capacity of the
health-care system. A feedback and control approach[6],
familiar from everyday implementations such as ther-
mostats regulating heaters and air conditioners, should
allow policy makers to damp out oscillations in disease in-
cidence which could lead to peaks in stress on the health-
care system as well as the wider economy. Any other
measurement of the fraction of currently infected peo-
ple can replace the random testing, for example there
are proposals to estimate this fraction from analysis of
sewage water with PCR tests [7, 8].

An important further benefit of our feedback and con-
trol scheme is that it allows a much faster and safer re-
boot of the economy than with feedback through con-
firmed infection numbers of symptomatic persons or
deaths [4], for the latter, secondary indicator is heav-
ily delayed and reflects the state of the pandemic only
incompletely as it does not account for asymptomatic
carriers. Figure 2 illustrates the resulting difference in
the ability to control the disease.

Without feedback and control informed by a primary
indicator, analogous to the temperature provided by the
thermometer in the thermostat example, measurable in
(near) real time, there is a huge lapse between policy
changes and the observable changes in numbers of posi-
tively tested people. To relax restrictions safely, the frac-

2 We prefer the terminology physical distancing to social distanc-
ing.
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FIG. 1. Feedback and control loop that allows stabilization of
the pandemic. The key quantity measured by random testing
is the growth rate k of infection numbers. If k exceeds a
tolerable upper threshold κ+, restrictions are imposed. For
k below a lower threshold κ−, and if infection numbers are
below critical, restrictions are released. In the absence of a
substantial influx of infected people from outside the country,
and provided infection numbers are below a critical value, the
optimal target of the growth rate is k = 0, corresponding to
a marginally stable state, where infections neither grow nor
decrease exponentially with time. If higher testing rates are
available, the measured observables and control strategies can
be geographically refined, particularly to avoid hotspots.

tion of currently infected people must decrease to a level
i∗∗ such that a subsequent undetected growth during 10-
14 days will not move it above the critical fraction ic
manageable by the health-care system. The current sit-
uation where we are mainly looking at lagging secondary
indicators, namely infection rates among symptomatic
individuals or even deaths, is comparable to driving a
car from the back seat and with knowledge only of the
damage caused by previous collisions. To minimize harm
to the occupants of the vehicle, driving very slowly is es-
sential, and oscillations from a straight course are likely
to be large.

Daily random testing reduces the delay between
changes in policy and the observation of their effects
very significantly. Moreover, it directly measures the key
quantity of interest, namely the fraction of currently in-
fected people and its growth rate, information that is
very valuable to gauge further interventions. Such infor-
mation is much harder to infer from data about positively
tested patients only, by fitting it to specific epidemiolog-
ical models with their inherent uncertainties. The short-
ened time delay due to feedback and control allows a re-
boot to be attempted at much higher levels of infections,
i∗ > i∗∗, which implies a much shorter time in lockdown.

We point out before proceeding further that this is a
contribution from physicists that makes simplifying as-
sumptions inconsistent with details of medical and epi-
demiological reality to obtain some key estimates and
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FIG. 2. Dynamics of the pandemic with and without a
feedback and control scheme in place, as measured by the
fraction i of currently infected people (logarithmic scale). Af-
ter the limit of the health system, ic, has been reached, a
lockdown brings i down again. The exponential rate of de-
crease is expected to be very slow, unless extreme measures
are imposed. The release of measures upon a reboot is likely
to re-induce exponential growth, but with a rate difficult to
predict. Three possible outcomes are shown in blue curves
in the scenario without testing feedback, where the effect of
the new measures becomes visible only after a delay of 10-14
days. In the worst case, i grows by a multiplicative factor of
order 20 before the growth is detected. A reboot can thus be
risked only once i ≤ i∗∗ ≡ ic/20, implying a very long time in
lockdown after the initial peak. Due to the long delay until
policy changes show observable effects, the fluctuations of i
will be large. Random testing (the red curve) has a major ad-
vantage. It measures i instantaneously and detects its growth
rate within few days, whereby the higher the testing rate the
faster the detection. Policy adjustments can thus be made
much faster, with smaller oscillations of i. A safe reboot is
then possible much earlier, at the level of i ≤ i∗ ≈ ic/4.

illustrate the basic principles of feedback and control
as applied to the current pandemics. When reduced to
practice, special attention will need to be paid to all as-
pects of the testing methodology, from the underlying
molecular engineering paradigm (e.g., PCR) and associ-
ated cost/performance trade offs, to population sample
selection consistent with societal norms and statistical
needs, and safe (i.e., not risking further infections) oper-
ation of testing sites. Furthermore, in preparation for the
day when more is known about the immune response to
COVID-19 and possible vaccines, we plan to revise our
models for feedback derived from a reliable immunoassay
with well-specified performance parameters, such as lag
times with respect to infection.

The paper is organized as follows. We summarize and
explain the key findings in simple terms in Sec. II. In
Sec. III, we discuss the use of massive testing as a direct
means to contain the pandemics, showing that it requires
a 100-fold increase of the current testing frequency. In
Sec. IV, we define the main challenge to be addressed: To
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measure the quantitative effect of restrictive measures on
the transmission rate. Section V introduces the idea of
randomized testing. Section VI constitutes the central
part of the paper, showing how data from sparse sam-
pling tests can be used to infer essentially instantaneous
growth rates, and their regional dependence. We define
a model of policy interventions informed by feed-back
from random testing and analyze it theoretically. The
model is also analyzed numerically in Sec. VII. In Sec.
VIII, we generalize the model for regionally refined anal-
ysis of the epidemic growth pattern which becomes the
preferred choice if higher testing rates become available.
We conclude with Sec. IX by summarizing our results
and their implication for a safe reboot after the current
lockdown. In the Supplementary Information, we address
contact tracing and argue that it can complement, but
not substitute for random testing. Finally, we present
the algorithm used for our numerical results.

II. SUMMARY OF KEY RESULTS

We argue that the moderate number of 15’000 random
tests per day yields valuable information on the dynamics
of the disease. Assuming that at a given time a conser-
vatively estimated fraction of about i∗ ≈ 0.07% of the
population is currently infected [see Eq. 15d], on the or-
der of 10 infected people will be detected every day. Can
such a small number of detected infections be useful at
all, given that these numbers fluctuate significantly from
day to day? The answer is yes. We show that after a
few days the acquired signal becomes stronger than the
noise level. It is then possible to establish whether the in-
fection number is growing or decreasing and, moreover,
to obtain a quantitative estimate of the instantaneous
growth rate k(t).

One of our central results is Eq. (13a) for the time
where the signal becomes clear, which we rewrite in the
simplified form

∆t1 =
C

(k2
1 r)

1/3
, (1)

where k1 is the current growth rate of infections to be
detected, and r is the number of tests per day 3. The
numerical constant C depends on the required signal to
noise ratio. A typical value when detecting large values
of k1 is C ≈ 30− 40.

This result shows that the higher the number of tests
r per day, the shorter the time to detect a growth or

3 If the fraction of infected people can be measured via sewage
water, r will be related to the number of people connected to a
given sewage plant. But at this point, the relationship between
such data and the actual current number of infections remains a
topic for research. Of course, once key parameters such as the
lag time between infection and incidence of biomarkers in sewage
are known, sewage tests could become highly competitive.

a decrease of the infected population. The smaller the
current growth rate k1, the longer the time to detect it
above the noise inherent to the finite sampling.

How long would it take to detect that a release of re-
strictive measures has resulted in a nearly unmitigated
growth rate of the order of k1 = 0.23 (which corresponds
to doubling every 3 days)? Even with a moderate num-
ber of r = 15′000 per day, we find that within only
∆t1 ≈ 3−4 days such a strong growth will emerge above
the noise level, such that countermeasures can be taken
(see Fig. 6). During this short time, the damage remains
limited. The infection numbers will have risen by a mul-
tiplicative factor between 2 and 3. This degree of control
must be compared to a situation where no information on
the current growth rate is available, and where the first
effects of a new policy are seen in the increased num-
ber of symptomatic, sick people only 10-14 days later.
Over this time span, with a growth rate of k1 = 0.23, the
infection numbers will have grown by a factor of 10-30
before one realizes eventually that an intervention must
be made.

