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Abstract 

Background: A novel coronavirus strain, severe acute respiratory syndrome coronavirus 

2 (SARS-CoV-2), emerged in China in late 2019. The resulting disease, Coronavirus Disease 

2019 (COVID-2019), soon became a pandemic. This study aims to characterize key attributes 

of the epidemiology of this infection in China. 

Methods: An age-stratified mathematical model was constructed to describe the transmission 

dynamics and estimate the age-specific differences in the biological susceptibility to the 

infection, age-assortativeness in transmission mixing, case fatality rate (CFR), and transition 

in rate of infectious contacts (and reproduction number 0R ) following introduction of mass 

interventions. 

Results: The model estimated the infectious contact rate in early epidemic at 0.59 contacts 

per day (95% uncertainty interval (UI)=0.48-0.71). Relative to those 60-69 years of age, 

susceptibility to the infection was only 0.06 in those ≤19 years, 0.34 in 20-29 years, 0.57 in 

30-39 years, 0.69 in 40-49 years, 0.79 in 50-59 years, 0.94 in 70-79 years, and 0.88 in ≥80 

years. The assortativeness in transmission mixing by age was very limited at 0.004 (95% 

UI=0.002-0.008). Final CFR was 5.1% (95% UI=4.8-5.4%). 0R  rapidly declined from 2.1 

(95% UI=1.8-2.4) to 0.06 (95% UI=0.05-0.07) following onset of interventions.   

Conclusion: Age appears to be a principal factor in explaining the patterns of COVID-19 

transmission dynamics in China. The biological susceptibility to the infection seems limited 

among children, intermediate among young to mid-age adults, but high among those >50 

years of age. There was no evidence for differential contact mixing by age, consistent with 

most transmission occurring in households rather than in schools or workplaces.  

Keywords: SARS-CoV-2; COVID-19; coronavirus; epidemiology; China, mathematical 

model
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Introduction 

An outbreak of a novel coronavirus strain, severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2), was identified in Wuhan, Hubei province, China, in late December 2019 [1, 2]. 

The outbreak started with identification of four cases of severe pneumonia of unknown etiology, 

but with symptoms similar to those of Severe Acute Respiratory Syndrome (SARS) and the 

Middle East Respiratory Syndrome (MERS) [1, 3]. Initial cases were linked to exposure at the 

Huanan Seafood Market, but subsequent infections resulted from rapid community transmission 

[1-3]. Within about two months, over 80,000 cases and 3,000 deaths occurred across China [2, 

4], amid extreme preventive measures and outstanding healthcare mobilization [2, 3]. The 

resulting disease was named Coronavirus Disease 2019 (COVID-2019) by the World Health 

Organization (WHO) [5], and has been declared a pandemic [6] after affecting tens of countries 

and territories [4]. For simplicity, we will thereafter refer to this virus as “COVID-19”, though it 

is the name of the disease form, given its prevalent current use in the public sphere and to avoid 

confusion between SARS-CoV-2 and SARS-CoV. 

The aims of this study are to investigate and characterize key attributes of the epidemiology of 

COVID-19 in China including 1) age-specific differences in the biological susceptibility to 

infection, 2) age-assortativeness in infection transmission, and 3) transition in the rate of 

infectious contacts (and reproduction number) following the introduction of mass interventions.  

Materials and Methods 

Mathematical Model 

A deterministic compartmental mathematical model was constructed to describe COVID-19 

transmission dynamics in a given population, and was applied here to the population of China 
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(Figure S1 of Supplementary Information (SI)). The model was designed based on current 

understanding of the infection’s natural history and epidemiology. The model consists of a set of 

coupled nonlinear differential equations that stratify the population into compartments according 

to age group, infection status, infection stage, and disease stage. Analyses were performed in 

MATLAB R2019a [7]. 

The model stratified the population into nine age groups, each representing a ten-year age band 

except for the last category (0-9, 10-19, …, ≥80 years). Susceptible individuals in each age group 

are at risk of being exposed to the infection at varying hazard rates, which are age- and time- 

dependent, to capture the variability in the risk of exposure and the impact of public health 

interventions. Following a latency period, infected individuals are stratified to develop mild 

infection followed by recovery, or severe infection followed by severe disease then recovery, or 

critical infection followed by critical disease and either recovery or disease mortality.  

