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1 Summary

Background The novel coronavirus (SARS-CoV-2) is currently causing concern in the medical, epi-
demiological and mathematical communities as the virus is rapidly spreading around the world. Inter-
nationally, there are more than 1 200 000 cases detected and confirmed in the world on April 6. The
asymptomatic and mild symptomatic cases are just going to be really crucial for us to understand what
is driving this epidemic to transmit rapidly. Combining a mathematical model of severe (SARS-CoV-
2) transmission with data from China, South Korea, Italy, France, Germany and United Kingdom, we
provide the epidemic predictions of the number of reported and unreported cases for the SARS-CoV-2
epidemics and evaluate the effectiveness of control measures for each country.

Methods We combined a mathematical model with data on cumulative confirmed cases from China,
South Korea, Italy, France, Germany and United Kingdom to provide the epidemic predictions and
evaluate the effectiveness of control measures. We divide infectious individuals into asymptomatic and
symptomatic infectious individuals. The symptomatic infectious phase is also divided into reported (se-
vere symptoms) and unreported (mild symptoms) cases. In fact, there exists a period for the cumulative
number of reported cases to grow (approximately) exponentially in the early phase of virus transmission
which is around the implementation of the national prevention and control measures. We firstly combine
the date of the implementation of the measures with the daily and cumulative data of the reported
confirmed cases to find the most consistent period for the cumulative number of reported cases to grow
approximately exponentially with the formula χ1 exp(χ2 t)− χ3, thus we can determine the parameters
χ1, χ2, χ3 in this formula and then determine the parameters and initial conditions for our model by
using this formula and the plausible biological parameters for SARS-CoV-2 based on current evidence.
We then provide the epidemic predictions, evaluate the effectiveness of control measures by simulations
of our model.

Findings Based on the simulations using multiple groups of parameters (d1, d2, N), here [d1, d2] is the
consistent period for the cumulative number of reported cases to grow approximately exponentially
with the formula χ1 exp(χ2 t) − χ3 and N is the date at which public intervention measures became
effective, we found that the ranges of the turning point, the final size of reported and unreported cases
are respectively Feb.6 − 7, 67 000 − 69 000 and 45 000 − 46 000 for China, Feb.29−Mar.1, 9 000 − 9 400
and 2 250 − 2 350 for South Korea, Mar.24 − 26, 156 000 − 177 000, and 234 000 − 265 000 for Italy,
Mar.30−Apr.9, 104 000− 212 000, and 177 000− 318 000 for France, Mar.30−Apr.20, 141 000− 912 000,
and 197 000− 1 369 000 for Germany, Apr.1−May12, 140 000− 473 000, and 210 000− 709 000 for United
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Kingdom. Our prediction relies on the cumulative data of the reported confirmed cases. As more
data become available, the ranges become smaller and smaller, that means the prediction becomes
better and better. It is evident that our estimates and simulations have shown good correspondence
with the distribution of the cumulative data available of the reported confirmed cases for each country
and in particularly, the curves plotted by using different parameter groups (d1, d2, N) for reported and
unreported cases tend to be consistent in China and South Korea (see (e) in Figures 2-3). For Italy,
France, Germany and United Kingdom, the prediction can be updated to higher accuracy with on-going
day by day reported case data (see Figures 4-7).

Interpretation We used the plausible biological parameters f, ν, η for SARS-CoV-2 based on current
evidence which might be refined as more comprehensive data become available. Our prediction also relies
on the cumulative data of the reported confirmed cases. Using multiple groups of parameters (d1, d2, N),
we have attempted to make the best possible prediction using the available data. We found that with
more cumulative data available, the curves plotted by using different parameter groups (d1, d2, N) for
reported and unreported cases will be closer and closer, and finally tend to be consistent. This shows
that when we have no enough cumulative data available, we need to use all possible parameter groups
to predict the range of turning point, the final size of reported and unreported cases. When we have
enough cumulative data, for example, when we get the data after the turning point, we only need to use
any one of these parameter groups to get a prediction with high accuracy.