Random testing decreases both the time scale until in-
formed policy adjustments can be taken and the temporal
fluctuations of the infection numbers. As in any feedback
and control loop, the more frequent the testing is, the
shorter are the delay times, and thus the smaller are the
fluctuations. The various benefits of increasing the test-
ing frequency are shown in Fig. 5, which are obtained by
simulating a specific mitigation strategy, where we built
in the uncertainty about the efficacy of political inter-
ventions. The shorter delay times and the reduced fluc-
tuations result in decreased strain on the health system,
lower economic costs, and a lower number of required
interventions.

In addition to these benefits, a higher testing rate r
also opens the opportunity to analyze geographic differ-
ences and refine the mitigation strategy accordingly, as
we discuss in Sec. VIII.

III. MASSIVE TESTING

If the massive frequency of 1.5 million tests per day
becomes available in Switzerland, it will be possible to
test any Swiss resident every 5 to 6 days. If the infected
people that have been detected are kept in strict quar-
antine (such that they will not infect anybody anymore
with high probability), such massive testing could be suf-
ficient to prevent an exponential growth in the number of
cumulated infections without the need of draconian phys-
ical distancing measures. We now explain qualitatively
our approach to reach this conclusion (Ref. [5] gives a
more detailed quantitative analysis).

The required testing rate can be estimated as follows.
Let ∆T denote the average time until an infected per-
son infects somebody else. The reproduction number R,
i.e., the number of new infections transmitted on average
by an infected person, falls below 1 (and thus below the
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threshold for exponential growth) if non-diagnosed peo-
ple are tested at time intervals of no more than 2∆T .
Thus, the required number of tests over the time 2∆T ,
the full testing rate τ−1

full, is

τ−1
full =

NCH

2∆T
, (2a)

where

NCH = 8′500′000 (2b)

is the number of inhabitants of Switzerland. 4 Without
social restrictions, it is estimated that [9]

∆T ≈ 3 days, (3a)

such that

τ−1
full = 1.4× 106/days, (3b)

i.e., about 1.4 million tests per day would be required
to control the pandemics by testing only. If additional
restrictions such as physical distancing etc., are imposed,
∆T increases by a modest factor and one can get by with
indirectly proportionally fewer tests per day. Neverthe-
less, on the order of 1 million tests per day is a minimal
requirement for massive testing to contain the pandemics
without further measures.

However, even while the Swiss capabilities are still far
from reaching 1 million tests per day, testing for infec-
tions offers two important benefits in addition to identi-
fying people that need to be quarantined. First, properly
randomized testing allows to monitor and study the ef-
ficiency of measures that keep the reproduction number
R below 1. This ensures that the growth rate k of case
numbers and new infections is negative, k < 0. Second,
frequent testing, even if applied to randomly selected peo-
ple, helps suppress the reproduction number R and thus
allows policy to be less restrictive in terms of other mea-
sures, such as physical distancing.

To quantify the latter benefit, observe that the effect
of massive testing on the growth rate k is proportional to
the testing rate [5]. Let us assume that without testing
or social measures one has a growth rate k0. Then, if
the testing rate τ−1

full is sufficient to completely suppress
the exponential growth in the absence of other measures,
a smaller testing rate τ−1 decreases the growth rate k0

down to (τ−1/τ−1
full) × k0. The remaining reduction of

k to zero must then be achieved by a combination of
restrictive social measures and contact tracing.

It is possible to refine the argument above to take ac-
count of the possibility of a spectrum of tests with partic-
ular cost/performance trade offs, i.e., a cheaper test with

4 Note that if tests take the nonvanishing time ttest to yield a
diagnosis, this time needs to be subtracted from the denominator
in Eq. (2a), thereby resulting in an increase of the full testing
rate τ−1

full.

more false negatives could be used for random testing,
whereas those displaying symptoms would be subjected
to a “gold standard” (PCR) assay of viral genetic mate-
rial.

IV. QUANTIFYING THE EFFECTIVENESS OF
RESTRICTIONS

A central challenge for establishing reliable predictions
for the time evolution of a pandemic is the quantifica-
tion of the effect of social restrictions on the transmis-
sion rate [3]. Policymakers and epidemiologists urgently
need to know by how much specific restrictive measures
reduce the growth rate k. Without that knowledge, it
is essentially impossible to take an informed decision on
how to optimally combine such measures to achieve a
(marginally) stable situation, defined by the condition of
a vanishing growth rate

k = 0. (4)

Indeed, marginal stability is optimal for two reasons.
First, it is sustainable in the sense that the burden on
the health system does not grow with time. Second, it is
the least economically and socially restrictive state com-
patible with the stability requirement.

In Secs. V and VI, we suggest how marginal stabil-
ity can be achieved, while simultaneously measuring the
effects of a particular set of restrictions.

V. STATISTICAL TESTING

We claim that statistically randomized testing can be
used in a smart way, so as to keep the dynamics of
the pandemics under control as per the feedback loop
of Fig. 1. We emphasize that this is possible without the
current time delays of up to 14 days. The latter arises
since we only observe confirmed infections stemming from
a highly biased test group that eventually shows symp-
toms long after the initial infection has occurred.

The idea of statistical testing is to randomly select peo-
ple 5 and test them for infectiousness. 6

5 It is important that the set of randomly selected people must
change constantly, so that it should happen extremely rarely that
a given person is tested twice.

6 Here, we solely focus on a person being infectious, but not on
whether the person has developed antibodies. The latter test
indicates that the person has been infected any time in the past.
Serological tests for antibodies and (potential) immunity have
their own virtue, but aim at different goals from the random
testing for infections that we advocate here. By following the
fraction of infections as a function of time, we can determine
nearly instantaneously the growth rate of infections, k(t), and
thus assess and quantify the effectiveness of socio-economic re-
strictions through the observed changes in k following a change

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 20, 2020. ; https://doi.org/10.1101/2020.04.09.20059360doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.09.20059360
http://creativecommons.org/licenses/by-nc-nd/4.0/


5

We stress that randomized testing is essential to ob-
tain information on the current number of infections and
its evolution with time. It serves an additional and en-
tirely different purpose from testing people with symp-
toms, medical staff, or people close to somebody who
has been infected, all of whom constitute highly biased
groups of people.

The first goal of random testing is to obtain a firm
test/confirmation of whether the current restrictive mea-
sures are sufficient to mitigate or suppress the exponen-
tial growth of the COVID-19 pandemic, 7 and whether
the effectiveness differs from region to region. In case the
measures should still be insufficient, one can measure the
current growth rates and monitor the effect of additional
restrictive measures.

VI. NATIONAL MODELING AND
INTERVENTION

We first analyze random testing for the case where we
treat the country as a single entity with a population N .
This will allow us to understand how testing frequency
affects key characteristics of policy strategies.

A. Model assumptions

We consider a model with the following idealizing as-
sumptions:

(1) An unbiased representative sample of the popula-
tion is tested. A bias may underestimate the most
relevant growth rate.

(2) The rate of false positive tests is much less than the
expected frequency of detection of infections.

(3) Tests show whether a person is acutely infected in
a short time (on the order of one day).

(4) Policy measures can be applied rapidly, and their
effect is immediate. Time delays due to the adap-
tation of human behavior to new rules is neglected.

(5) The population is homogeneous as far as inter-
actions between its members are concerned, e.g.,

in policy. This monitoring can even be carried out in a regionally
resolved way, such that subsequently, restrictive or relaxing mea-
sures can be adapted to different regions (urban/rural, regions
with different degrees of immunization, etc.).

7 A suppression of the COVID-19 pandemic is achieved if, for a
sufficiently long time, the number of infections decays exponen-
tially with time. Mitigation aims to reduce the exponential rate
of growth in the number of infections. Stability is achieved when
that number tends to a constant. Once stability is reached, one
may start relaxing the restrictions step by step and monitor the
effect on the growth rate k as a function of geographic regions.

there are no (semi)-isolated subpopulations. We
do not account for large deviations in infectious-
ness that may lead to superspreading events [10].

