The immune profile of the gut microbiome in allogeneic hematopoietic stem cell transplantation ============================================================================================== * Marcel A. de Leeuw * Manuel X. Duval ## Abstract **Background** Acute Graft-versus-Host Disease (aGvHD) is the main complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Gut microbiota composition has been associated with aGvHD, however, the specific composition of the intestinal ecosystem involved in the pathologic process at the time of aGvHD onset is not yet fully known. **Methods** A relevant series of allo-HSCT microbiome data sets were combined and reanalyzed, with focus on species level changes in the microbiota, using state-of-the-art and in part proprietary 16S analysis routines. **Results** Immunosuppressive conditioning was found to impact gut microbiome (GM) composition. GM composition was found highly correlated with aGvHD status at onset (R2=0.4). The species diversity, average biological safety level (BSL), gram staining balance and the strict anaerobe proportion at aGvHD onset indicate that a moderate level of gram positive strict anaerobe cleansing with antibiotics reduces the risk of aGvHD. Butyrate producers were found associated with non-GvHD controls, as well as the probiotic species and IL-10 inducer *Bifidobacterium longum*. Among species associated with mortality and aGvHD, we found Th1 and Th17 eliciting bacteria. We formulated a probiotic composition putatively competing with mortality and aGvHD species, from correlation analysis in a large superset of gut samples (n=17,800) from clinical- and crowd-sourced studies. **Implications** To restore the Treg/Th17 balance, probiotic supplementation with *B. longum* eventually combined with *Bacillus clausii*, prebiotics and vitamin B9 is a treatment option. Simultaneous use of vancomycin, metronidazole, ceftazidime and rifaximin for GM control is a possibility, because of antibiotic resistance of *B. longum*. ## Introduction Allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT) is a curative option for many patients with high-risk hematopoietic malignancies and hematological disorders. The success of allo-HSCT can be hampered by a process in which donor-derived T cells recognize host healthy tissue as non-self, causing an immune-mediated complication known as acute Graft-versus-Host Disease (aGvHD), predictive for morbidity and mortality of the patients. Even among transplants sourced from HLA-matched siblings, aGvHD occurs in 40% of recipients and reaches 50-70% with unrelated donor HSCT, yet less than half of the patients who develop aGVHD experience a response [Magenau et al. 2016]. Bacterial LPS has been proposed as a triggering factor for aGvHD, based on murine models [Hill et al. 1997] In patients undergoing allo-HSCT, antibiotics are routinely prescribed to reduce the risk of opportunistic infections. Antibiotics can profoundly impact gut microbiome (GM) composition and it has been shown broad spectrum antibiotics used after allo-HSCT increase the risk of aGvHD in mice and humans [Shono et al. 2016, Weber et al. 2019]. On the other hand, gut decontamination (GD), i.e. the complete suppression of the GM, has been shown to prevent aGvHD following allo-HSCT, but is di*ffi*cult to achieve [Beelen et al. 1999, Vossen et al. 2014]. As a matter of fact, no standardized protocol for prophylactic and peri-transplant antibiotic treatment has been established as standard of care across transplantation centers. It has been reported that autologous fecal micro-biota transfer (auto-FMT) can in some instances restore the baseline GM after antibiotics courses applied during the allo-HSCT [Taur et al. 2018]. Of note, this baseline GM is potentially already impacted by chemotherapy [Montassier et al. 2014]. Hence some centers practice probiotics and 3rd party FMT reconditioning of GM once the antibiotics treatment has been ended [Vossen et al. 2014]. A lower GM diversity index at the time of engraftment (neutrophil recovery) has been associated in multiple studies with increased incidence of intestinal aGvHD disease and transplant related mortality (TRM) [Pamer et al. 2014, Taur et al. 2014, Golob et al. 2017, Han et al. 2018, Galloway-Peña et al. 2019]. *Enterococci* have been proposed as a landmark for aGvHD whether induced by antibiotics or not [Holler et al. 2014], whereas intestinal *Blautia* has been found associated with reduced death from aGvHD [Jenq et al. 2015]. It has also been reported that at the time of engraftment, decreased *Lachnospiraceae* and *Ruminococcaceae* and increased *Enterobacteriaceae* correlate with aGvHD development and a lowered Treg/Th17 ratio [Han et al. 2018]. We combined a series of relevant microbiome studies, available in the form of raw 16S data, in order to increase statistical power and investigate detailed baseline and aGvHD onset microbiome composition in relation to therapeutic outcome. ## Materials & Methods The materials summarized in Table 1 have been made available in the form of raw 16S data sets in the short read archive. Five of the six collected datasets have been made available as part of scientific publication: PRJEB23820 [Biagi et al. 2019], PRJEB16057 [Liu et al. 2017], PRJNA528754 [Galloway-Peña et al. 2019], PRJNA592853 [D’Amico et al. 2019] and PRJNA491657 [Taur et al. 2018]. View this table: [Table 1:](http://medrxiv.org/content/early/2020/04/23/2020.04.08.20058198/T1) Table 1: Prospective data sets used in the study. N: number of patients, n: number of samples, 16S: variable regions covered. ### Data analysis Amplicon Sequence Variants (ASVs) were generated with the R Bioconductor package dada2, version 1.12.1 with recommended parameters [McMurdie, Paul J et al. 2016], involving quality trimming, discarding of sequences with N’s, assembly of forward and reverse sequences and contamination and chimera removal. Further analysis involved multiple alignment with mafft, version 6 [Katoh et al. 2009] and approximately-maximum-likelihood phylogenetic tree generation with FastTreeMP, version 2 [Price, Morgan N et al. 2010]. Taxonomic classification of ASVs was performed by cur|sor, an in-house program using random forest based supervised learning on the Ribosomal Database Project (RDP) release 11.5. Resulting classifications are available from [https://github.com/GeneCreek/GvHD-manuscript](https://github.com/GeneCreek/GvHD-manuscript) in