Funding NSFC (Grant No. 11871007), NSFC and CNRS (Grant No. 11811530272) and the Fundamen-
tal Research Funds for the Central Universities.

2 Introduction
As coronavirus outbreaks surge worldwide, more and more facts [8] show that many new patients

which are asymptomatic or have only mild symptoms can transmit the virus. Research [9] traced COVID-
19 infections which resulted from a business meeting in Germany attended by someone infected but who
showed no symptoms at the time and found that four people were ultimately infected from that single
contact. It has also been confirmed that asymptomatic transmission occurs in [1] which echoes the report
in [9]. A German research team [11] showed that some new crown pneumonia patients had higher viral
levels in the throat swabs during the early stage of the disease, that is, when the symptoms were mild.
It is reported in [7] that 13 evacuees from Wuhan, China on chartered flights were infected, of whom 4,
or 31%, never developed symptoms. The estimated asymptomatic proportion in [6] is at 17.9% which
overlaps with a derived estimate of 31% from data of Japanese citizens evacuated fromWuhan [7]. A team
in China [10] suggests that by February 18, there were 37,400 people with the virus in Wuhan whom
authorities didn’t know about. The asymptomatic and mild symptomatic cases were missed because
authorities aren’t doing enough testing, or ’preclinical cases’ in which people are incubating the virus
but would not be ill enough to seek medical help, would probably slip past screening methods such as
temperature checks. The asymptomatic and mild symptomatic cases are just going to be really crucial
for us to understand the rapid transmission.

In previous works [3, 4, 5], our team has developed differential equations models of COVID-19 epi-
demics. Our goal was to predict forward in time the future number of cases from early reported case data
in regions throughout the world. Our models incorporate the following important elements of COVID-19
epidemics: (1) the number of asymptomatic infectious individuals (with no or very mild symptoms), (2)
the number of symptomatic reported infectious individuals (with severe symptoms) and (3) the number
of symptomatic unreported infectious individuals (with mild symptoms). With our model, we can show
the prediction of the final size of the asymptomatic infectious, reported (with severe symptoms) and
unreported cases (with mild symptoms) which is an important epidemiological problem research teams
around the world are trying to solve.

In an early phase of the epidemic, the reported case data grows exponentially, which corresponds to a
constant transmission rate. We assume that government measures and public awareness cause this early
constant transmission rate to change to a time dependent exponentially decreasing rate. We identify the
early constant transmission rate using a method developed in [3]. We then identify the time dependent
exponentially decreasing transmission rate from reported case data, and project forward the time-line of
the epidemic course. With this time dependent transmission rate, the effectiveness of control measures
for each country could be evaluated.
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Our model is applicable to COVID-19 epidemics in any region with reported case data, which can be
updated to higher accuracy with on-going day by day reported case data.

3 Research in context

Evidence before this study
We searched PubMed, BioRxiv, and MedRxiv for articles published in English, Chinese, French, using
the search terms "2019-nCoV", "novel coronavirus", "COVID-19", "SARS-CoV-2", "asymptomatic",
"mild symptoms", AND "unreported case" with no time restrictions. We found several estimates of
asymptomatic, mild symptoms, and unreported case. However, we obtained no estimations for turning
point, the number of asymptomatic, the number of mild symptomatic, and the number of unreported
case by combining a mathematical model with a phenomenological model and data.

Added value of this study Our study gives the estimations of the turning point, the number of
asymptomatic, the number of mild symptoms, and the number unreported case by using a mathematical
model we present (which includes susceptible, asymptomatic infectious, reported symptomatic infectious,
unreported symptomatic infectious individuals), together with a phenomenological model and data.
Our model also incorporates government and social distancing measures, through the time-dependent
transmission rate. Based on the values of f, µ, N in Table 2, it is evident that the strong government
measures such as isolation, quarantine, and public closings, should start as early as possible, and should be
as strong as possible. After a first outbreak of SARS-CoV-2, South Korea came back to linearly growing
phase now. It seems that this epidemic of SARS-CoV-2 is not easy to eradicate. If the strong government
measures are reduced too early or too extensively, the epidemic may return to a new exponential growth
phase and then outbreaks again.