The model parameterized the variation in the rate of infectious contacts through a Woods-Saxon 

function [8-11] to characterize the transition after China’s robust public health response in terms 

of its scale or strength, smoothness or abruptness, duration, and the turning point. The model also 

incorporated an age mixing matrix that allows a range of contact mixing between individuals 

varying from fully assortative (mixing only with individuals in the same age group) to fully 

proportionate (mixing with individuals with no preferential bias for a specific age group). The 

latter was incorporated to capture any assortativeness in infection transmission mixing by age.  

Further details on model structure can be found in Section 1 of SI. 

Model Parameterization 
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The model was parameterized using current data on COVID-19 natural history and 

epidemiology. The duration of latent infection was set at 3.69 days based on an existing estimate 

[12] and based on a median incubation period across confirmed cases of 5.1 days [1], adjusted 

for the observed viral load among infected persons following exposure [13] and reported 

infection transmission prior to onset of symptoms [14]. The age-stratified proportions of infected 

individuals that will eventually progress to develop mild, severe, or critical infections were based 

on the observed distribution of cases across these infection stages in China [3, 15, 16]. The 

duration of infectiousness was assumed to last for 3.48 days based on an existing estimate [12] 

and based on the observed time to recovery in persons with mild infection [3, 12] and the 

observed viral load among infected persons [13, 14].  

Individuals with severe (or critical) infections develop severe (or critical) disease over a period 

of 28 days prior to recovery, as informed by the observed duration from onset of severe (or 

critical) disease to recovery [3]. Individuals with critical disease had the additional risk of 

disease mortality [17]. The disease mortality rate was fitted factoring the observed crude case 

fatality rate in each age group in China as of February 11, 2020 [2, 17].  

The population size, demographic structure (age distribution), and life expectancy of the 

population of China, as of 2020, were obtained from the United Nations World Population 

Prospects database [18]. 

Further details on model parameters, values, and justifications can be found in Tables S1 and S2 

and Section 2 of SI. 

Model Fitting 
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The model was fitted to the following sources of data: 1) time series of diagnosed COVID-19 

cases and of the cumulative number of diagnosed COVID-19 cases and of recovered individuals 

[3], 2) time series of reported COVID-19 deaths and of the cumulative number of COVID-19 

deaths [3], and 3) relative attack rate by age, that is the proportion of the population that has 

already been infected by February 11, 2020 stratified by age [17]. China’s reported cases and 

deaths were adjusted to reflect the change in coronavirus case definition to include, in addition to 

the laboratory-confirmed cases, those who are clinically-diagnosed [19, 20] (Section 2 of SI).  

Model fitting was used to estimate the infectious contact rate, age-stratified susceptibility to the 

infection, degree of assortativeness in the age group mixing, overall attack rate, overall disease 

mortality rate, time delay between onset of actual infection and case notification, and between 

actual death and reported death, and transition in the basic reproduction number 0R . A nonlinear 

least-square data fitting method, based on the Nelder-Mead simplex algorithm, was used to 

minimize the sum of squares between data points and model predictions [21]. 

Uncertainty Analyses 

A multivariable uncertainty analysis was conducted to determine the range of uncertainty around 

model predictions. Five-hundred simulation runs were performed, applying at each run, Latin 

Hypercube sampling from a multidimensional distribution of the model parameters, where 

parameter values are selected from ranges specified by assuming ±30% uncertainty around 

parameters’ point estimates. The model was then refitted to the input data, and the resulting 

distributions of estimates, across all 500 runs, were used to calculate the model predictions’ 

means and 95% uncertainty intervals (UIs). 