As is well known to epidemiologists and the medical pro-
fession, the assumptions (1-4) clearly are violated to vary-
ing degrees in reality, but they can be taken into account
by refinements of our model, whose operating principles
and basic behavior will remain qualitatively the same.
On the other hand, violations of assumption (5) can lead
to new and dangerous effects, namely hotspots related to
Anderson localization [11], which we discuss in Sec. VIII.

Let U be the actual number of currently infected, but
yet undetected people. (As in Ref. [5], we assume that de-
tected people do not spread the disease.) The spreading
of infections is assumed to be governed by the inhomo-
geneous, linear growth equation(

dU

dt

)
(t) = k(t)U(t) + Φ(t), (5)

where k(t) is the instantaneous growth rate and Φ(t) ac-
counts for infections arising from people crossing the na-
tional border. For simplicity, we set this influx to zero
in this paper, in which case k(t) = U̇(t)/U(t) with the

short-hand notation U̇(t) for the time derivative on the
left-hand side of (5).

An equation of the form (5) is usually part of a more
refined epidemiological model [12–14] that accounts ex-
plicitly for the recovery or death of infected persons. For
our purpose, the effect of these has been lumped into an
overall time-dependence of the rate k(t). For example, it
evolves as the number of immune people grows, restric-
tive measures change, mobility is affected, new tracking
systems are implemented, hospitals reach their capacity,
testing is increased, etc. Nevertheless, over a short period
of time where such conditions remain constant, and the
fraction of immune people does not change significantly,
we can assume the effective growth rate k(t) to be piece-
wise constant in time. 8 We will exploit this below.

B. Modeling intervention strategies

For t < 0, we assume a situation that is under control,
with a negative growth rate

k(t < 0) ≡ k0 < 0, (6a)

as is the case in Switzerland since the lockdown in March,
with k0 ≈ −0.07 day−1, according to the estimates of
Ref. [4]. Such a stable state needs to be reached before
a reboot of the economy can be considered. At t = 0

8 Replacing the function k(t), assumed to be differentiable, by
a piecewise constant function is a good approximation provided
k(t)/k̇(t) � ∆t(k) where k̇(t) is the time derivative of k(t) and
∆t(k) is given by Eq. (13a) with the replacement k1 → k(t).
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restrictive measures are first relaxed, resulting in an in-
crease of the growth rate k from k0 to k1, which we as-
sume positive,

k(t = 0) = k1 > 0. (6b)

Hence, compensating counter measures are required at
later times to avoid another exponential growth of the
pandemic.

We now want to monitor the performance of policy
strategies that relax or re-impose restrictions, step by
step. The goal for an optimal policy is to reach a
marginally stable state (4) (i.e., with k = 0) as smoothly,
safely, and rapidly as possible. In other words, marginal
stability is to be reached with the least possible damage
to health, economy, and society. This expected outcome
is to be optimized while controlling the risk of rare fluc-
tuations.

To model the performance of policy strategies, we ne-
glect the contributions to the time evolution of k(t) due
to the increasing immunity or the evolution in the age
distribution of infected people. We also neglect periodic
temporal fluctuations of k(t) (e.g., due to alternation be-
tween workdays and weekends), which can be addressed
in further elaborations. Instead, we assume that k(t)
changes only in response to policy measures which are
taken at specific times when certain criteria are met, as
defined by a policy strategy. An intervention is made
when the sampled testing data indicates that with high
likelihood, k(t) exceeds some upper threshold

κ+ ≥ 0. (6c)

Likewise, a different intervention is made should k(t) be
detected to fall below some negative threshold

κ− ≤ 0. (6d)

Note that if there is substantial infection influx Φ(t)
across the national borders, one may want to choose the
threshold κ+ to be negative, to avoid a too large response
to the influx. From now on we neglect the influx of in-
fections, and consider a homogeneous growth equation.

To reach decisions on policy measures, data is acquired
by daily testing of random sets of people for infections.
We assume that the tests are carried out at a limited rate
r (a finite number of tests divided by a nonvanishing unit
of time). Let i(t,∆t) be the fraction of positive infections
detected among the r∆t� 1 tests carried out in the time
interval [t, t + ∆t]. By the law of large numbers, it is a
Gaussian random variable with mean

〈i(t,∆t)〉 =
U(t)

N
, U(t) ≡

t+∆t∫
t

dt′

∆t
U(t′) (6e)

and standard deviation

〈[i(t,∆t)]2〉1/2c =

√
〈i(t)〉
r∆t

=

√
U(t)

N r∆t
. (6f)

The current value of k(t) is estimated as kfit(t) by fit-
ting these test data to an exponential, where only data
since the last policy change should be used. The fitting
also yields the statistical uncertainty (standard devia-
tion), which we call δk(t). It will take at least 2-3 days
to make a fit that is reasonably trustworthy.

If the instability threshold is surpassed by a certain
level, i.e., if

kfit(t)− κ+ > αδk(t) (6g)

a new restrictive intervention is taken. If instead

κ− − kfit(t) > αδk(t) (6h)

a new relaxing intervention is taken. Here, the parameter
α is a key parameter defining the policy strategy. It
determines the confidence level

p ≡ [1 + erf(α)]/2 (6i)

that policymakers require, before deciding to declare that
a stability threshold has indeed been crossed. This strat-
egy will result in a series of intervention times

0 ≡ t1 < t2 < t3 · · · (6j)

starting with the initial step to reboot at t1 = 0. In the
time window [tι, tι+1], the growth rate k(t) is constant
and takes the value

k(ι) = k(ι−1) −∆k(ι), ι = 1, 2, · · · (6k)

where a policy choice with ∆k(ι) > 0 (corresponding to a
restrictive measure) is made to bring back k(t) below the
upper threshold κ+, while a policy choice with ∆k(ι) < 0
is made to bring back k(t) above the lower threshold κ−.

The difficulty for policymakers is due to the fact that
so far the quantitative effect of an intervention is not
known. We model this uncertainty by assuming ∆k(ι) to
be random to a certain degree.

If at time t, kfit(t) crosses the upper threshold κ+ with
confidence level p, we set tι = t and a restrictive measure
is taken, i.e., ∆k(ι) is chosen positive. We take the as-
sociated decrement ∆k(ι) to be uniformly distributed on
the interval [

b∆k
(ι)
opt,+,

1

b
∆k

(ι)
opt,+

]
, (6l)

where the optimum choice ∆k
(ι)
opt,+ is defined by

∆k
(ι)
opt,+ ≡ kfit (tι)− κ+ > 0. (6m)

The parameter b < 1 describes the uncertainty about the
effects of the measures taken by policymakers. While the
policymakers aim to reset the growth factor k to κ+, the
result of the measure taken may range from having an
effect that is too small by a factor of b to overshooting

by a factor of 1/b. A measure with effect ∆k(ι) = ∆k
(ι)
opt,+
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would be optimal according to the best current estimate.
The larger 1−b, the larger the uncertainty. Unless stated
otherwise, we assume b = 0.5.

If instead kfit(t) crosses the lower threshold κ− with
confidence level p at time t, we set tι = t and a relaxing
measure is taken, i.e., ∆k(ι) is chosen negative. Again,
∆k(ι) is uniformly distributed on the interval[

−1

b
∆k

(ι)
opt,−,−b∆k

(ι)
opt,−

]
(6n)

with the optimum choice ∆k
(ι)
opt,− defined by

∆k
(ι)
opt,− ≡ κ− − kfit (tι) > 0. (6o)

The process described above is stochastic for two rea-
sons. First, the sampling comes with the usual uncer-
tainties in the law of large numbers. Second, the effect of
policy measures is not known beforehand (even though
it may be learnt in the course of time, which we do not
include here). It should be clear that the faster the test-
ing the more rapidly one can respond to a super-critical
situation.