the form of R data objects. Random forest survival analysis was carried out with the R package ranger, version 0.12.2. aGvDH status regression analysis, with relative abundance of taxa resolved at the species level as independent variables, was performed using the R package relaimpo [Groemping, Ulrike [2006]. ## Results ### Overall GM composition evolution across allo-HSCT Data set SRP162022 comprises patients undergoing allo-HSCT (n=736) of which 14 received an auto-FMT 49 days after stem cell infusion, Fig. 1. Recovery of Shannon species diversity seems to be boosted through auto-FMT, whereas strict anaerobes were not recovered. The antimicrobial resistance of the microbiome decreased, as reflected by the average biological safety level (BSL), which means that a less pathogenic GM was recovered through auto-FMT. ![Figure 1:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/04/23/2020.04.08.20058198/F1.medium.gif) [Figure 1:](http://medrxiv.org/content/early/2020/04/23/2020.04.08.20058198/F1) Figure 1: GM composition evolution across allo-HSCT. Data set SRP162022, 736 patients receiving stem cell infusion day 0. 14 patients (red) received an auto-FMT day 49. BSL: biological safety level. ### Influence of conditioning on the GM Dataset ERP017899 contains immunosuppressive conditioning intensity specification and baseline GM samples of 41 patients who underwent allo-HSCT. The conditioning was qualified as low, intermediate or high with few cases of high conditioning. We regrouped the intermediate level with the high level and tested various GM composition covariates comparing the two regimes. The Shannon species richness and the strict anaerobe proportion reached significance, Fig. 2. ![Figure 2:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/04/23/2020.04.08.20058198/F2.medium.gif) [Figure 2:](http://medrxiv.org/content/early/2020/04/23/2020.04.08.20058198/F2) Figure 2: Baseline GM composition and conditioning level. Data set ERP017899, baseline samples of 41 patients who underwent allo-HSCT. Numbers reflect Wilcoxon signed rank test p-values. Furthermore, the use of the immunosuppressant cyclosporine, which in the dataset is mutually exclusive with the use of tacrolimus, seems to favor the growth of gram-positive bacteria, Fig. 3. ![Figure 3:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/04/23/2020.04.08.20058198/F3.medium.gif) [Figure 3:](http://medrxiv.org/content/early/2020/04/23/2020.04.08.20058198/F3) Figure 3: GM composition and the use of cyclosporine. Data set ERP017899, baseline samples of 41 patients who underwent allo-HSCT. Numbers reflect Wilcoxon signed rank test p-values. ### Baseline GM composition and survival Dataset ERP017899 contains baseline GMs and survival information for up to two years of 41 patients who underwent allo-HSCT. In brief, we fitted random survival forests (RSF) using log scaled relative abundances of taxa resolved at the species level as independent variables. Variable importance and associated p-values were estimated using permutation. We retained p<0.05 taxa as selected variables and the experience was repeated 50 times. Final models were built using 20 fold cross validation and a subset of taxa selected at least 10 times. Model performance was assessed using the integrated Brier score (IBS) and the best performing model was retained. This model used 11 taxa, Fig. 4 and had an IBS of 0.176. All selected taxa had higher average relative abundance at baseline in patients who subsequently deceased during the two year censoring time span. Of note is the position of the probiotic species *Bifidobacterium bifidum*. ![Figure 4:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/04/23/2020.04.08.20058198/F4.medium.gif) [Figure 4:](http://medrxiv.org/content/early/2020/04/23/2020.04.08.20058198/F4) Figure 4: Variable importance estimated by the RSF. All selected species are associated with mortality. Data set ERP017899, 41 patients who underwent allo-HSCT, with right-censoring of survival up to 2 years. ### aGvHD onset and GM composition We combined data sets SRP243841, ERP105598 and SRP234378 into a 68 patients and 80 samples dataset comprising samples taken at aGvDH onset or beyond with matched controls. There is a significant difference in Shannon species diversity between the two patient groups, Fig. 5. Compositional differences could also be documented at the species level. Using linear regression and relative importance analysis, we found that 12 taxa plus added Shannon diversity index accounted for 39.8% (adjusted R2) of the aGvHG/non-aGvHD variability, Fig. 6. The linear model performs on the dataset with a receiver operating characteristic (ROC) area under the curve (AUC) of 0.915, supplemental Fig. S1. ![Figure 5:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/04/23/2020.04.08.20058198/F5.medium.gif) [Figure 5:](http://medrxiv.org/content/early/2020/04/23/2020.04.08.20058198/F5) Figure 5: Shannon species diversity and aGvHD. Combined datasets SRP243841, ERP105598 and SRP234378 - 68 patients and 80 samples. Numbers reflect Wilcoxon signed rank test p-values. ![Figure 6:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/04/23/2020.04.08.20058198/F6.medium.gif) [Figure 6:](http://medrxiv.org/content/early/2020/04/23/2020.04.08.20058198/F6) Figure 6: Relative importance of regressors explaining the aGvHD status. Combined datasets SRP243841, ERP105598 and SRP234378 - 68 patients and 80 samples. Paradoxically, although not reaching significance, the strict anaerobe proportion of non-GvHD controls seems even lower at the time of aGvHD onset as compared to the baseline, Fig. S2. Non-GvHD controls have a significantly lower proportion of gram positive bacteria as compared to baseline, Fig. S3. Another remarkable feature of the aGvHD control GM is the higher average biological safety level (BSL) which reaches significance at aGvHD onset, Fig. S4. ### In silico screening of the allo-HSCT GM To investigate if qualified presumption of safety (QPS), other than *Bifidobacterium longum* are of therapeutic interest, we computed pairwise *χ*2 tests for all QPS with mortality and aGvHD case associated species reported above, Fig. 7. We used over 17,800 samples from several tens of clinical and crowd-sourced studies as the basis for the test. Supplemental Fig. S5 provides the same analysis for control associated species and Fig. S6 provides