Implications of all the available evidence We see that estimation of the number of asymptomatic
infectious and unreported cases has major importance in understanding the severity of this epidemic.
Strong measures are needed to curb mild and asymptomatic cases that are fueling the pandemic. Based
on the study, for China and South Korea, the major distancing measures can not be reduced too early or
too extensively, otherwise the epidemic may return to new exponential growth phase, for Italy, France,
Germany and United Kingdom, very strong testing and isolation measures should start as early as
possible, and should be as strong as possible.

4 Methods
Model
To provide the epidemic predictions, evaluate the effectiveness of control measures, we fit the following
transmission dynamic model to the cumulative confirmed case data in China, South Korea, Italy, France,
Germany and United Kingdom:

S′(t) = −τ(t)S(t)[I(t) + U(t)],

I ′(t) = τ(t)S(t)[I(t) + U(t)]− νI(t),
R′(t) = ν1I(t)− ηR(t),
U ′(t) = ν2I(t)− ηU(t),

(4.1) 4.1

with the initial data

S(t0) = S0 > 0, I(t0) = I0 > 0, R(t0) = 0 and U(t0) = U0 ≥ 0. (4.2) 4.2

Here t ≥ t0 is time in days, t0 is the beginning date in the model of the epidemic, S(t) is the number of
individuals susceptible to infection at time t, I(t) is the number of asymptomatic infectious individuals
at time t, R(t) is the number of reported sever symptomatic infectious individuals at time t, and U(t) is
the number of unreported mild symptomatic infectious individuals at time t.

The transmission rate at time t is τ(t). Asymptomatic infectious individuals I(t) are infectious for an
average period of 1/ν days. Reported symptomatic individuals R(t) are infectious for an average period
of 1/η days, as are unreported symptomatic individuals U(t). We assume that reported symptomatic
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infectious individuals R(t) are reported and isolated immediately, and cause no further infections. The
asymptomatic individuals I(t) can also be viewed as having a low-level symptomatic state. All infections
are acquired from either I(t) or U(t) individuals. f is the fraction of asymptomatic infectious that become
reported symptomatic infectious. The rate asymptomatic infectious become reported symptomatic is
ν1 = f ν, the rate asymptomatic infectious become unreported symptomatic is ν2 = (1 − f) ν, where
ν1 + ν2 = ν. The cumulative number of reported cases at time t is given by the formula

CR(t) = ν1

∫ t

t0

I(σ)dσ, for t ≥ t0, (4.3) 4.3

and the cumulative number of unreported at time t is given by the formula

CU(t) = ν2

∫ t

t0

I(σ)dσ, for t ≥ t0. (4.4) 4.4

The interpretation of the parameters and initial conditions of the model are given in Table 1 and a flow

diagram of the model is given in Figure 1.

Symbol Interpretation Method
t0 Date the epidemic started fitted
S0 Number of susceptible at time t0 fixed
I0 Number of asymptomatic infectious at time t0 fitted
U0 Number of unreported symptomatic infectious at time t0 fitted
τ(t) Transmission rate at time t fitted
N Date at which public intervention measures became effective fitted
µ Intensity of the public intervention measures fitted

1/ν Average time during which asymptomatic infectious are asymptomatic fixed
f Fraction of asymptomatic infectious that become reported symptomatic infectious fixed

ν1 = f ν Rate at which asymptomatic infectious become reported symptomatic fitted
ν2 = (1− f) ν Rate at which asymptomatic infectious become unreported symptomatic fitted

1/η Average time symptomatic infectious have symptoms fixed
Table1

Table 1: Parameters and initial conditions of the model.

S I

R

U

SymptomaticAsymptomatic

τS[I + U ]

ν1
I

ν
2I

Removed

ηR

ηU

fig1

Figure 1: Compartments and flow chart of the model.