A significant simplification of the model occurs when
the two thresholds are chosen to vanish,

κ± = 0, (7a)

in which case

k(ι) = k(ι−1) −∆k(ι), ι = 1, 2, · · · , (7b)

with |∆k(ι)| uniformly distributed on the interval[
b |kfit(tι)|,

1

b
|kfit(tι)|

]
. (7c)

In this case the system will usually tend to a critical
steady state with k(t→∞)→ 0, as we will show explic-
itly below. In this case the policy strategy can simply be
rephrased as follows. As soon as one has sufficient con-
fidence that k has a definite sign, one intervenes, trying
to bring k back to zero. The only parameter defining the
strategy is α.

C. Testing and fitting procedure

Let us now detail the fitting procedure and analyze the
typical time scales involved between subsequent policy
interventions when choosing the thresholds (7). After a
policy change at time tι, data is acquired over a time
window ∆t. We then proceed with the following steps to
estimate the time tι+1 at which the next policy change
must be implemented.

Step 1: Measurement We split the time window

∆Tι ≡ [tι, tι + ∆t] (8a)

of length ∆t after the policy change into the time interval

∆Tι,1 ≡
[
tι, tι +

∆t

2

]
(8b)

and the time interval

∆Tι,2 ≡
[
tι +

∆t

2
, tι + ∆t

]
. (8c)

Testing delivers the number of currently infected people

Nι,1(∆t) = r∆t i(tι,
∆t

2
) (8d)

for the time interval (8b) and

Nι,2(∆t) = r∆t i(tι +
∆t

2
,

∆t

2
) (8e)

for the time interval (8c), where we recall that r denotes
the number of people tested per unit time. Given those
two measurements over the time window ∆t/2, we obtain
the estimate

kfit
ι (∆t) =

2

∆t
ln

(
Nι,2(∆t)

Nι,1(∆t)

)
(8f)

with the standard deviation

δk(∆t) =
2

∆t

√
1

Nι,1(∆t)
+

1

Nι,2(∆t)
, (8g)

as follows from the statistical uncertainty
√
Nι,γ(∆t)

of the sampled numbers Nι,γ(∆t) and standard error
propagation. The above recipe can be replaced by a
more sophisticated Levenberg-Marquardt fitting proce-
dure, which yields more accurate estimates for k(t) with
a smaller uncertainty δk(t). We have confirmed that this
uniformly improves the performance of the mitigation
strategy.
Step 2: Condition for new policy intervention A new

policy intervention is taken once the magnitude |kfit
ι (∆t)|

with kfit
ι (∆t) given by Eq. (8f) exceeds α δk(∆t) with

δk(∆t) given by Eq. (8g). Here, α controls the accuracy
to which the actual k has been estimated at the time of
the next intervention. The condition

|kfit
ι (∆t)| = α δk(∆t), (9a)

for a new policy intervention thus becomes∣∣∣∣∣ln
(
Nι,2(∆t)

Nι,1(∆t)

)∣∣∣∣∣ = α

√
1

Nι,1(∆t)
+

1

Nι,2(∆t)
. (9b)

Step 3: Comparison with modeling We call
i(t) = U(t)/N the actual fraction of infections (in
the entire population) as a function of time, which we
assume to follow a simple exponential evolution between
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two successive policy interventions, i.e., the normalized
solution

i(tι + t′) = i(tι) exp(kι t
′) (10)

to the growth equation (5) on the interval tι < t′ < tι+1.
The expected number of newly detected infected people
in the time interval (8b) is

〈Nι,1(∆t)〉 = r

∆t/2∫
0

dt′ i(tι + t′)

= r i(tι)
ekι ∆t/2 − 1

kι
. (11a)

Similarly, the predicted number of infected people in the
time interval (8c) is

〈Nι,2(∆t)〉 = r

∆t∫
∆t/2

dt′ i(tι + t′)

= r i(tι)
ekι ∆t/2

(
ekι ∆t/2 − 1

)
kι

. (11b)

Step 4: Estimated time for a new policy intervention
We now approximate Nι,1 and Nι,2 by replacing them
with their expectation value Eqs. (11a) and (11b), re-
spectively, and anticipating the limit

kι ∆t/2� 1. (12a)

We further anticipate that for safe strategies the fraction
of currently infected people i(t) does not vary strongly
over time. More precisely, it hovers around the value i∗

defined in Eqs. (14b) and (15d) (see Fig. 2). We thus
insert

Nι,1 ≈ Nι,2 ≈ r i(tι) ∆t/2 ≈ r i∗∆t/2 (12b)

into Eq. (9b) and solve for ∆t. The solution is the time
until the next intervention

∆tι ≡ tι+1 − tι =
(4α)2/3

(k2
ι r i

∗)1/3
, (12c)

from which we deduce the relative increase

i(tι+1)

i(tι)
≡ exp (kι ∆tι)

= exp

(
sgn(kι) (4α)2/3

(
|kι|
r i∗

)1/3
) (12d)

of the fraction of currently infected people over the time
window. This relative increase is close to 1 if the argu-
ment of the exponential on the right-hand side is small.

We will show below that the characteristics

∆t1 =
(4α)2/3

(k2
1 r i

∗)1/3
, (13a)

and

i(t2)

i(t1)
= exp

(
(4α)2/3

(
k1

r i∗

)1/3
)

(13b)

of the first time interval [t1, t2] set the relevant scales
for the entire process. From Eqs. (12c) and (12d), we
infer the following important result. The higher the test-
ing frequency r, the smaller the typical variations in the
fraction of currently infected people, and thus in the case
numbers. The band width of fluctuations decreases as
r−1/3 with the testing rate.

1. Critical fraction of infections

As one should expect, it is always the average rate to
detect a currently infected person, r i∗, which enters into
the expressions (12c) and (12d). The higher the fraction
i∗, the more reliable is the sampling, the shorter is the
time to converge toward the marginal state (4), and the
smaller are the fluctuations of the fraction of infected
people.

If the fraction i∗ is too low the statistical fluctuations
become too large and little statistically meaningful in-
formation can be obtained. On the other hand, if the
fraction of infections drops to much lower values, then
policy can be considered to have been successful and can
be maintained until further tests show otherwise.

We seek an upper bound for a manageable i∗. Here we
consider the parameters of Switzerland. However, they
can easily be adapted to any other country. We assume
that a fraction pCH

ICU of infected people in Switzerland
needs to be in intensive care. 9 Here, we will use the value
pCH

ICU = 0.05. Let ρICU be the number of ICU beds per
inhabitant that shall be allocated to COVID-19 patients.
The Swiss national average is about [15]

ρCH
ICU ≈

1200

8′500′000
≈ 1.4× 10−4. (14a)

For the pandemics not to overwhelm the health system,
one thus needs to maintain the fraction of currently in-
fected people safely below

i(t) ≤ ic =
ρCH

ICU

pCH
ICU

= 0.0028, (14b)

together with similar constraints related to the capacity
for hospitalizations, medical care personnel and equip-
ment for specialized treatments. We take the constraint
from intensive care units to obtain an order of mag-
nitude for the upper limit admissible for the infected

9 More precisely, pCH
ICU is the expected time (in Switzerland) for an

infected person to spend in an intensive care unit (ICU) divided
by the expected time to be sick.
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fraction of people, i. A recent study based on random
testing reports that the fraction of people currently in-
fected with the virus lies within the confidence interval
[0.0012, 0.0076] in Austria (whereby half of the infected
people in the sample were previously undetected) [16].
The estimates in Ref. [4] suggest that the fraction of
acutely infected people was even close to 0.01 before the
lock-down in Switzerland. This indicates that our thresh-
old estimate (14b) is conservative. If the actual threshold
(which depends on the country, the structure of its pop-
ulation, and its health-care infrastructure) is higher, the
testing frequency required to reach a defined accuracy
decreases in proportion.

The objective is to mitigate the pandemic so that val-
ues of the order of ic or below are achieved. Before that
level is reached restrictions cannot be relaxed. It may
prove difficult to push the fraction of infected people sig-
nificantly below ic, since the recent experience in most
European countries suggests that it is very hard to en-
sure that growth rates k fall well below 0. The main
aim would then be to reach at least stabilization of the
number of currently infected people (k = 0).