pairwise *χ*2 tests results between QPS species, the former to assess respect of control associated species and the latter to assess compatibility of QPS species for combination therapy. *Bifidobacterium longum* and *Bacillus clausii* both are in exclusion with a number of case-associated species and are found in mutual inclusion (Fig. S6), hence we predict the species are compatible and can be used in a combination therapy. ![Figure 7:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/04/23/2020.04.08.20058198/F7.medium.gif) [Figure 7:](http://medrxiv.org/content/early/2020/04/23/2020.04.08.20058198/F7) Figure 7: Co-exclusion by and co-occurrence with QPS species. Putative inhibition is in shades of red, potential synergy in shades of green. White reflect neutrality or too little combined prevalence to make a call. Genera are abbreviated as follows: **Bcl**.: *Bacillus*, **Bf**.: *Bifidobacterium*, **Gb**.: *Geobacillus*, **Lcn**.: *Leuconostic*, **Lctb**.: *Lactobacillus*, **Lctc**.: *Lactococcus*, **Pd**.: *Pediococcus*, **S**.: *Streptococcus*. ## Discussion ### Metabolites and aGvHD It has been shown in a mouse model that indoles derived from intestinal microbiota act via type I interferon signaling to limit GvHD [Swimm et al. 2018]. The relation between indole and GvHD has been established in humans as well, through the quantification of an indole derivative, 3-indoxyl sulfate (3-IS), in urine [Weber et al. 2015]. Folate (vitamin B9) is known to enhance the survival of Foxp3+ Threg cells, thus diminishing intestinal inflammation through stabilization of the intestinal Threg population [Kinoshita et al. 2012]. Bifidobacteria from human origin are folate producers [D’Aimmo et al. 2012, Sugahara et al. 2015]. Furthermore, GM production of butyrate benefits intestinal barrier function and decreases GvHD in a mouse model [Mathewson et al. 2016]. Notwithstanding this, it has been shown once aGvHD of the gut has occurred, butyrogens may impair recovery and lead to chronic GvHD [Golob et al. 2019]. ### Allo-HSCT conditioning and the GM Our analysis of overall GM evolution across allo-HSCT shows that at baseline, i.e. after immunosuppressive conditioning, GM composition is already significantly altered, with notably decrease of strict anaerobes among which most butyrate producers are found. At the same time, gram positive bacteria seem to be boosted by the immuno-suppressive conditioning. Cyclosporine for instance seems to boost gram positive species, whereas its alternative Tacrolimus does not. ### Auto-FMT and allo-HSCT If auto-FMT is to be practiced, the question arises when to source the samples. Sourcing after the initiation of immunosuppressive conditioning would avoid restoring butyrate producing species, which could be the safest option. Auto-FMT from our results not only restores a certain level of species diversity but also lowers the relative abundance of pathobionts as indicated by the average biological safety level. ### antibiotics use and the GM Three features in our analysis point to a different use of oral antibiotics in aGvHD controls as compared to aGvHD cases: the lower proportion of gram positive and strict anaerobes and the higher proportion of BSL 2 organisms, all at aGvHD onset. This tends to credit the thesis that antibiotic gram positive anaerobe cleansing lowers the risk of aGvHD. On the other hand, higher species diversity is associated with aGvHD controls, which does not plead for a high overall GM cleansing level. ### T cells in aGvHD Type 1 or Tc1/Th1 maturation is recognized as the dominant pattern in aGvHD and is linked to severe GI tract pathology. Th2 differentiation causes predominantly pathology in pulmonary, hepatic, and cutaneous tissues [Henden and Hill 2015]. Also, Treg/Th17 decrease has been associated with aGvHD and proposed as a biomarker [Liu et al. 2013, Han et al. 2018]. Regulatory T-cell therapy for GvHD has been suggested [Heinrichs et al. 2016, Elias and Rudensky 2019]. ### Mortality associated species The H2S producer and oral commensal *Atopobium parvulum* is the top mortality associated species. It has been found involved in oral infections [Downes et al. 2001]. Importantly, it is a pre-dominant member of the adherent microbiome of pediatric IBD patients, associated with disease severity and promotes colitis in Il10-/- mice whilst eliciting a IL-17 response [Muehlbauer et al. 2013]. The probiotic bacterium *Bifidobacterium bifidum* induces Th17 differentiation [López et al. 2011]. Likewise, *Prevotella* species are associated with a Th17 response [Larsen 2017]. *Prevotella melaninogenica* in particular, elicits a IL-17B response through outer membrane vesicles [Yang et al. 2019]. *Clostridium aldenense* has been associated with a cytokine IL-7 response [Luna et al. 2017], i.e. generic development and maintenance of T cells. Likewise, *Phascolarctobacterium faecium* has been found to correlate positively with immune response, i.e. IFN*γ*+CD8+ T cells in a mouse model [Tanoue et al. 2019]. *Acidaminococcus fermentans* has been studied for its anaerobic glumate/glutamine fermentation. Glutamine has been shown to induce Treg cells in a mouse aGvHD model [Song et al. 2013] and hence its catabolism would work against the induction of a Treg response. *Streptococcus sanguinis* induces a Th1 response in peripheral blood mononuclear cells [Yanagihori et al. 2006]. All in all, the mortality associated species are associated with immune activation and a Th17/Th1 response. ### aGvHD and non-GvHD associated species The position of the commensal *Bacteroides thetaiotaomicron* as an aGvHD associated species is intriguing. Although commensal, its mucolytic activity makes polysaccharides available for other organisms, including pathogens [Curtis et al. 2014]. The aGvHD associated species *Bacteroides nordii* elicits a macrophage activator INF*γ* response [Schirmer et al. 2016]. As stated above, *Prevotella* species are associated with a Th17 response, with a pro-inflammatory role for the aGvHD associated species *Prevotella copri* in rheumatoid arthritis [Scher et al. 2013]. The position of the human pathobiont *Bacteroides vulgatus* on the side of non-GvHD controls is a paradox. The bacterium activates NF-*κ*B in a human gut epithelial cell line [Ó Cuív et al. 2017]. NF-*κ*B is required for the development of both anti-inflammatory Treg and proinflammatory Th17 cells [Ruan and