Method to estimate the parameters
We assume that (100 × f)% of symptomatic infectious cases go reported. The actual value of f is
unknown and varies from country to country. We assume η = 1/7, which means that the average
period of infectiousness of both reported and unreported symptomatic infectious individuals is 7 days.
We assume ν = 1/7, which means that the average period of infectiousness of asymptomatic infectious
individuals is 7 days. These values can be modified as further epidemiological information becomes
known.
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After a period of linear growth, the epidemic of COVID-19 starts to enter into a second phase where
the cumulative number of reported cases CR(t) grows approximately exponentially. We assume that
during this phase cumulative number of reported cases is described by the following phenomenological
model:

CR(t) = χ1 exp(χ2 t)− χ3, t ≥ t0. (4.5) 4.5

We fix the value χ3 = 1. The values of χ1 and χ2 are fitted to cumulative reported case data in the
second phase when it is recognized that CR(t) is growing exponentially (i.e. we use an exponential fit
χ1 exp(χ2 t) to fit the data CR(t)+ 1). We assume the initial value S0, corresponds to the population of
the region of the reported case data. The value of the susceptible population S(t) is assumed to be only
slightly changed by removal of the number of people infected in the beginning of the second phase. The
following formulas for I0, U0, t0, τ0, and R0 were derived in [3]. Their numerical values are identified by
using (4.5) from the exponential growth phase of the epidemic. The other initial conditions are

I0 =
χ2χ3

fν
, U0 =

(
ν2

η + χ2

)
I0. (4.6) 4.6

The transmission rate τ(t) is assumed to be constant when the number of reported infectious symptomatic
cases starts growth exponentially fast:

τ0 =

(
χ2 + ν1 + ν2

S0

)(
η + χ2

ν2 + η + χ2

)
. (4.7) 4.7

The model starting time of the epidemic is

t0 =
1

χ2

(
log(χ3) − log(χ1)

)
. (4.8) 4.8

The value of the basic reproductive number is

R0 =

(
τ0S0

ν1 + ν2

)(
1 +

ν2
η

)
. (4.9) 4.9

When strong government measures such as isolation, quarantine, and public closings are implemented,
the last phase of the epidemic begins. The actual effects of these measures are complex, and we use
an exponential decrease for a time-dependent decreasing transmission rate τ(t) in the third phase to
incorporate these effects. The formula for τ(t) is{

τ(t) = τ0, 0 ≤ t ≤ N,

τ(t) = τ0 exp (−µ (t−N)) , N < t.
(4.10) 4.10

The date N and the value µ are chosen so that the cumulative reported cases in the numerical simulation
of the epidemic aligns with the cumulative reported case data after day N when the public measures take
effect. In this way we are able to project forward the time-path of the epidemic after the government
imposed public restrictions take effect.

The daily number of reported cases from the model can be obtained by computing the solution of
the following equation:

DR′(t) = ν1 I(t)−DR(t), for t ≥ t0 and DR(t0) = DR0. (4.11) 4.11

A major challenge for the predictions from the reported cases data, is to determine the date interval
for the second phase when the number of reported infectious symptomatic cases grows exponentially
and the date N (at which public intervention measures became effective), which are key elements of
our model, and they depend strongly on the implementation of social distancing measures. If these
measures are implemented gradually, then the difficulty is increased. Usually, the measures government
implemented took effect in daily reported cases after some days.

Another difficulty in applying our model is how to fix the value of the parameter f . A decreased value
of f corresponds to a greater final size of the epidemic. The value of f is unknown, but information about
the level of testing relates to the value of f . The increased testing can increase the value of f . Mortality
can also be used as a reference to estimate the value of f . High mortality indicates high unreported ratio.
In fact, from the values of f , N and µ, we can also obtain some information of the actual effects of these
measures of testing, quarantining and isolation implemented by the governments in these countries.
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The principle of our method is the following. By using an exponential best fit method we obtain a best
fit of (4.5) to the data over a time [d1, d2] and we derive the parameters χ1 and χ2. We fix f = 0.4, 0.6
or 0.8, ν = 1/7 and η = 1/7. The values of I0 U0, τ0, and t0 are obtained by using (4.6)-(4.8). Next we
fix N to some values and we obtain µ by trying to get the best to the data.