Results 
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The model fitted the different COVID-19 empirical data such as time-series of diagnosed cases 

(Figure 1A), time-series of reported deaths (Figure 1B), and age-stratified attack rate as of 

February 11, 2020 (Figure 1C). The model estimated the epidemic emergence at ~49 days (95% 

UI: 48-50) prior to January 17, 2020, that is towards the end of November, 2019. At the 

beginning of the epidemic, the predicted infectious contact rate was 0.59 contacts per day (95% 

UI: 0.48-0.71; Figure S2D of SI). The predicted (average) time delay was 5.4 days (95% UI: 5.2-

5.6) between onset of actual infection and reported infection, and 1.6 days (95% UI: 1.5-1.7) 

between actual death and reported death. 

Figure 2 shows the predicted time evolution of COVID-19 crude case fatality rate (CFR). In the 

early phase of the epidemic, the crude CFR increased rapidly following the rise in incidence, but 

plateaued shortly after (towards the end of the first month) and remained so till incidence 

reached its peak. When incidence started declining (~90 days), the crude CFR grew rapidly, 

eventually saturating at ~150 days. The true (that is final) CFR in the total population, estimated 

through the 500 simulation runs, was 5.1% (95% UI=4.8-5.4%; Figure S2A of SI). 

Figure 3 features the estimated age-stratified susceptibility profile to COVID-19 infection. 

Susceptibility was lowest in individuals 0-9 years of age and highest in the 60-69 years age 

group. Relative to those 60-69 years of age, susceptibility to the infection was only 0.05 in those 

0-9 years of age and 0.06 in those 10-19 years of age, but 0.34 in those 20-29 years of age, 0.57 

in those 30-39 years of age, 0.69 in those 40-49 years of age, 0.79 in those 50-59 years of age, 

0.94 in those 70-79 years of age, and 0.88 in those ≥80 years of age. The uncertainty analysis 

affirmed these results with narrow uncertainty intervals (Figure S2B of SI).  

Figure 4 illustrates the predicted degree of assortativeness in the age group mixing across the 500 

simulation runs, which was estimated at 0.004 (95% UI=0.002-0.008)—there was virtually no 
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assortativeness in infection transmission mixing by age. 

Figure 5 and Figure S2C of SI show the time evolution of 0R , and its predicted mean and 95% 

UI across the 500 uncertainty runs, respectively. In the early phase of the epidemic, 0R  was 

estimated at 2.1 (95% UI: 1.8-2.4), but rapidly declined to 0.06 (95% UI: 0.05-0.07) following 

the onset of interventions. The sharp transition duration for 0R  was estimated at 11.5 days (95% 

UI: 9.5-13.0).  

Discussion 

Several key attributes of the epidemiology of COVID-19 have been investigated and estimated. 

A finding is that the biological susceptibility to the infection appears to vary by age (Figure 3). 

Susceptibility to COVID-19 was substantially higher among those >50 years of age compared to 

those in the younger age groups. For instance, compared to those 60-69 years of age, those ≤19 

years of age, 20-29 years of age, and 30-39 years of age were, respectively, 94%, 68%, and 43% 

less susceptible to being infected. Notably, this age-dependence in the susceptibility to the 

infection could not be explained by differences in mixing between age groups, as the results 

indicated limited assortativeness in infection transmission mixing by age (Figure 4). 

These findings support an important role for age in the epidemiology of this infection and affirm 

other studies suggesting lower susceptibility to the infection at younger age [22, 23]. 

Remarkably, the observed attack rate pattern for COVID-19 by age (Figure 1C) is the inverse (or 

better complement) of the age-specific cumulative incidence pattern of the 2009 influenza A 

(H1N1) pandemic (H1N1pdm) infection (Figure S3 of SI) [24]. This may suggest that a potential 

protective factor against COVID-19 acquisition (or rapid clearance) at young age could be prior 

recent exposure (cross immunity) to other viruses, particularly other cold coronaviruses [25]. An 
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alternative hypothesis has suggested immune imprinting to a similar virus among adults [22].  

This being said, the underlying immunological and/or epidemiological factors driving this age 

effect remain to be investigated with several alternative mechanisms potentially explaining this 

pattern. For instance, children and young adults may have subclinical infection with low viral 

load and rapid clearance with limited transmission potential to others. Of note that the contact 

tracing data from China suggest that children do not appear to play a significant role in the 

transmission [3, 26, 27]. 