Chen 2012] and its systemic inhibition has been proposed as a strategy to prevent GvHD [Vodanovic-Jankovic et al. 2006]. The non-GvHD control associated *Flavonifactor plautii* has been shown to induce Treg cells in mice [Ogita et al. 2020] and, importantly, the white blood cell growth factor GM-CSF in humans [Luna et al. 2017]. The non-GvHD control associated *Bacteroides uniformis* induces IL-10 and Treg in PBMCs and LPMCs [Neff et al. 2016]. Lastly, the non-GvHD control associated *Bifidobacterium longum* elicits in majority IL-10 [López et al. 2011]. ### Modulating the allo-HSCT GM From both our direct association and in silico allo-HSCT GM screening results, *Bifidobacterium longum* seems to present potential to modulate the allo-HSCT GM. To increase putative case associated species exclusion, *B. longum* could be combined with another probiotic species, *Bacillus clausii*, with which it is found associated in vivo more frequently than respective prevalences predict. *B. clausii* presents further interest in that it has been reported to increase IL-10 in allergic children [Ciprandi et al. 2004]. A selection of a high folate producer for *B. longum* could be privileged for increased Treg stimulus. Combination of *B. longum* with a bifidogenic prebiotic seems indicated, either choosing or avoiding the butyrigenic inulin-type fructans (ITF) or arabinoxylanoligosaccharides (AXOS) [Rivière et al. 2016], depending on the patient’s aGvHD status. In vitro metronidazole resistance among *Bifidobacteria* has been reported [Charteris et al. 1998, Moubareck et al. 2005]. *Bifidobacteria* are only moderately susceptible to the anti-gram positive vancomycin [Lim et al. 1993, Charteris et al. 1998, Kheadr et al. 2007] and to the anti-anaerobe ceftazidime but susceptible to amoxicillin [Charteris et al. 1998]. Of note, a rifaximin resistant strain of *B. longum* W11 has been documented and is commercially available [Graziano et al. 2016]. Prophylactic use of rifaximin has been shown to lower IL-6 levels [Qayed et al. 2013], preserve urinary 3-IS levels and increase survival as compared to ciprofloxacin/metronidazole [Weber et al. 2016]. *B. clausii* has a wide spectrum of natural antibiotic resistance, including macrolides, betalactams, aminoglycosides, metronidazole, cefuroxime, ceftriaxone, cefotaxime and cephalosporin [Abbrescia et al. 2014]. ## Conclusions From our results, it appears aGvDH risk is reduced by GM cleansing with targeted antibiotics. Auto-FMT is capable of accelerating the recovery of GM diversity and replacement of pathobionts selected by antibiotics. The Threg/Th17 balance could explain why we see certain species associated with aGvHD or TMR and others with non-GvHD controls. From this perspective, and because of in silico prediction of exclusion of aGvHD associated species, it seems of interest to supplement *B. longum* as a prophylactic, especially if antibiotics use is limited to vancomycin, metronidazole, ceftazidime and rifaximin. Prebiotics and vitamin B9 could further enhance the treatment, just like the association with another probiotic species, *B. clausii*. ## Data Availability Data and ananlysis scripts have been made available under Github. [https://github.com/GeneCreek/GvHD-manuscript](https://github.com/GeneCreek/GvHD-manuscript) ## Declarations ## Conflict of interest The authors have no conflict of interests related to this publication. ## Authors’ contributions Study design, data collection, data analysis and writing of the manuscript (ML); data analysis and writing of the manuscript (MD). ## Acknowledgements The authors received no financial support for this study. The authors acknowledge the contributions to the Short Read Archive made by the respective institutions and acknowledge scientific journals for enforcing this practice. * Received April 8, 2020. * Revision received April 21, 2020. * Accepted April 23, 2020. * © 2020, Posted by Cold Spring Harbor Laboratory This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at [http://creativecommons.org/licenses/by-nc-nd/4.0/](http://creativecommons.org/licenses/by-nc-nd/4.0/) ## Bibliography 1. A Abbrescia, L L Palese, S Papa, A Gaballo, P Alifano, and Anna M Sardanelli. Antibiotic Sensitivity of Bacillus clausii Strains in Commercial Preparation. Clinical Immunology, Endocrine and Metabolic Drugs, 1(2):1–9, June 2014. doi: 10.2174/2212707002666150128195631. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2174/2212707002666150128195631&link_type=DOI) 2. D W Beelen, A Elmaagacli, K D Müller, H Hirche, and U W Schaefer. Influence of intestinal bacterial decontamination using metronidazole and ciprofloxacin or ciprofloxacin alone on the development of acute graft-versus-host disease after marrow transplantation in patients with hematologic malignancies: final results and long-term follow-up of an open-label prospective randomized trial. Blood, 93(10):3267–3275, May 1999. doi: 10.1182/blood.V93.10.3267.410k22\_3267\_3275. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImJsb29kam91cm5hbCI7czo1OiJyZXNpZCI7czoxMDoiOTMvMTAvMzI2NyI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIwLzA0LzIzLzIwMjAuMDQuMDguMjAwNTgxOTguYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 3. Elena Biagi, Daniele Zama, Simone Rampelli, Silvia Turroni, Patrizia Brigidi, Clarissa Consolandi, Marco Severgnini, Eleonora Picotti, Pietro Gasperini, Pietro Merli, Nunzia Decembrino, Marco Zecca, Simone Cesaro, Maura Faraci, Arcangelo Prete, Franco Locatelli, Andrea Pession, Marco Candela, and Riccardo Masetti. Early gut microbiota signature of aGvHD in children given allogeneic hematopoietic cell transplantation for hematological disorders. BMC medical genomics, 12(1):49–11, March 2019. doi: 10.1186/s12920-019-0494-7. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12920-019-0494-7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30845942&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F23%2F2020.04.08.20058198.atom) 4. W P Charteris, P M Kelly, L Morelli, and J K Collins. Antibiotic susceptibility of potentially probiotic Bifidobacterium isolates from the human gastrointestinal tract. Letters in applied microbiology, 26(5):333–337, May 1998. doi: 10.1046/j.1472-765x.1998.00342. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1046/j.1472-765X.1998.00342.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9674160&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F23%2F2020.04.08.20058198.