For the following we thus assume that the fraction of
infections i will stagnate around a value i∗ of the order
of ic. We will discuss below what ratio i∗/ic can be con-
sidered safe.

D. Required testing rate

We seek the testing rate that is needed to obtain a
strategy with satisfactory outcome. We assume that after
the reboot at t1 = 0, the initial growth rate may turn
out to be fairly high, say of the order of the unmitigated
growth rate. In many European countries a doubling
of cases was observed every three days before restrictive
measures were introduced. This corresponds to a growth
rate of

k0 =
ln(2)

3 days
≈ 0.23 day−1. (15a)

We assume an initial growth rate of

k1 = 0.1 day−1 (15b)

just after the reboot. We choose the reasonably stable
confidence parameter

α = 3. (15c)

In Sec. VII we will find that this choice strikes a good
balance between several performance criteria (see Fig. 4).
We further assume that the rate of infections initially
stagnates at a level of (for Switzerland)

i∗ =
ic
4
≈ 0.0007. (15d)

The level i∗ should, however, be measured by random
testing before a reboot is attempted. We should then

ensure that the first relative increase of

i(t2)

i(t1)
=
i(t2)

i(0)
(15e)

does not exceed a factor of 4. From Eq. (13b), we thus
obtain the requirement

r ≥ rmin ≡
(4α)2

(ln 4)3

k1

i∗
≈ 7′700 day−1 (16)

for the testing rate r. Note the inverse proportionality
to the parameter i∗, for which Eq. (15d) is a conserva-
tive estimate. Using this value yields an estimate of the
order of magnitude required for Switzerland. In the next
section we simulate a full mitigation strategy and con-
firm that with additional capacity for just about 15’000
random infection tests per day a nation-wide, safe reboot
can be envisioned for Switzerland.

We close with two observations. First, this mini-
mal testing frequency is just twice the testing frequency
presently available for suspected infections and medical
staff in Switzerland. Second, while the latter tests require
a high sensitivity with as few false negatives as possible,
random testing can very well be carried out with tests of
lower quality in that respect. Indeed, an increase in false
negatives acts as a systematic error in the estimate of the
infected fraction of people, which, however, drops out in
the determination of its growth rate, 10 as long as the
fraction i is not close to 1. However, the success of ran-
dom testing does rely on a very low probability (� i∗)
of false positives (as is the case of current PCR tests).
Otherwise the signal from true positives would rapidly
be overwhelmed by the noise from false positives.

E. Further intervention steps after the reboot

After the reboot at time t1 = 0 further interventions
will be necessary, as we assume that the reboot will have
resulted in a positive growth rate k1. In subsequent in-
terventions, the policymakers try to take measures that
aim at reducing the growth rate to zero. Even if they
had perfect knowledge of the current growth rate k(t),
they would not succeed immediately since they do not
know the precise quantitative effect of the measures they
will take. Nevertheless, had they complete knowledge
of k(t), our model assumes that they would be able to
gauge their intervention such that the actual effect on
k(t) differs at most by a factor between b and 1/b from
the targeted value, which would reduce k(t) to 0. This
and the assumption b ≥ 0.5 implies that, if α is large, so
that k(t) is known with relatively high precision at the
time of intervention, the growth rate k2 is smaller than k1

10 If the infected fraction of people is i(t), its growth rate is
i̇(t)/i(t) ≡ k(t) with the time derivative of i(t) denoted by i̇(t).
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in magnitude with high probability (tending rapidly to 1
as α→∞). 11 The smaller α however, the more likely it
becomes, that k(t) is overestimated, and an exaggerated
corrective measure is taken, which may destabilize the
system. In this context, we observe that the ratio

0 < ρι ≡
|kι|
|kι−1|

<∞ (17)

is a random variable with a distribution that is indepen-
dent of ι in our model. To proceed, we assume that α is
sufficiently large, such that the probability that ρι < 1 is
indeed high.

The second policy intervention occurs after a time
that can be predicted along the same lines that lead to
Eq. (12c). One finds

∆t2 ≈ ∆t1

(
|k2|
|k1|

)−2/3

, (18)

where ∆t1 is given by Eq. (13a). Since, the growth rate
k3 is likely to be smaller than k2 in magnitude, the third
intervention takes place after yet a longer time span, etc.
If we neglect that the fitted value kfit

ι (t) differs slightly
from kι (a difference that is negligible when α� 1), our
model ensures that kι/kι−1 is uniformly distributed in
[b − 1, 1/b − 1]. After the ι-th intervention the growth
rate is down in magnitude to

|kι| = |k0|
ι∏

ι′=1

ρι′ . (19)

To reach a low final growth rate kfinal, a typical number
nint(kfinal) of interventions are required after the reboot,
where

nint(kfinal) ≈
ln
|kfinal|
|k1|

〈ln ρι〉
= C(b) ln

|k1|
|kfinal|

, (20)

where the constant C(b) = −1/〈ln ρι〉 depends on the
policy uncertainty parameter b.

The time to reach this low rate is dominated by the
last time interval which yields the estimate

T (kfinal) ∼ ∆tnint(kfinal)
≈
(
|k1|
|kfinal|

)2/3

∆t1 . (21)

Thus, the system converges to the critical state where
k = 0, but never quite reaches it. At late times T , the
residual growth rate behaves as kfinal ∼ T−3/2.

F. Choosing an optimal intervention strategy

The parameter α encodes the confidence policymakers
need about the present state before they take a decision.

11 One uses Eq. (7) to reach this conclusion.

Here we discuss various measures that allow choosing an
optimal value for α.

As α decreases starting from large values, the time for
interventions decreases, being proportional to α2/3 ac-
cording to Eq. (13a). Likewise the fluctuations of infec-
tion numbers will initially decrease. However, the loga-
rithmic average −〈ln ρι〉 in the denominator of Eq. (20)
will also decrease, and thus the necessary number of inter-
ventions increases. Moreover, when α falls below 1, inter-
ventions become more and more ill-informed and erratic.
It is not even obvious anymore that the marginally stable
state is still approached asymptotically. From these two
limiting considerations, we expect

α = O(1) (22)

to be an optimal choice for α.
Let us now discuss a few quantitative measures of the

performance of various strategies, which will allow pol-
icymakers to make an optimal choice of confidence pa-
rameter for the definition of a mitigation strategy.

1. Time scale to approach the marginal state

The time to reach a certain level of quiescence (low
growth rates, infrequent interventions) is given by the
time (21), and thus by the expectation value of ∆t1.

2. Political cost

As a measure for the political cost, CP, we may con-
sider the number of interventions that have to be taken
to reach quiescence. As we saw in Eq. (20), it scales
inversely with the logarithmic average of the ratios of
growth rates, ρ, i.e.,

CP ∝ (〈− ln ρι〉)
−1
. (23)

3. Health cost

If restrictions are over-relaxed, the infection numbers
will grow with time. The maximal fraction of currently
infected people must never be allowed to rise above the
manageable threshold of ic. This means that continuous
(random) monitoring of the fraction of infected people
is needed, so that given the knowledge from the time
before the reboot, about the conditions under which the
system can be stabilized, lockdown conditions can always
be imposed at a time that is sufficient to prevent reaching
the level of ic. Beyond this consideration one may want to
keep the expected maximal increase of infection numbers
low, which we take as a measure of health costs CH,

CH ≡ max
t

{
i(t)

i(0)

}
. (24)
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Note that as defined, CH is a stochastic number. Its mean
and tail distribution (for large R) will be of particular
importance.

4. Economic and social cost

Imposing restrictions such that k < 0 imply restric-
tions beyond what is absolutely necessary to maintain
stability. If we assume that the economic cost CE is pro-
portional to the excess negative growth rate, −k (and
a potential gain proportional to k), a measure for the
economic cost is the summation over time of −k(t),

CE ∝ −
∞∫

0

dt k(t), (25)

which converges, since k(t) decays as a sufficiently fast
power law. Hereto, CE is a stochastic variable that de-
pends on the testing history and the policy measures
taken. However, its mean and standard deviation could
be used as indicators of economic performance.