The study predicted that the CFR will reach about 5% by the end of the outbreak in China 

(Figure 2), that is by the time all currently active cases would have been resolved, either through 

recovery or death. Our results indicated that the crude CFR observed in the first three months of 

the outbreak underestimated the true CFR by about 50%. This is because most infections were 

still recent infections and have not yet progressed to critical disease or death—death is a late 

outcome that was estimated to occur 2-8 weeks after onset of symptoms [3]. 

Another finding of this study is the limited assortativeness in infection transmission mixing by 

age (Figure 4), that is equal mixing between the different age groups. This finding is possibly 

explained by the fact that most transmissions occurred in the context of households rather than of 

schools or workplaces, as supported by existing evidence [3]. Indeed, analysis of 344 clusters in 

Guangdong and Sichuan provinces indicated that 78-85% of clusters pertained to families [3]. 

This finding is also supported by analysis of the contacts stratified by age in China [23]. It is, 

however, important to highlight that while this finding may apply to the Hubei outbreak (given 

the lockdown measures that may have limited all other transmission pathways), it may not 

necessarily be generalizable to other settings.     
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The present study affirmed the impact and success of the drastic preventive measures in 

curtailing infection transmission. 0R  was sharply reduced by 97% over a short duration (Figure 

5). At the beginning of the epidemic, on average, each infected person had 0.6 infectious contacts 

per day, that is each person passed the infection to 0.6 persons per day (Figure S2D of SI). The 

rate of infectious contacts can be expressed roughly as c p× , where c  is the number of “social” 

contacts conducive to COVID-19 transmission per day and p  is the transmission probability of 

the virus in a single contact. While p  is unknown, it is possibly in the order of 1-5%, as 

suggested by contact tracing data from China—1-5% of contacts were subsequently laboratory-

confirmed as COVID-19 cases [3]. This implies that, on average, each infected person had 

somewhere between 10-60 contacts per day at the beginning of the epidemic, but very few 

contacts after the lockdown. The latter further affirms the role of the lockdown in severely 

cutting the contact rate, making sustainable infection transmission very difficult.      

This study has limitations. Model projections are contingent on the quality and 

representativeness of the input data. For instance, we assumed infection levels to be as officially 

documented, but evidence suggested that many infections may have been undocumented, 

particularly in the early phase of the outbreak [12]. The natural history of this infection is not yet 

firmly established, and the case management protocols have evolved over time [19, 20]. 

Mortality data seem to suggest that the standard of care improved over time especially in recent 

weeks when the healthcare sector was no longer overwhelmed with a large case load. We 

assumed a time-independent risk of disease mortality, and therefore we may have overestimated 

the true (final) CFR. We used a deterministic compartmental model, but this type of model may 

not be representative of the stochastic transmission dynamics when the number of infections is 

small, such as in the very early phase of the epidemic, thereby adding uncertainty to our estimate 
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for the day of outbreak emergence. Despite these limitations, our parsimonious model, tailored to 

the nature of available data, was able to reproduce the COVID-19 epidemic as observed in 

China, and provided insights about infection transmission and disease progression in the 

population.   

Conclusion 

Age appears to be a principal factor in explaining the patterns of COVID-19 transmission 

dynamics in China. The biological susceptibility to the infection seems limited among children, 

intermediate among young adults and those mid-age, but high among those >50 years of age. 

There was no evidence for considerable differential contact mixing by age, consistent with most 

transmission occurring in households rather than in schools or workplaces. Further mathematical 

modeling research is needed to understand the COVID-19 epidemics in other countries, and to 

draw further inferences about the global epidemiology of this infection. 
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Figure 1. Model fitting of COVID-19 empirical data. Model fits to (A) the time-series of 
diagnosed cases, (B) the time-series of reported deaths, and (C) the age-stratified attack rate as of 
February 11, 2020. .
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Figure 2. Model predictions for the time evolution of the COVID-19 crude case fatality rate.
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Figure 3. Model predictions for the age-stratified susceptibility profile to COVID-19 infection, 
relative to those 60-69 years of age. . …  