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000074528800001&link_type=ISI) 5. Giorgio Ciprandi, Maria Angela Tosca, Manlio Milanese, Giacomo Caligo, and Vittorio Ricca. Cytokines evaluation in nasal lavage of allergic children after Bacillus clausii administration: a pilot study. Pediatric allergy and immunology : official publication of the European Society of Pediatric Allergy and Immunology, 15(2): 148–151, April 2004. doi: 10.1046/j.1399-3038.2003.00102.x. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1046/j.1399-3038.2003.00102.x&link_type=DOI) 6. Meredith M Curtis, Zeping Hu, Claire Klimko, Sanjeev Narayanan, Ralph Deberardinis, and Vanessa Sperandio. The gut commensal Bacteroides thetaiotaomicron exacerbates enteric infection through modification of the metabolic landscape. Cell host & microbe, 16(6):759–769, December 2014. doi: 10.1016/j.chom.2014.11.005. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.chom.2014.11.005&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25498343&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F23%2F2020.04.08.20058198.atom) 7. M R D’Aimmo, P Mattarelli, B Biavati, N G Carlsson, and T Andlid. The potential of bifidobacteria as a source of natural folate. Journal of applied microbiology, 112(5): 975–984, May 2012. doi: 10.1111/j.1365-2672.2012.05261.x. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1365-2672.2012.05261.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22335359&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F23%2F2020.04.08.20058198.atom) 8. Federica D’Amico, Elena Biagi, Simone Rampelli, Jessica Fiori, Daniele Zama, Matteo Soverini, Monica Barone, Davide Leardini, Edoardo Muratore, Arcangelo Prete, Roberto Gotti, Andrea Pession, Riccardo Masetti, Patrizia Brigidi, Silvia Turroni, and Marco Candela. Enteral Nutrition in Pediatric Patients Undergoing Hematopoietic SCT Promotes the Recovery of Gut Microbiome Homeostasis. Nutrients, 11(12), December 2019. doi: 10.3390/nu11122958. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/nu11122958&link_type=DOI) 9. Julia Downes, Mark A Munson, David A Spratt, Eija Könönen, Eveliina Tarkka, Hannele Jousimies-Somer, and William G Wade. Characterisation of Eubacteriumlike strains isolated from oral infections. Journal of medical microbiology, 50(11):947–951, November 2001. doi: 10.1099/0022-1317-50-11-947. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1099/0022-1317-50-11-947&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11699590&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F23%2F2020.04.08.20058198.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000171885000003&link_type=ISI) 10. Shlomo Elias and Alexander Y Rudensky. Therapeutic use of regulatory T cells for graft-versus-host disease. British journal of haematology, 187(1):25–38, October 2019. doi: 10.1111/bjh.16157. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/bjh.16157&link_type=DOI) 11. Jessica R Galloway-Peña, Christine B Peterson, Farida Malik, Pranoti V Sahasrabhojane, Dimpy P Shah, Chelcy E Brumlow, Lily G Carlin, Roy F Chemaly, Jin Seon Im, Gabriela Rondon, Edd Felix, Lucas Veillon, Philip L Lorenzi, Amin M Alousi, Robert R Jenq, Dimitrios P Kontoyiannis, Elizabeth J Shpall, Samuel A Shelburne, and Pablo C Okhuysen. Fecal Microbiome, Metabolites, and Stem Cell Transplant Outcomes: A Single-Center Pilot Study. Open forum infectious diseases, 6(5):ofz173, May 2019. doi: 10.1093/ofid/ofz173. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/ofid/ofz173&link_type=DOI) 12. Jonathan L Golob, Steven A Pergam, Sujatha Srinivasan, Tina L Fiedler, Congzhou Liu, Kristina Garcia, Marco Mielcarek, Daisy Ko, Sarah Aker, Sara Marquis, Tillie Loeffelholz, Anna Plantinga, Michael C Wu, Kevin Celustka, Alex Morrison, Maresa Woodfield, and David N Fredricks. Stool Microbiota at Neutrophil Recovery Is Predictive for Severe Acute Graft vs Host Disease After Hematopoietic Cell Transplantation. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 65(12): 1984–1991, November 2017. doi: 10.1093/cid/cix699. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/cid/cix699&link_type=DOI) 13. Jonathan L Golob, Martha M DeMeules, Tillie Loeffelholz, Z Z Quinn, Michael K Dame, Sabrina S Silvestri, Michael C Wu, Thomas M Schmidt, Tina L Fiedler, Matthew J Hoostal, Marco Mielcarek, Jason Spence, Steven A Pergam, and David N Fredricks. Butyrogenic bacteria after acute graft-versus-host disease (GVHD) are associated with the development of steroid-refractory GVHD. Blood advances, 3(19):2866–2869, October 2019. doi: 10.1182/bloodadvances.2019000362. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmxvb2RvYSI7czo1OiJyZXNpZCI7czo5OiIzLzE5LzI4NjYiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMC8wNC8yMy8yMDIwLjA0LjA4LjIwMDU4MTk4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 14. Teresa Graziano, Angela Amoruso, Stefania Nicola, Francesca Deidda, Serena Allesina, Marco Pane, Pietro Piffanelli, Francesco Strozzi, Luca Mogna, and Mario Del Piano. The Possible Innovative Use of Bifidobacterium longum W11 in Association With Rifaximin: A New Horizon for Combined Approach? Journal of clinical gastroenterology, 50 Suppl 2, Proceedings from the 8th Probiotics, Prebiotics & New Foods for Microbiota and Human Health meeting held in Rome, Italy on September 13-15, 2015: S153–S156, November 2016. doi: 10.1097/MCG.0000000000000683. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/MCG.0000000000000683&link_type=DOI) 15. Groemping, Ulrike. Relative Importance for Linear Regression in R: The Package relaimpo. Journal of Statistical Software, 17(1):1–27, September 2006. doi: 10.18637/jss.v017.i01. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.18637/jss.v017.i01&link_type=DOI) 16. Lijie Han, Hua Jin, Lizhi Zhou, Xin Zhang, Zhiping Fan, Min Dai, Qianyun Lin, Fen Huang, Li Xuan, Haiyan Zhang, and Qifa Liu. Intestinal Microbiota at Engraftment Influence Acute Graft-Versus-Host Disease via the Treg/Th17 Balance in Allo-HSCT Recipients. Frontiers in immunology, 9:669, 2018. doi: 10.3389/fimmu.2018.00669. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fimmu.2018.00669&link_type=DOI) 17. Jessica Heinrichs, David Bastian, Anandharaman Veerapathran, Claudio Anasetti, Brain Betts, and XueZhong Yu. Regulatory T-Cell Therapy for Graft-versushost Disease. Journal of immunology research and therapy, 1(1):1–14, 2016. 