VII. SIMULATION OF MITIGATION
STRATEGY BY RANDOM TESTING

We introduced in Sec. VI a feedback and control strat-
egy to tune to a marginal state with vanishing growth
rate k = 0 after an initial reboot. Interventions were
only taken based on the measurement of the growth rate.
However, in practice, a more refined strategy will be
needed. In case the infection rate drops significantly be-
low i∗, one might (depending on netting out political
and economic pressures, something which the authors of
this paper are not doing here) benefit from a positive
growth rate k. We thus assume that if i(t)/i∗ falls below
some threshold ilow = 0.2, we intervene by relaxing some
measures, that we assume to increase k by an amount
uniformly distributed in [0, k1], but without letting k ex-
ceed the maximal value of khigh = 0.23. Likewise, one

should intervene when the fraction i(t) grows too large.
We do so when i(t)/i∗ exceeds ihigh = 3. In such a situ-
ation we impose restrictions resulting in a decrease of k
by a quantity uniformly drawn from [khigh/2, khigh]. The
precise algorithm is given in the Supplementary Informa-
tion.

Figure 3 shows how our algorithm implements policy
releases and restrictions in response to test data. The ini-
tial infected fraction and growth rate are i(0) = ic/4 =
0.0007 and k1 = 0.1, respectively, with a sampling in-
terval of one day. We choose α = 3 and a number of
r = 15′000 tests per day. Figure 3(a) displays the infec-
tion fraction, U(t)/N , as a function of time, derived using
our simple exponential growth model, which is character-
ized by a single growth rate that changes stochastically at
interventions [Eq. (5) without the source term]. In the

absence of intervention, the infected population would
grow rapidly representing uncontrolled runaway of a sec-
ond epidemic. At each time step (day) the currently in-
fected fraction of the population is sampled. The result is
normally distribution with mean and standard deviation
given by Eqs. (6e) and (6f) to obtain i(t). The former are
represented by small circles, the latter by vertical error
bars in Fig. 3. If i/i∗ lies outside the range [ilow, ihigh],
we intervene as described above. Otherwise, on each day
kfit(t) and its standard deviation are estimated using the
data since the last intervention. With this, at each time
step, Eqs. (6m) to (6o) decide whether or not to inter-
vene. In Fig. 3, each red circle represents an intervention
and therefore either a decrease or increase of the growth
rate constant of our model.

Figure 3 shows the evolution of the fraction of cur-
rently infected people. After an initial growth with rate
k1 subsequent interventions reduce the growth rate down
to low levels within a few weeks. At the same time the
fraction of infected people stabilizes at a scale similar to
i∗. For the given parameter-set this is a general trend
independent of realization. Figure 3(b) displays the in-
stantaneous value of the model rate constant and also the
estimated value together with its fitting uncertainty. The
estimate follows the model value reasonably well. One
sees that the interventions occur when the uncertainty in
k is sufficiently small.

A. Simulation results

We now assume that we have the capacity for r =
15′000 per day, and assess the performance of our strat-
egy as a function of the confidence parameter α in Fig.
4. Values of α ≤ 2 lead to rapid, but at the same time
erratic interventions, as is reflected by a rapidly growing
number of interventions. For larger values of α, the time
scale to reach a steady state increases while the economic
and health costs remain more or less stable. A reasonable
compromise between minimizing the number of interven-
tions, and shortening the time to reach a steady state
suggests a choice of α ≈ 2.5− 3.5.

It is intuitive that the higher the number r of tests per
day is, the better the mitigation strategy will perform.
The characteristic time to reach a final steady state de-
creases as r−1/3, see Eq. (13a). Other measures for per-
formance improve monotonically upon increasing r. This
is confirmed and quantified in Fig. 5, where we show how
the political, health, and economic cost decreases with
increasing test rate.

1. Time delay to detect catastrophic growth rates

After a reboot it is likely that the growth rate k1 jumps
back to positive values, as we have always assumed so
far. The time it takes until one can distinguish a genuine
growth from intrinsic fluctuations due to the finite num-
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FIG. 3. Our algorithm implements policy releases and re-
strictions aiming at maintaining a vanishing growth rate. It
intervenes whenever the estimated slope of the fraction of in-
fected people is found to be non-zero, here with confidence
level α = 3. We plot the model infection fraction U(t)/N and
the detected infection fraction i(t) as a function of days in
panel (a). The model growth rate k(t) (solid line) and the
estimated growth rate kest at times of intervention are shown
in panel (b) for the parameters i(0) = 0.0012, k1 = 0.1, and
a test rate of r = 15′000 day−1. The dashed blue line corre-
sponds to a history of interventions where we assumed that
the effect of policy interventions is better known (described
by an uncertainty parameter b = 0.9, instead of b = 0.5), so
that convergence is much faster.

ber of sample people depends on the growth rate k1, see
Eq. (13a).

In the worst case where the reboot brings back the
unmitigated value k0, one will know within 3-4 days with
reasonable confidence that the growth rate is well above
zero. This is shown in Fig. 6. In such a catastrophic
situation, an early intervention can be taken, while the
number of infections has at most tripled at worst. Note
that this reaction time is 4-5 times faster than without
random testing.

FIG. 4. Performance of the mitigation strategy as a function
of the confidence parameter α, for a number r = 15′000 tests
per day and an initial growth rate k1 = 0.1. We plot the time
scale ∆t1 (a), and the health (b), economic (c) and political
(as measured by numbers of interventions to achieve a steady
state) (d) costs [Eqs. (23)–(25)] as measures of performance.
The circles are the mean values, the vertical lines indicate the
standard deviations of the respective quantities.

VIII. REGIONALLY REFINED REBOOT AND
MITIGATION STRATEGIES

We have argued that the minimal testing rate rmin

(16) is sufficient to obtain statistical information on the
growth rate k as applied to Switzerland as a whole. This
assumes tacitly that the simple growth equation (5) de-
scribes the dynamics of infections in the whole country
well. That this is not necessarily a good description can
be conjectured from recent data on the current rates with
which numbers of confirmed infections in the various can-
tons (states of Switzerland) evolve. These data indeed
show a very significant spread by nearly a factor of four
suggesting that a spatially resolved approach is prefer-
able, if possible.

If the testing capacity is limited by rates of order rmin,
the approach can still be used. But caution should be
taken to account for spatial fluctuations corresponding to
hot spots. One should preferentially test in areas that are
likely to show the largest local growth rates so as not to
miss locally super-critical growth rates by averaging over
the entire country. If however, higher testing frequencies
become available, new and better options come into play.

A. Partitioning the country for statistical analysis

Valuable information can be gained by analyzing the
test data not only for Switzerland as a whole, but by
distinguishing different regions.
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FIG. 5. Performance of the mitigation strategy as a function
of the number of tests r per day, for a fixed value of α = 3
and an initial growth rate k1 = 0.1. We plot the time scale
∆t1 (a), and the health (b), economic (c) and political (as
measured by numbers of interventions to achieve a steady
state (d) costs [Eqs. (23)–(25)] as measures of performance.
The circles are the mean values, the vertical lines indicate the
standard deviations of the respective quantities. The large
uncertainties in the economic costs, e.g., are a consequence of
the relatively large uncertainty in the effect of interventions
(b = 0.5). If the latter is better known, the standard deviation
of the cost functions will decrease accordingly.

It might even prove useful not to lift restrictions homo-
geneously throughout the country, but instead to vary the
set of restrictions to be released, or to adapt their rigor.
By way of example, consider that after the spring vaca-
tion school starts in different weeks in different cantons.
This regional difference could be exploited to probe the
relative effect of re-opening schools on the local growth
rates k. However, obviously, it might prove politically
difficult to go beyond such “naturally” occurring differ-
ences, as it is a complex matter to decide what region
releases which measures first. A further issue is that the
effects might be unclear at the borders between regions
with different restrictions. There may also be compli-
cations with commuters that cross regional borders. Fi-
nally, there may be undesired behavioral effects, if region-
ally varying measures are declared as an “experiment”.
Such issues demand careful consideration if regionally
varying policies are applied.