..   
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Figure 4. Model predictions for the degree of assortativeness in infection transmission mixing by 
age across the 500 uncertainty analysis simulation runs. 
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Figure 5. Model predictions for the time evolution of the basic reproduction number 0R  before 
and after onset of the interventions in China. 
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1. Mathematical model 

We developed a deterministic compartmental mathematical model to describe the transmission 

dynamics and disease progression of the severe acute respiratory syndrome coronavirus 

2 (SARS-CoV-2) in a population (Figure S1). For simplicity, we will thereafter refer to this virus 

as COVID-19, given prevalent current use. This model stratifies the population into 

compartments according to age group (0-9, 10-19, 20-29,…, ≥80 years), and infection status 

(uninfected, infected), infection stage (mild, severe, critical), and disease stage (severe, critical). 

Figure S1. Schematic diagram describing the basic structure of the COVID-19 model. 
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1.1.Model equations and description 

The model was expressed in terms of a system of coupled nonlinear differential equations for 

each age group. The index a  denotes the different age cohorts ( )1,2,...,9a =  in the population, 

with each age group representing a ten-year age band apart from the last one (those ≥80 years of 

age). The population size and demographic structure were set by China’s demography as 

provided by the United Nations World Population Prospects database [1]. However, the 

population size and distribution across age groups were fixed at 2020 levels, to disentangle the 

epidemiologic and demographic effects—a valid assumption given that the current time scale of 

the epidemic is only few months. All COVID-19 mortality was assumed to occur in individuals 

that are in the critical disease stage, as informed by the China outbreak data [2].  

The following set of equations was used to describe the epidemic dynamics in the first age 

group: 

Population aged 0-9 years:  

( ) ( )( )(1) 1 1 (1)λ µ ξ= − + +
dS S

dt
 

( ) ( ) ( )( )(1) 1 1 1 (1)dE S E
dt

λ δ µ ξ= − + +   

( ) ( )( )(1) (1) 1 1 (1)M
M M M

dI f E I
dt

δ η µ ξ= − + +   

( ) ( )( )(1) (1) 1 1 (1)S
S DS S

dI f E I
dt

δ η µ ξ= − + +  

( ) ( )( )(1) (1) 1 1 (1)C
C DC C

dI f E I
dt

δ η µ ξ= − + +  

( ) ( )( )(1) 1 1 (1)S
DS S S S

dD I D
dt

η η µ ξ= − + +  

( ) ( ) ( )( )(1) 1 1 1 (1)C
DC C C C

dD I D
dt

η η µ ξ α= − + + +  

( )( )(1) (1) (1) (1) 1 (1)M M S S C C
dR I D D R

dt
η η η µ ξ= + + − +   
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For subsequent age groups, the following set of equations was used: 

Populations aged 10+ years:  

( ) ( ) ( )( )( ) 1 ( 1) ( )dS a a S a a a S a
dt

ξ λ µ ξ= − − − + +   

( ) ( ) ( ) ( )( )( ) 1 ( 1) ( )dE a a E a a S a a E a
dt

ξ λ δ µ ξ= − − + − + +   

( ) ( ) ( )( )( ) 1 ( 1) ( ) ( )M
M M M M

dI a a I a f a E a a I a
dt

ξ δ η µ ξ= − − + − + +   

( ) ( ) ( )( )( ) 1 ( 1) ( ) ( )S
S S DS S

dI a a I a f a E a a I a
dt

ξ δ η µ ξ= − − + − + +  

( ) ( ) ( )( )( ) 1 ( 1) ( ) ( )C
C C DC C

dI a a I a f a E a a I a
dt

ξ δ η µ ξ= − − + − + +  

( ) ( ) ( )( )( ) 1 ( 1) ( )S
S DS S S S

dD a a D a I a a D a
dt

ξ η η µ ξ= − − + − + +  

( ) ( ) ( ) ( )( )( ) 1 ( 1) ( )C
C DC C C C

dD a a D a I a a a D a
dt

ξ η η µ ξ α= − − + − + + +  

( ) ( )( )( ) 1 ( 1) ( ) ( ) ( ) ( )M M S S C C
dR a a R a I a D a D a a R a

dt
ξ η η η µ ξ= − − + + + − +   

The definitions of population variables and symbols used in the equations are listed in Table S1. 