The uncertainty in our prediction is due to the fact that several sets of parameters (d1, d2, N) may
give a good fit to the data. As a consequence, at the early stage of the epidemics (in particular before the
turning point) the outcome of our method can be very different from one set of parameters (d1, d2, N) to
another. We try to solve this uncertainty problem by using several choice of the period [d1, d2] to fit an
exponential growth of the data to determine χ1 and χ2 and using several choice for N (the parameter
χ3 = 1 being fixed). We vary the time interval [d1, d2] during which we use the data to obtain χ1 and
χ2 by using an exponential fit. In the simulations below we vary the first day d1, the last day d2, N
(date at which public intervention measures became effective) such that all possible sets of parameters
(d1, d2, N) will be considered. For each (d1, d2, N) we evaluate µ to obtain the best fit of the model to
the data. We use the mean absolute deviation as the distance to data to evaluate the best fit to the data.
We obtain a large number of best fit depending on (d1, d2, N, f) and we plot the smallest mean absolute
deviation MADmin. Then we plot all the best fit with mean absolute deviation between MADmin and
MADmin + 5.

Remark 4.1 The number 5 chosen in MADmin + 5 is questionable. We use this value for all the
simulations since it gives sufficiently many runs that are fitting very well the data and which gives
later a sufficiently large deviation.

5 Results
Combining a mathematical model with multiple groups of parameters (d1, d2, N), we project the

future number of cases, both reported and unreported for China, South Korea, Italy, France, Germany
and United Kingdom. Here [d1, d2] is the period to fit an exponential growth of the data to determine χ1

and χ2, and N is the date at which public intervention measures became effective. For each (d1, d2, N)
we evaluate µ to obtain the best fit of the model to the data. We use the mean absolute deviation as
the distance to data to evaluate the best fit to the data. We obtain a large number of best fit depending
on (d1, d2, N) and we plot the one with the smallest mean absolute deviation MADmin and all the best
fit with mean absolute deviation in between MADmin and MADmin + 5. Thus we could summarize the
parameters giving the best fit to the data so far. In Table 2 and show the range of the turning point,
the final size for both reported and unreported cases, the maximum number of the daily reported cases
in Table 3 for each country.

Country χ1 χ2 χ3 t0 µ N S0 f τ0

China 2.05 0.28 1 Dec. 30 0.16 Jan. 28 1.40005× 109 0.6 2.66× 10−10

South Korea 0.27 0.32 1 Feb. 4 0.47 Feb. 26 51.47× 106 0.8 3.18× 10−10

Italy 4.78 0.19 1 Jan. 24 0.06 Mar. 8 60.48× 106 0.4 1.93× 10−10

France 0.36 0.21 1 Feb. 3 0.04 Mar. 10 66.99× 106 0.4 2.08× 10−10

Germany 140.64 0.24 1 Feb. 9 0.05 Mar. 12 82.79× 106 0.4 2.28× 10−10

126.95 0.25 1 Feb. 10 0.04 Mar. 11 82.79× 106 0.8 2.64× 10−10

United Kingdom 40.18 0.22 1 Feb. 13 0.04 Mar. 17 66.44× 106 0.4 2.1451× 10−10

Table2

Table 2: The parameters χ1, χ2, χ3 are estimated by using an exponential best fitting for χ1 exp(χ2 t) to
CR(t) + χ3 where CR(t) corresponds to the cumulative data for each country during: (1) Jan. 19− 31
for mainland China; (2) Feb. 20− 25 for South Korea; (3) Feb. 29−Mar. 11 for Italy; (4) Mar. 7− 15
for France; (5) Mar. 16 − 10 (when f = 0.4) and Mar. 7 − 16 (when f = 0.8) for Germany; (6) Mar.
6 − 13 for United Kingdom. The parameters ν = 1/7 and η = 1/7. The values of I0 U0, τ0, and t0 are
obtained by using (4.6) to (4.8).
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Country Range of turning point Range of daily reported Range of reported Range of unreported