Even if policy measures should eventually not be taken
in a region-specific manner, it is very useful to study
a regionally refined model of epidemic dynamics. In-
deed a host of literature exists that studies epidemio-
logical models on lattices and analyzes the spatial het-
erogeneities. [17, 18] In certain circumstances those have
been argued to become even extremely strong. [19] In
the present paper, we will content ourselves with a few

FIG. 6. Time after which a significant positive growth rate
is confirmed in the worst case scenario for which the growth
rate jumps to k1 = 0.23 after reboot. An intervention will
be triggered in 3-4 days, since in the case that such a strong
growth must be suspected, one should apply a small confi-
dence parameter α ≈ 1. Results are shown for r = 15′000
and r = 20′000 tests a day. The circles are the mean values,
the vertical lines indicate the standard deviations for the first
intervention time.

general remarks concerning such refinements. We reserve
a more thorough study of regionally refined testing and
mitigation strategies to a later publication.

Let us thus group the population of Switzerland into
G sets. The most natural clustering is according to the
place where people live, cities or counties. 12 The more
we partition the country, the more spatially refined the
acquired data will be, and the better tailored mitigation
strategies could potentially become. However, this comes
at a price. Namely, for a limited national testing rate
rtot, an increased partitioning means that the statistical
uncertainty to measure local growth rates in each region
will increase.

The minimal test rate rmin that we estimated on the
right-hand side of Eq. (16) still holds, but now for each
region, which can only test at a rate r = rtot/G. To
refine Switzerland G regions we thus have the constraint
that the total testing capacity exceeds

rtot ≥ Grmin ≡ G
(4α)2

(ln 4)3

k1

i∗
. (26)

On the other hand, if testing at a high daily rate rtot

becomes available, nothing should stop one to refine the

12 One might also consider other distinguishing characteristics of
groups (age or commuting habits, etc.), but we will not do so
here, since it is not clear whether the increased complexity of
the model can be exploited to reach an improved data analysis.
In fact we expect that the number of fitting parameters will very
quickly become too large by making such further distinctions.
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statistical analysis to G ≈ rtot/rmin to make the best use
of available data.

B. Spatially resolved growth model

Each of the population groups m ∈ {1, · · · , G} is as-
sumed to have roughly the same size, containing

Nm ≈
NCH

G
(27)

people, Um of whom are currently infected, but yet unde-
tected. The spreading of infections is again assumed to
follow a linear growth equation (where we neglect influx
from across the borders from the outset)(

dUm
dt

)
(t) =

G∑
n=1

Kmn(t)Un(t), m = 1, · · · , G.

(28)
Here, the growth kernel K(t) is a G × G matrix with
matrix elements Kmn(t). The matrix K(t) has G (com-
plex valued) eigenvalues λn, n = 1, · · · , G. The largest
growth rate is given by

κ(t) ≡ max
1≤n≤G

{Reλn(t)} . (29)

For the sake of stability criteria, κ(t) now essentially
takes the role of k(t) in the model with a single region,
G = 1. We note that the number of infections grows
exponentially if κ(t) > 0, and decreases if κ(t) < 0.

As in the case of a single region, we assume K(t) to
be piece wise constant in time, and to change only upon
taking policy interventions.

In the simplest approximation, one assumes no contact
between geographically distinct groups, that is, the off-
diagonal matrix elements are set to zero [Km6=n(t) = 0]
and the eigenvalues become equal to elements of the di-
agonal: km(t) ≡ Kmm(t). As current cantonal data sug-
gests, the local growth rate km(t) depends on the region,
and thus km(t) 6= kn(t). It is natural to expect that km(t)
correlates with the population density, the fraction of the
population that commutes, the age distribution, etc.

If on top of the heterogeneity of growth rates one adds
finite but weak inter-regional couplings Km6=n(t) > 0

(mostly between nearest neighbor regions), one may still
expect the eigenvectors of K(t) to be rather localized (a
phenomenon well known as Anderson localization [11] in
the context of waves propagating in strongly disordered
media). By this, one means that the eigenvectors have
a lot of weight on few regions only, and little weight ev-
erywhere else. That such a phenomenon might occur
in the growth pattern of real epidemics is suggested by
the significant regional differences in growth rates that
we have mentioned above. In such a situation it would
seem preferable to adapt restrictive measures to local-
ized regions with strong overlap on unstable eigenvectors
of K(t), while minimizing their socio-economic impact in
other regions with lower km(t).

C. Mitigation strategies with regionally refined
analysis

As mentioned above, in the case with several distinct
regions, G > 1, an intervention becomes necessary when
the largest eigenvalue κ(t) of K(t) crosses an upper or
a lower threshold (with a level of confidence α again to
be specified). If the associated eigenvector is delocalized
over all regions, one will most likely respond with a global
policy measure. However, it may as well happen that the
eigenvector corresponding to κ(t) is well-localized. In this
case one can distinguish two strategies for intervention:

(a) Global strategy One always applies a single pol-
icy change to the whole country. This is politically
simple to implement, but might incur unnecessary
economic cost in regions that are not currently un-
stable.

(b) Local strategy One applies a policy change only
in regions which have significant weight on the un-
stable eigenvectors. This means that one only ad-
justs the corresponding diagonal matrix elements
of K(t) and those off-diagonals that share an index
with the unstable region.

Likewise, regions that have im < i∗ and have negligible
overlap with eigenvectors whose eigenvalues are above
κ−, could relax some restrictions before others do.

Fitting test data to a regionally refined model will al-
low us to estimate the off-diagonal terms Kmn(t), which
are so far poorly characterized parameters. However, the
Kmn(t) contain valuable information. For instance, if a
hot spot emerges [that is, a region overlapping strongly
with a localized eigenvector with positive Reλn(t)], this
part of the matrix will inform which connections are the
most likely to infect neighboring regions. They can then
be addressed by appropriate policy measures and will be
monitored subsequently, with the aim to contain the hot
spot and keep it well localized.

This model allows us to calculate again economic, po-
litical, and health impact of various strategies. It is im-
portant to assess how the global and the local strategy
perform in comparison. Obviously this will depend on the
variability between the local growth rates km(t), which is
currently not well known, but will become a measurable
quantity in the future. At that point one will be able
to decide whether to select the politically simpler route
(a) or the heterogeneous route (b) which is likely to be
economically favorable.

We are currently engaged in developing an analysis tool
to quickly process test data for multi-region modeling.
We are developing and assessing intervention strategies
with the perspective of running it daily with the best
available current data and knowledge.
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IX. SUMMARY AND CONCLUSION

We have analyzed a feedback and control model for
managing a pandemic such as that caused by COVID-19.
The crucial output parameters are the infection growth
rates in the general population and spatially localized
sub-populations. When planning for an upcoming re-
boot of the economy, it is essential to assess and mitigate
the risks of relaxing some of the restrictions that have
brought the COVID-19 epidemic under control. In par-
ticular, the policy strategy chosen must suppress a po-
tential second exponential wave when the economy is re-
booted, and so avoid a perpetual stop-and-go oscillation
between relaxation and lockdown. Feedback and control
models are designed with precisely this goal in mind.

Having random testing in place, the risk of a second
wave can be kept to a minimum. Additional testing ca-
pacity of r = 15′000 day−1 tests (on top of the current
tests for medical purposes) carried out with randomly se-
lected people would allow us to follow the course of the
pandemics almost in real time, without huge time delays,
and without the danger of increasing the number of cur-
rently infected people by more than a factor of four, if
our intervention strategy is followed. We emphasize that
our estimate of r is conservative. If the manageable frac-
tion of infected people is higher than what we assumed
in Eq. (14b), namely of order ic ≈ 0.01 as the estimates
of Ref. [4] suggest, the required testing rate decreases by
a factor 3− 4 to a mere r = 4′000− 5′000 day−1.