Table S1. Definitions of population variables and symbols used in the model. 
Symbol Definition 

( )S a  Susceptible population 

( )E a  Latently infected population 

( )MI a  Population with mild infection 

( )SI a  Population with severe infection 

( )CI a  Population with critical infection 

( )SD a  Population with severe disease 

( )CD a  Population with critical disease 

( )R a  Recovered population 
N  Total population size 

agen   Number of age groups 

( )aξ  Transition rate from one age group to the next age group 

( )aσ  Susceptibility profile to the infection in each age group 

1/ δ  Duration of latent infection 
1/ Mη  Duration of mild infection infectiousness 

1/ DSη  Duration of severe infection infectiousness before isolation and/or hospitalization  

1 / Sη  Duration of severe disease following onset of severe disease  
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1/ DCη  Duration of critical infection infectiousness before isolation and/or hospitalization  

1/ Cη  Duration of critical disease following onset of critical disease  

1/ µ  Natural death rate 

( )CFR a  Relative case fatality rate in each age group 

( )aα  Disease mortality rate in each age group  

( )Mf a  Proportion of infections that will progress to be mild or asymptomatic infections  

( )Sf a  Proportion of infections that will progress to be severe infections 

( )Cf a  Proportion of infections that will progress to be critical infections 

The force of infection (hazard rate of infection) experienced by each susceptible population ( )S a  

is given by 

( ) ( ) ( ) [ ],
1

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

agen
M S C

a a
a M S C S C

I a I a I aa t a
S a E a I a I a I a D a D a R a

λ β σ ′
′=

′ ′ ′+ +
=

′ ′ ′ ′ ′ ′ ′ ′+ + + + + + +∑H . 

Here, ( )tβ  is the rate of infectious contacts parameterized to capture the effect of the public 

health interventions implemented in China through a Woods-Saxon function [3-6]. This function 

is mathematically designed to describe and characterize transitions in terms of their scale or 

strength, smoothness or abruptness, thickness (duration), and the turning point [3, 4]:  

( )0( ) 1
1 exp Turning Duration

Zt a
t t b

β
 
 = × +
  + −  

, 

where 0a , Z , Turningt , Durationb  are the fitting parameters used to describe the reduction in the rate 

of infectious contacts. 

The mixing among the different age groups is dictated by the mixing matrix ,a a′H . This matrix 

provides the probability that an individual in the a  age group will mix with an individual in the

a′  age group. The mixing matrix is given by  
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[ ]
, ,

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )(1 )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

age

M S C S C
a a Age a a Age n

M S C S C
a

S a E a I a I a I a D a D a R ae e
S a E a I a I a I a D a D a R a

δ′ ′

′′=

′ ′ ′ ′ ′ ′ ′ ′+ + + + + + +
= + −

′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′+ + + + + + +∑
H  

Here, ,a aδ ′  is the identity matrix. [ ]0,1Agee ∈  measures the degree of assortativeness in the 

mixing. At the extreme 0Agee = , the mixing is fully proportional. Meanwhile, at the other 

extreme, 1Agee = , the mixing is fully assortative, that is individuals mix only with members in 

their own age group. 

The disease mortality rate ( )aα  was parametrized through an overall fitting factor multiplied by 

the observed crude age-stratified case fatality rate. 
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2. Parameter values 

The input parameters of the model were chosen based on current empirical data for COVID-19 

natural history and epidemiology. The parameter values are listed in Table S2. 