China Feb. 6− 7 3 250− 3 450 67 000− 69 000 45 000− 46 000
South Korea Feb. 29−Mar. 1 520− 680 9 000− 9 400 2 250− 2 350

Italy Mar 24− 26 5 380− 5 700 156 000− 177 000 234 000− 265 000
France Mar. 30−Apr. 9 3 560− 5 521 104 000− 212 000 177 000− 318 000

Germany (f = 0.4) Mar. 30−Apr. 20 4 800− 21 120 141 000− 912 000 197 000− 1 369 000
Germany (f = 0.8) Mar. 29−Apr. 16 4 490− 16 510 124 000− 674 000 31 000− 169 000
United Kingdom Apr. 1−May 12 3 000− 38 100 140 000− 473 000 210 000− 709 000

Table3

Table 3: The range of the turning point, the maximum value of the daily reported number of cases, the
final size of cumulative reported and unreported cases, for China, South Korea, Italy, France, Germany,
United Kingdom.

6 Discussion
In the case of China and South Korea, according to our model, the peak of the epidemic occurred

approximately on February 6 and February 29, respectively from Figures 2-3 and the daily number of
cases reaches a maximum of approximately 3500 and 700 cases respectively, near the turning point. We
see that our model agrees very well the data for China and South Korea. Compared to China and South
Korea, the public interventions in Italy, France, Germany and United Kingdom were relatively late. The
peak of the epidemic occurs in Italy around March 24, and the peak of the maximum daily number of
cases in our simulation is approximately 5 500, which agrees well with the daily reported cases data for
Italy. For France, Germany and United Kingdom, the number of daily reported cases are still rising.
Our simulations captures these increasing values, but the advance later for both countries requires more
data available.

Based on our estimated results in Table 3 and all the Figures, we found that the curves plotted by
using all possible groups of parameters (d1, d2, N) for cumulative reported and unreported case and the
daily reported case in China and South Korea become closer and closer, and finally tend to be consistent
as more and more data of cumulative reported case is used (see Figures 2-3). For Italy, we can see from
Figure 4 that these curves are very close to each other since we have the data after the turning point. But
for France, Germany and United Kingdom, these curves could not tend to be consistent with the data
available now. This shows that when we have enough cumulative data available, for example, when we
get the data after the turning point, we could use only one of these parameter groups to get the prediction
with high accuracy. When we have a few cumulative data available, we need to use all possible parameter
groups to predict a range for the turning point, the final size of cumulative reported and unreported case
and the daily reported case. It is evident that we used plausible biological parameters f, ν, η for SARS-
CoV-2 based on current evidence which might be refined as more comprehensive data become available.
Our prediction also relies on the cumulative reported data. The prediction becomes better and better
as more data become available. Using multiple groups of parameters (d1, d2, N), we have attempted to
make the best possible prediction using the available data. As more data for particularly Italy, France,
Germany and United Kingdom become available, it will be possible to refine these estimates.

Our model incorporates social distancing measures through the time dependent transmission rate
τ(t). It is evident that these measures should start as early as possible, and should be as strong as
possible. The consequences of late public interventions may have severe consequences for the epidemic
outcome. The example of South Korea shows that a background level of daily cases may persist for an
extended time which also means that South Korea came back to linearly growth phase. If the strong
measures are reduced too early or too extensively, the epidemic may return to new exponential growth
phase.