If testing rates r significantly higher than rmin become
available, a regionally refined analysis of the growth dy-
namics can be carried out, with G ≈ r/rmin regions that
can be distinguished.

In the worst case scenario, where releasing certain mea-
sures immediately make the country jump back to the un-
mitigated growth rate of k0 = 0.23 day−1, random testing
would detect this within 3-4 days from the change coming
into effect. This is in stark contrast to the nearly 14 days
of delay required for symptomatic individuals to emerge
in statistically significant numbers. After such a time
delay a huge increase (by a factor of order 20) of infec-
tion numbers may have already occurred, which would
be catastrophic. Daily random testing safely prevents
this. Thereby the significant reduction of the time de-
lay is absolutely crucial. Note that without daily polling
of infection numbers and without knowledge about the
quantitative effect of restriction measures, a reboot of the
economy could not be risked before the number of infec-
tions has been suppressed by at least a factor of 10-20
below the current level. Given the limits of suppression
rates that can be achieved without most draconic lock-
down measures, this will require a very long time and
thus translates into an enormous economic cost. In con-
trast, daily polling will allow us to carefully reboot the
economy and adjust restrictive measures, while closely
monitoring their effect. Since the reaction times are so
much shorter, one can safely start an attempted reboot
already at infection numbers corresponding roughly to

the status quo.

At some point one might consider the option to start
releasing different sets of restrictions in different regions,
with the aim to learn faster about their respective effects
and thus to optimize response strategies in subsequent
steps.
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Appendix A: Assessment of contact tracing as a
means to control the pandemics

Let us briefly discuss the strategy of so-called contact
tracing as a means to contain the pandemics, as has been
discussed in the literature [? ]. We argue that contact
tracing is a helpful tool to suppress transmission rates,
but is susceptible to fail when no other method of control
is used.

Contact tracing means that once an infected person is
detected, people in their environment (i.e., known per-
sonal contacts, and those identified using mobile-phone
based Apps etc) are notified and tested, and quarantined
if detected positive. As a complementary measure to
push down the transmission rate, it is definitely useful,
and it represents a relatively low cost and targeted mea-
sure, since the probability to detect infected people is
high. However, as a sole measure to contain a pandemic
contact tracing is impractical (especially at the current
high numbers of infected people) and even hazardous.

The reason is as follows. It is believed that a consid-
erable fraction fasym of infected people show only weak
or no symptoms, so that they would not get tested un-
der the present testing regime. The value of fasym is not
well known, but it might be rather high (30% or even
much higher). Such asymptomatic people will go unde-
tected, if they have not been in contact with a person
displaying symptoms. If on average they infect R people
while being infectious, and if Rfasym > 1, there will be
an exponential avalanche of undetected cases. They will
produce an exponentially growing number of detectable
and medically serious cases. The contact tracing of those
(upward in the infection tree) is tedious, and cannot fully
eliminate the danger of such an avalanche.

Contact tracing as a main strategy thus only becomes
viable once the value of fasym is well established, and one
is certain to be able to control the value of R such that
Rfasym < 1.
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Appendix B: Algorithm to simulate mitigation of
reboot

1. Definitions

• t = 1, 2, · · · : Time in days (integer).

• nint: Number of interventions (including the reboot
at t = 1).

• tint(j): First day on which the j’th rate kj applies.
On day tint(1) ≡ 1 the initial reboot step is taken.

• ∆t(j) = tint(j + 1) − tint(j): Time span between
interventions j and j + 1.

• tfirst: First day on which the current rate k = k(t)
is applied.

• i(t): Fraction of infected people on day t.

• k(t): Growth rate on day t.

• r: Number of tests per day.

• CH: Health cost.

• CE: Economic cost.

• kmin = 0.005: Minimal growth rate targeted.

• ilow = 0.2: Lower threshold for i/i∗. If i/i∗ < ilow,
a relaxing intervention is made, irrespective of the
estimate of k.

• ihigh = 3: Upper threshold for i/i∗. If i/i∗ > ihigh,
an intervention is made even if k is still smaller
than α δk.

• klow = −0.1: Minimal possible decreasing rate con-
sidered.

• khigh = 0.23: Maximal possible increasing rate con-
sidered.

• Tmin = 3: Minimal time to wait since the last in-
tervention, for interventions based on the level of
i(t).

• b: Parameter defining the possible range of changes
∆k due to measures taken after estimating k.
|∆k/kest| ∈ [b, 1/b]. Usually we set b = 0.5.

• α: Confidence parameter.

• N(t): Cardinality of random sample of infected
people on day t. The number N(t) is obtained
by sampling from a Gaussian distribution of mean
i(t) r and standard deviation

√
i(t) r and rounding

the obtained real number to the next non-negative
integer.

2. Initialization

• tfirst = tint(1) = 1.

• nint = 1.

• CH = 1.

• CE = 0.

• k(1) = k1 = 0.1. (Initial growth rate)

• i(1) = i∗. Common choice i∗ = ic/4 = 0.0007.

• Draw N(1).

• k(2) = k(1). (No intervention at the end of day 1)

• Set t = 2.

3. Daily routine for day t

Define i(t) = i(t− 1) ek (t−1),
Define CH = max{CH, i(t)/i

∗},
Define CE = CE − k(t).
Draw N(t).
Determine what will be k(t+ 1), by assessing whether or
not to intervene:
If t = tfirst, then k(t+ 1) = k(t). (No intervention)
Else Distinguish three intervention cases:

1. If i(t)/i∗ < ilow and t− tfirst ≥ Tmin, then
k(t+ 1) = min{k(t) + x k1, khigh}
with x = Unif[0, 1].

2. ElseIf i(t)/i∗ > ihigh and t− tfirst ≥ Tmin, then

k(t+ 1) = max{k(t)− (1 + x)/2 khigh, klow}
with x = Unif[0, 1].

3. ElseIf ilow < i(t)/i∗ < ihigh, then

• set ∆t ≡ t− tfirst + 1

• Compute kest(tfirst,∆t), and δkest(tfirst,∆t)
using Sec. B 4.

If |kest| > kmin

AND
[kest > αδkest OR kest < −α δkest],
set
k(t+ 1) = k(t)− x kest

with x = Unif[b, 1/b].

If k(t+ 1) > khigh, put k(t+ 1) = khigh.

If k(t+ 1) < klow, put k(t+ 1) = klow.

4. Else k(t+ 1) = k(t)

t = t+ 1.
If an intervention was taken above:

• Put nint = nint + 1.
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• Define tint(nint) = t+ 1.

• Define ∆t(nint − 1) = tint(nint)− tint(nint − 1).

• Set tfirst = t+ 1.

If |kest| < kmin AND k(t) < kmin AND t − tfirst > 10,
then EXIT.
Else Return to daily routine for next day.

4. Estimate of k(t,∆t)

Computing kest(tfirst,∆t) and δkest(tfirst,∆t):
If ∆t is even:
Define

N1 =
∆t/2−1∑
m=0

N(tfirst +m),

N2 =
∆t/2−1∑
m=0

N(tfirst + ∆t/2 +m).

• If N1N2 > 0, then

kest = 2
∆t ln

(
N2

N1

)
,

δkest = 2
∆t

√
1
N2

+ 1
N1

.

• Else return
kest = 0,
δkest = 1000.

If ∆t is odd:

Define

N ′1 =
(∆t−1)/2−1∑

m=0
N(tfirst +m),

Nm = N(tfirst + (∆t− 1)/2),

N ′2 =
(∆t−1)/2−1∑

m=0
N(tfirst + (∆t+ 1)/2 +m),

N1 = N ′1 +Nm,

N2 = N ′2 +Nm.

• If N1N2 > 0, then

kest = 2
(∆t−1) ln

(
N ′

2+Nm
N ′

1+Nm

)
,

δkest = 2
(∆t−1)

√
N ′

2

N2
2

+
N ′

1

N2
1

+Nm

(
1
N2
− 1

N1

)2

.

• Else return
kest = 0,
δkest = 1000.

5. Observables

Time to first intervention: ∆t(1)

Health cost: CH

Political cost: nint

Economic cost CE
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