Table S2. Model assumptions in terms of parameter values. 
Parameter Symbol Value Justification 
Duration of latent infection 
 

1/ δ  3.69 days Based on existing estimate [7] and based on a 
median incubation period of 5.1 days [8] adjusted 
by observed viral load among infected persons 
[9] and reported transmission before onset of 
symptoms [10] 

Duration of infectiousness 
 

1/ Mη ;
1 / DSη ; 
1/ DCη  

3.48 days Based on existing estimate [7] and based on 
observed time to recovery among persons with 
mild infection [7, 11] and observed viral load in 
infected persons [9, 10]

 
Duration of severe disease 
following onset of severe disease  

1 / Sη  28 days Observed duration from onset of severe disease to 
recovery [11] 

Duration of hospitalization for 
critical infection 

1/ Cη  28 days Observed duration from onset of critical disease 
to recovery [11] 

Life expectancy in China 1/ µ  77.47 years United Nations World Population Prospects 
database [1] 

Crude case fatality rate in each 
age group  

( )CFR a   Observed crude case fatality rate based on China 
data

 
as of February 11, 2020 [2, 12] 

  Age 0-9 years  0%  
  Age 10-39 years  0.2%  
  Age 40-49 years  0.4%  
  Age 50-59 years  1.3%  
  Age 60-69 years  3.6%  
  Age 70-79 years  8.0%  
  Age 80+ years  21.9%  
Proportion of infections that will 
progress to be mild or 
asymptomatic infections  

( )Mf a   Observed proportion of infections that eventually 
develop mild or asymptomatic in China [11, 13, 
14] 

  Age 0-9 years  88.9%  
  Age 10-49 years  88.0%  
  Age 50-59 years  82.5%  
  Age 60+ years  71.2%  
Proportion of infections that will 
progress to be severe infections 

( )Sf a   Observed proportion of infections that eventually 
develop severe disease in China [11, 13, 14] 

  Age 0-9 years  11.1%  
  Age 10-49 years  9.9%  
  Age 50-59 years  10.3%  
  Age 60+ years  7.8%  
Proportion of infections that will 
progress to be critical infections 

( )Cf a   Observed proportion of infections that eventually 
develop critical disease in China [11, 13, 14] 

  Age 0-9 years  0.0%  
  Age 10-49 years  2.2%  
  Age 50-59 years  7.2%  
  Age 60+ years  20.9%  
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3. Adjustment for the outlying values for the number of cases and deaths reported on 

February 13, 2020 

There was a change in coronavirus case definition in China on February 13, 2020, to include, in 

addition to the laboratory-confirmed cases, those who are clinically-diagnosed [15, 16]. This led 

to a very sharp one-day increase in the reported numbers of infections and deaths, respectively 

[17]. These “outlying observations” included the “excess” cases not accounted for in previous 

days.  

To correct for this data artifact, we distributed the number of cases reported on February 13, 

2020 over a time duration including this date and previous dates. This was done through the 

condition: 

1
Number of reported cases in Feb 13

daysn

i
M

i=

∆
− = ∑  

Here, i∆  is the increment added to the reported number of cases in each i -day starting with 

February 13 and moving backward, M + ∆  is the adjusted number of cases in February 13, M  

and daysn  are fitting parameters, and ∆  calculated using the above constraint. Model fitting (and 

uncertainty analysis) yielded the following estimates: M  = 1,187 (95% uncertainty interval (UI): 

970-1,453) and daysn  = 25 (95% UI: 22-29) days. 

Similarly, we distributed the number of deaths reported on February 13, 2020 over a time 

duration including this date and previous dates. This was done through the condition: 

1
Number of reported deaths in Feb 13

daysm

i
K

i=

Ψ
− = ∑  
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Here, iΨ  is the increment added to the reported number of cases in each i -day starting with 

February 13 and moving backward, K +Ψ  is the adjusted number of cases in February 13, K  

and daysm  are fitting parameters, and Ψ  calculated using the above constraint. Model fitting (and 

uncertainty analysis) yielded the following estimates: K  = 109 (95% UI: 104-114) and daysm  = 

16 (95% UI: 13-20) days. 
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Figure S2. Uncertainty analysis estimating the range of uncertainty around key model 
predictions. Results of 500 uncertainty runs showing (A) the time-dependent crude case fatality 
rate in the total population, (B) the age-dependence of the relative susceptibility to the infection, 
(C) the time-dependent basic reproduction number, and (D) the time-dependent rate of infectious 
contacts. 
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Figure S3. Age-specific cumulative incidence of the 2009 influenza A (H1N1) pandemic 
(H1N1pdm) virus [18]. 
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