There are many crucial epidemiological problems which research teams are racing to understand,
for example, how to estimate the last day for COVID-19 outbreak and the proportion of people with
mild or no symptoms who could be spreading the pathogen. Recently we estimated the last day for
COVID-19 outbreak in mainland China and present the probability distribution of the extinction date
of the epidemics combining our model (4.1) with the stochastic simulations. In fact, with our model
(4.1), we could also predict the proportion of asymptomatic or mild symptomatic infectious which we
will focus on in the future work.
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7 Supplementary
Predicting the number of cases for mainland China
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Figure 2: On the left hand-side we plot the cumulative data (reds dots) and the best fits of the model
CR(t) (black curve) and CU(t) (green curve). On the right hand-side we plot the daily data (black
dots) with DR(t) (blue curve). Figures (a) and (b) correspond the best fits of the model to the data for
mainland China until February 6. Figures (c) and (d) correspond the best fits of the model to the data
for mainland China until February 20. Figures (e) and (f) correspond the best fits of the model to the
data for mainland China until March 12. In other words, in Figure (e) we use all the data, in Figure
(c) we use the data excepted the 3 last weeks and in Figure (a) we use the data excepted the 5 last weeks.
The parameters used are listed in Table 2 together with f = 0.6, ν = 1/7 and η = 1/7.
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Predicting the number of cases for South Korea

(a) (b)

(c) (d)

(e) (f)

fig3

Figure 3: On the left hand-side we plot the cumulative data (reds dots) and the best fits of the model
CR(t) (black curve) and CU(t) (green curve). On the right hand-side we plot the daily data (black dots)
with DR(t) (blue curve). Figures (a) and (b) correspond the best fits of the model to the data for South
Korea until March 3. Figures (c) and (d) correspond the best fits of the model to the data for South
Korea until March 10. Figures (e) and (f) correspond the best fits of the model to the data for South
Korea until March 24. In other words, in Figure (e) we use all the data, in Figure (c) we use the data
excepted the 2 last weeks and in Figure (a) we use the data excepted the 3 last weeks. The parameters
used are listed in Table 2 together with f = 0.6, ν = 1/7 and η = 1/7.
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Predicting the number of cases for Italy
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fig4

Figure 4: On the left hand-side we plot the cumulative data (reds dots) and the best fits of the model
CR(t) (black curve) and CU(t) (green curve). On the right hand-side we plot the daily data (black dots)
with DR(t) (blue curve). Figures (a) and (b) correspond the best fits of the model to the data for Italy
until March 18. Figures (c) and (d) correspond the best fits of the model to the data for Italy until March
25. Figures (e) and (f) correspond the best fits of the model to the data for Italy until April 1. In other
words, in Figure (e) we use all the data, in Figure (c) we use the data excepted the last weeks and in
Figure (a) we use the data excepted the 2 last weeks. The parameters used are listed in Table 2 together
with f = 0.6, ν = 1/7 and η = 1/7.
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Predicting the number of cases for France

fig5

Figure 5: On the left hand-side we plot the cumulative data (reds dots) for France until April 1 and the
best fits of the model CR(t) (black curve) and CU(t) (green curve). On the right hand-side we plot the
daily data (black dots) with DR(t) (blue curve).

Predicting the number of cases for Germany

fig6

Figure 6: We use f = 0.4 (top) and f = 0.8 (bottom). On the left hand-side we plot the cumulative
data (reds dots) for Germany until April 2 and the best fits of the model CR(t) (black curve) and CU(t)
(green curve). On the right hand-side we plot the daily data (black dots) with DR(t) (blue curve).

Predicting the number of cases for United Kingdom

fig7

Figure 7: On the left hand-side we plot the cumulative data (reds dots) for United Kingdom until April
2 and the best fits of the model CR(t) (black curve) and CU(t) (green curve). On the right hand-side we
plot the daily data (black dots) with DR(t) (blue curve).

Declaration of interests
We declare no competing interests.

11

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 10, 2020. ; https://doi.org/10.1101/2020.04.09.20058974doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.09.20058974
http://creativecommons.org/licenses/by-nc-nd/4.0/


Keywords: corona virus, reported and unreported cases, isolation, quarantine, public closings; epidemic
mathematical model

References
Guan [1] W. Guan, et al., Clinical Characteristics of Coronavirus Disease 2019 in China, New England Journal

of Medicine, (2020). Published on February 28, 2020, PMID: 32109013. https://doi.org/10.1056/
NEJMoa2002032.

Kucharski [2] A. Kucharski, T.W. Russell and C. Diamond, et al., Early dynamics of transmission and control of
COVID-19: a mathematical modelling study, Lancet, March 11, 2020. Published:March 11, 2020DOI:
https://doi.org/10.1016/S1473-3099(20)30144-4

LMSW1 [3] Z. Liu, P. Magal, O. Seydi and G. Webb, Understanding unreported cases in the 2019-nCov epidemic
outbreak in Wuhan, China, and the importance of major public health interventions, MPDI Biology,
9(3), 50 (2020). https://doi.org/10.3390/biology9030050

LMSW2 [4] Z. Liu, P. Magal, O. Seydi and G. Webb, Predicting the cumulative number of cases for the COVID-
19 epidemic in China from early data, Mathematical Biosciences and Engineering 17(4) (2020),
3040-3051. https://doi.org/10.3934/mbe.2020172

LMSW3 [5] Z. Liu, P. Magal, O. Seydi and G.Webb, A COVID-19 epidemic model with latency period, Infectious
Disease Modelling (to appear)

Chowell [6] K. Mizumoto, K. Kagaya, A. Zarebski and G. Chowell, Estimating the asymptomatic proportion of
coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama,
Japan, 2020. Euro Surveill. 25(10) (2020). https://doi.org/10.2807/1560-7917.ES.2020.25.
10.2000180

Nishiura [7] H. Nishiura,et al., Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-
19), International Journal of Infectious Diseases, (2020). Published:March 13, https://doi.org/
10.1016/j.ijid.2020.03.020.

Qiu [8] J. Qiu, Covert coronavirus infections could be seeding new outbreaks, Nature, (2020). https://
www.nature.com/articles/d41586-020-00822-x

Rothe [9] C. Rothe, et al., Transmission of 2019-nCoV infection from an asymptomatic contact in Germany,
New England Journal of Medicine, (2020). https://doi.org/10.1056/NEJMc2001468

Wang [10] C. Wang, et al., Evolving Epidemiology and Impact of Non-pharmaceutical Interventions on the
Outbreak of Coronavirus Disease 2019 in Wuhan, China, medRxiv. https://doi.org/10.1101/
2020.03.03.20030593

Woelfel [11] R. Wölfel, et al., Virological assessment of hospitalized patients with COVID-2019, Nature, (2020).
https://doi.org/10.1038/s41586-020-2196-x

Verity [12] R. Verity, L.C. Odell, I. Dorigatti, et al., Estimates of the severity of COVID -19 disease, medRxiv,
2020. https://doi.org/10.1101/2020.03.09.20033357

Zou [13] L. Zou, et al., SARS-CoV-2 viral load in upper respiratory specimens of infected patients, New
England Journal of Medicine, 382(2020), 1177-1179. https://doi.org/10.1056/NEJMc2001737

12

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 10, 2020. ; https://doi.org/10.1101/2020.04.09.20058974doi: medRxiv preprint 

https://doi.org/10.1056/NEJMoa2002032
https://doi.org/10.1056/NEJMoa2002032
https://doi.org/10.1016/S1473-3099(20)30144-4
https://doi.org/10.3390/biology9030050
https://doi.org/10.3934/mbe.2020172
https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000180 
https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000180 
https://doi.org/10.1016/j.ijid.2020.03.020
https://doi.org/10.1016/j.ijid.2020.03.020
https://www.nature.com/articles/d41586-020-00822-x
https://www.nature.com/articles/d41586-020-00822-x
https://doi.org/10.1056/NEJMc2001468
https://doi.org/10.1101/2020.03.03.20030593
https://doi.org/10.1101/2020.03.03.20030593
 https://doi.org/10.1038/s41586-020-2196-x
https://doi.org/10.1101/2020.03.09.20033357 
https://doi.org/10.1056/NEJMc2001737
https://doi.org/10.1101/2020.04.09.20058974
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Summary
	Introduction
	Research in context
	Methods
	Results
	Discussion
	Supplementary