18. Andrea S Henden and Geoffrey R Hill. Cytokines in Graft-versus-Host Disease. Journal of immunology (Baltimore, Md. : 1950), 194(10):4604–4612, May 2015. doi: 10.4049/jimmunol.1500117. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiamltbXVub2wiO3M6NToicmVzaWQiO3M6MTE6IjE5NC8xMC80NjA0IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjAvMDQvMjMvMjAyMC4wNC4wOC4yMDA1ODE5OC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 19. G R Hill, J M Crawford, K R Cooke, Y S Brinson, L Pan, and J L Ferrara. Total body irradiation and acute graftversus-host disease: the role of gastrointestinal damage and inflammatory cytokines. Blood, 90(8):3204–3213, October 1997. doi: 10.1182/blood.V90.8.3204. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImJsb29kam91cm5hbCI7czo1OiJyZXNpZCI7czo5OiI5MC84LzMyMDQiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMC8wNC8yMy8yMDIwLjA0LjA4LjIwMDU4MTk4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 20. Ernst Holler, Peter Butzhammer, Karin Schmid, Christian Hundsrucker, Josef Koestler, Katrin Peter, Wentao Zhu, Daniela Sporrer, Thomas Hehlgans, Marina Kreutz, Barbara Holler, Daniel Wolff, Matthias Edinger, Reinhard Andreesen, John E Levine, James L Ferrara, André Gessner, Rainer Spang, and Peter J Oefner. Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation, 20 (5):640–645, May 2014. doi: 10.1016/j.bbmt.2014.01.030. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bbmt.2014.01.030&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24492144&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F23%2F2020.04.08.20058198.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000334649000007&link_type=ISI) 21. Robert R Jenq, Ying Taur, Sean M Devlin, Doris M Ponce, Jenna D Goldberg, Katya F Ahr, Eric R Littmann, Lilan Ling, Asia C Gobourne, Liza C Miller, Melissa D Docampo, Jonathan U Peled, Nicholas Arpaia, Justin R Cross, Tatanisha K Peets, Melissa A Lumish, Yusuke Shono, Jarrod A Dudakov, Hendrik Poeck, Alan M Hanash, Juliet N Barker, Miguel-Angel Perales, Sergio A Giralt, Eric G Pamer, and Marcel R M van den Brink. Intestinal Blautia Is Associated with Reduced Death from Graft-versus-Host Disease. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation, 21 (8):1373–1383, August 2015. doi: 10.1016/j.bbmt.2015.04.016. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bbmt.2015.04.016&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25977230&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F23%2F2020.04.08.20058198.atom) 22. Kazutaka Katoh, George Asimenos, and Hiroyuki Toh. Multiple alignment of DNA sequences with MAFFT. Methods in molecular biology (Clifton, N.J.), 537(Suppl 5):39–64, 2009. doi: 10.1007/978-1-59745-251-9_3. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/978-1-59745-251-9_3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19378139&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F23%2F2020.04.08.20058198.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000268335500003&link_type=ISI) 23. E Kheadr, N Dabour, C Le Lay, C Lacroix, and I Fliss. Antibiotic susceptibility profile of bifidobacteria as affected by oxgall, acid, and hydrogen peroxide stress. Antimicrobial agents and chemotherapy, 51(1):169–174, January 2007. doi: 10.1128/AAC.00261-06. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjg6IjUxLzEvMTY5IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjAvMDQvMjMvMjAyMC4wNC4wOC4yMDA1ODE5OC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 24. Makoto Kinoshita, Hisako Kayama, Takashi Kusu, Tomoyuki Yamaguchi, Jun Kunisawa, Hiroshi Kiyono, Shimon Sakaguchi, and Kiyoshi Takeda. Dietary folic acid promotes survival of Foxp3+ regulatory T cells in the colon. Journal of immunology (Baltimore, Md. : 1950), 189(6):2869–2878, September 2012. doi: 10.4049/jimmunol.1200420. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiamltbXVub2wiO3M6NToicmVzaWQiO3M6MTA6IjE4OS82LzI4NjkiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMC8wNC8yMy8yMDIwLjA0LjA4LjIwMDU4MTk4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 25. Jeppe Madura Larsen. The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology, 151(4):363–374, August 2017. doi: 10.1111/imm.12760. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/imm.12760&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28542929&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F23%2F2020.04.08.20058198.atom) 26. K S Lim, C S Huh, and Y J Baek. Antimicrobial susceptibility of bifidobacteria. Journal of Dairy Science, 76(8):2168–2174, August 1993. doi: 10.3168/jds.S0022-0302(93)77553-0. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3168/jds.S0022-0302(93)77553-0&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=8408866&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F23%2F2020.04.08.20058198.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1993LR04400006&link_type=ISI) 27. C Liu, D N Frank, M Horch, S Chau, D Ir, E A Horch, K Tretina, K van Besien, C A Lozupone, and V H Nguyen. Associations between acute gastrointestinal GvHD and the baseline gut microbiota of allogeneic hematopoietic stem cell transplant recipients and donors. Bone marrow transplantation, 52(12): 1643–1650, December 2017. doi: 10.1038/bmt.2017.200. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/bmt.2017.200&link_type=DOI) 28. Yuejun Liu, Yifeng Cai, Lan Dai, Guanghua Chen, Xiao Ma, Ying Wang, Ting Xu, Song Jin, Xiaojin Wu, Huiying Qiu, Xiaowen Tang, Caixia Li, Aining Sun, Depei Wu, and Haiyan Liu. The expression of Th17-associated cytokines in human acute graft-versus-host disease. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation, 19(10):1421–1429, October 2013. doi: 10.1016/j.bbmt.2013.06.013. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bbmt.2013.06.013&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23792271&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F23%2F2020.04.08.20058198.atom) 29. Patricia López, Irene González-Rodríguez, Miguel Gueimonde, Abelardo Margolles, and Ana Suárez. Immune response to Bifidobacterium bifidum strains support Treg/Th17 plasticity. PLoS ONE, 6(9), 2011. doi: 10.1371/journal.pone.0024776. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0024776&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21966367&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F23%2F2020.04.08.20058198.atom) 30. Ruth Ann Luna, Numan Oezguen, Miriam Balderas, Alamelu Venkatachalam, Jessica K Runge, James Versalovic, Jeremy Veenstra-VanderWeele, George M Anderson, Tor Savidge, and Kent C Williams. Distinct Microbiome-Neuroimmune Signatures Correlate With Functional Abdominal Pain in Children With Autism Spectrum Disorder. Cellular and molecular gastroenterology and hepatology, 3(2):218–230, March 2017. doi: 10.1016/j.jcmgh.2016.11.008. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jcmgh.2016.11.008&link_type=DOI) 31. John Magenau, Lyndsey Runaas, and Pavan Reddy. Advances in understanding the pathogenesis of graftversus-host disease. British journal of haematology, 173(2):190–205, April 2016. doi: 10.1111/bjh.13959. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/bjh.13959&link_type=DOI) 32. Nathan D Mathewson, Robert Jenq, Anna V Mathew, Mark Koenigsknecht, Alan Hanash, Tomomi Toubai, Katherine Oravecz-Wilson, Shin-Rong Wu, Yaping Sun, Corinne Rossi, Hideaki Fujiwara, Jaeman Byun, Yusuke Shono, Caroline Lindemans, Marco Calafiore, Thomas M Schmidt, Kenya Honda, Vincent B Young, Subramaniam Pennathur, Marcel van den Brink, and Pavan Reddy. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nature Immunology, 17(5):505–513, May 2016. doi: 10.1038/ni.3400. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/ni.3400&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26998764&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F23%2F2020.04.08.20058198.atom) 33. McMurdie, Paul J, Rosen, Michael J, Han, Andrew W, Johnson, Amy Jo A, Holmes, Susan P, and Callahan, Benjamin J. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, pages 1–7, May 2016. doi: 10.1038/nmeth.3869. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/nmeth.3869&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27214047&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F23%2F2020.04.08.20058198.atom) 34. Emmanuel Montassier, Eric Batard, Sébastien Mas- sart, Thomas Gastinne, Thomas Carton, Jocelyne Cail- lon, Sophie Le Fresne, Nathalie Caroff, Jean Benoit Hardouin, Philippe Moreau, Gilles Potel, Françoise Le Vacon, and Marie France de La Cochetière. 16S rRNA Gene Pyrosequencing Reveals Shift in Patient Faecal Microbiota During High-Dose Chemotherapy as Conditioning Regimen for Bone Marrow Transplantation. Microbial Ecology, 67(3):690–699, April 2014. doi: 10.1007/s00248-013-0355-4. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00248-013-0355-4&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24402367&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F23%2F2020.04.08.20058198.atom) 35. C Moubareck, F Gavini, L Vaugien, M J Butel, and F Doucet-Populaire. Antimicrobial susceptibility of bifidobacteria. Journal of Antimicrobial Chemotherapy, 55(1):38–44, January 2005. doi: 10.1093/jac/dkh495. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/jac/dkh495&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15574479&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F23%2F2020.04.08.20058198.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000226309100006&link_type=ISI) 36. Marcus Muehlbauer, Walid Mottawea, Turki Abujamel, David R Mack, Alain Stintzi, and Christian Jobin. Atopobium Parvulum Is a Predominant Member of the Adherent Microbiome of Pediatric IBD Patients and Promotes Colitis in Il10-/-Mice. Gastroenterology, 144(5):S–710, May 2013. doi: 10.1016/S0016-5085(13)62634-7. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0016-5085(13)62634-7&link_type=DOI) 37. C Preston Neff, Matthew E Rhodes, Kathleen L Arnolds, Colm B Collins, Jody Donnelly, Nichole Nusbacher, Paul Jedlicka, Jennifer M Schneider, Martin D Mc-Carter, Michael Shaffer, Sarkis K Mazmanian, Brent E Palmer, and Catherine A Lozupone. Diverse Intestinal Bacteria Contain Putative Zwitterionic Capsular Polysaccharides with Anti-inflammatory Properties. Cell host & microbe, 20(4):535–547, October 2016. doi: 10.1016/j.chom.2016.09.002. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.chom.2016.09.002&link_type=DOI) 38. Páraic Ó Cuív, Tomas de Wouters, Rabina Giri, Stanislas Mondot, Wendy J Smith, Hervé M Blottière, Jakob Begun, and Mark Morrison. The gut bacterium and pathobiont Bacteroides vulgatus activates NF-κB in a human gut epithelial cell line in a strain and growth phase dependent manner. Anaerobe, 47:209–217, October 2017. doi: 10.1016/j.anaerobe.2017.06.002. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.anaerobe.2017.06.002&link_type=DOI) 39. Tasuku Ogita, Yoshinari Yamamoto, Ayane Mikami, Suguru Shigemori, Takashi Sato, and Takeshi Shimosato. Oral Administration of Flavonifractor plautii Strongly Suppresses Th2 Immune Responses in Mice. Frontiers in immunology, 11:379, 2020. doi: 10.3389/fimmu.2020.00379. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fimmu.2020.00379&link_type=DOI) 40. Eric G. Pamer, Ying Taur, Robert Jenq, and Marcel R.M. van den Brink. Impact of the Intestinal Microbiota on Infections and Survival Following Hematopoietic Stem Cell Transplantation. Blood, 21(124), December 2014. doi: 10.1182/blood.V124.21.SCI-48.SCI-48. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1182/blood.V124.21.SCI-48.SCI-48&link_type=DOI) 41. Price, Morgan N, Dehal, Paramvir S, and Arkin, Adam P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE, 5(3):e9490, March 2010. doi: 10.1371/journal.pone.0009490. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0009490&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20224823&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F23%2F2020.04.08.20058198.atom) 42. Muna Qayed, Amelia Langston, Kuang-Yueh Chiang, Keith August, Joseph A Hilinski, Conrad R Cole, Andre Rogatko, Roberd M Bostick, and John T Horan. Rifaximin for preventing acute graft-versus-host disease: impact on plasma markers of inflammation and T-cell activation. Journal of pediatric hematology/oncology, 35(4):e149–52, May 2013. doi: 10.1097/MPH.0b013e31827e56af. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/MPH.0b013e31827e56af&link_type=DOI) 43. Audrey Rivière, Marija Selak, David Lantin, Frédéric Leroy, and Luc De Vuyst. Bifidobacteria and Butyrate- Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Frontiers in Microbiology, 7(1030):979, 2016. doi: 10.3389/fmicb.2016.00979. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fmicb.2016.00979&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27446020&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F23%2F2020.04.08.20058198.atom) 44. Qingguo Ruan and Youhai H Chen. Nuclear factor-κB in immunity and inflammation: the Treg and Th17 connection. Advances in experimental medicine and biology, 946(Chapter 12):207–221, 2012. doi: 10.1007/978-1-4614-0106-3_12. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/978-1-4614-0106-3_12&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21948370&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F23%2F2020.04.08.20058198.atom) 45. Jose U Scher, Andrew Sczesnak, Randy S Longman, Nicola Segata, Carles Ubeda, Craig Bielski, Tim Ros- tron, Vincenzo Cerundolo, Eric G Pamer, Steven B Abramson, Curtis Huttenhower, and Dan R Littman. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife, 2: e01202, November 2013. doi: 10.7554/eLife.01202. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.7554/eLife.01202&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24192039&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F23%2F2020.04.08.20058198.atom) 46. Melanie Schirmer, Sanne P Smeekens, Hera Vlamakis, Martin Jaeger, Marije Oosting, Eric A Franzosa, Rob Ter Horst, Trees Jansen, Liesbeth Jacobs, Marc Jan Bonder, Alexander Kurilshikov, Jingyuan Fu, Leo A B Joosten, Alexandra Zhernakova, Curtis Huttenhower, Cisca Wijmenga, Mihai G Netea, and Ramnik J Xavier. Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell, 167(4):1125– 1136.e8, November 2016. doi: 10.1016/j.cell.2016.10.020. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.cell.2016.10.020&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F23%2F2020.04.08.20058198.atom) 47. Yusuke Shono, Melissa D Docampo, Jonathan U Peled, Suelen M Perobelli, Enrico Velardi, Jennifer J Tsai, Ann E Slingerland, Odette M Smith, Lauren F Young, Jyotsna Gupta, Sophia R Lieberman, Hillary V Jay, Katya F Ahr, Kori A Porosnicu Rodriguez, Ke Xu, Marco Calarfiore, Hendrik Poeck, Silvia Caballero, Sean M Devlin, Franck Rapaport, Jarrod A Dudakov, Alan M Hanash, Boglarka Gyurkocza, George F Murphy, Camilla Gomes, Chen Liu, Eli L Moss, Shannon B Falconer, Ami S Bhatt, Ying Taur, Eric G Pamer, Marcel R M van den Brink, and Robert R Jenq. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Science Translational Medicine, 8(339):339ra71–339ra71, May 2016. doi: 10.1126/scitranslmed.aaf2311. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTE6InNjaXRyYW5zbWVkIjtzOjU6InJlc2lkIjtzOjEzOiI4LzMzOS8zMzlyYTcxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjAvMDQvMjMvMjAyMC4wNC4wOC4yMDA1ODE5OC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 48. Eun-Kee Song, Jun-Mo Yim, Joo-Yun Yim, Min-Young Song, Hye-Won Rho, Sung Kyun Yim, Yeon-Hee Han, So Yeon Jeon, Hee Sun Kim, Ho-Young Yhim, Na- Ri Lee, Jae-Yong Kwak, Myung-Hee Sohn, Ho Sung Park, Kyu Yun Jang, and Chang-Yeol Yim. Glutamine protects mice from acute graft-versus-host disease (aGVHD). Biochemical and Biophysical Research Communications, 435(1):94–99, May 2013. doi: 10.1016/j.bbrc.2013.04.047. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bbrc.2013.04.047&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23624505&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F23%2F2020.04.08.20058198.atom) 49. Hirosuke Sugahara, Toshitaka Odamaki, Nanami Hashikura, Fumiaki Abe, and Jin-Zhong Xiao. Differences in folate production by bifidobacteria of different origins. Bioscience of microbiota, food and health, 34(4):87–93, 2015. doi: 10.12938/bmfh.2015-003. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.12938/bmfh.2015-003&link_type=DOI) 50. Alyson Swimm, Cynthia R Giver, Zachariah DeFil- ipp, Sravanti Rangaraju, Akshay Sharma, Alina Ulezko Antonova, Robert Sonowal, Christopher Capaldo, Domonica Powell, Muna Qayed, Daniel Kalman, and Edmund K Waller. Indoles derived from intestinal microbiota act via type I interferon signaling to limit graft-versus-host disease.Blood, 132(23):2506–2519, December 2018. doi: 10.1182/blood-2018-03-838193. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImJsb29kam91cm5hbCI7czo1OiJyZXNpZCI7czoxMToiMTMyLzIzLzI1MDYiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMC8wNC8yMy8yMDIwLjA0LjA4LjIwMDU4MTk4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 51. Takeshi Tanoue, Satoru Morita, Damian R Plichta, Ashwin N Skelly, Wataru Suda, Yuki Sugiura, Seiko Narushima, Hera Vlamakis, Iori Motoo, Kayoko Sugita, Atsushi Shiota, Kozue Takeshita, Keiko Yasuma-Mitobe, Dieter Riethmacher, Tsuneyasu Kaisho, Jason M Norman, Daniel Mucida, Makoto Suematsu, Tomonori Yaguchi, Vanni Bucci, Takashi Inoue, Yutaka Kawakami, Bernat Olle, Bruce Roberts, Masahira Hat- tori, Ramnik J Xavier, Koji Atarashi, and Kenya Honda. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature, 565(7741):600–605, January 2019. doi: 10.1038/s41586-019-0878-z. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41586-019-0878-z&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30675064&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F23%2F2020.04.08.20058198.atom) 52. Ying Taur, Robert R Jenq, Miguel-Angel Perales, Eric R Littmann, Sejal Morjaria, Lilan Ling, Daniel No, Asia Gobourne, Agnes Viale, Parastoo B Dahi, Doris M Ponce, Juliet N Barker, Sergio Giralt, Marcel van den Brink, and Eric G Pamer. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood, 124(7):1174–1182, August 2014. doi: 10.1182/blood-2014-02-554725. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImJsb29kam91cm5hbCI7czo1OiJyZXNpZCI7czoxMDoiMTI0LzcvMTE3NCI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIwLzA0LzIzLzIwMjAuMDQuMDguMjAwNTgxOTguYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 53. Ying Taur, Katharine Coyte, Jonas Schluter, Elizabeth Robilotti, Cesar Figueroa, Mergim Gjonbalaj, Eric R Littmann, Lilan Ling, Liza Miller, Yangtsho Gyaltshen, Emily Fontana, Sejal Morjaria, Boglarka Gyurkocza, Miguel-Angel Perales, Hugo Castro-Malaspina, Roni Tamari, Doris Ponce, Guenther Koehne, Juliet Barker, Ann Jakubowski, Esperanza Papadopoulos, Parastoo Dahi, Craig Sauter, Brian Shaffer, James W Young, Jonathan Peled, Richard C Meagher, Robert R Jenq, Marcel R M van den Brink, Sergio A Giralt, Eric G Pamer, and Joao B Xavier. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Science Translational Medicine, 10(460), September 2018. doi: 10.1126/scitranslmed.aap9489. [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MTE6InNjaXRyYW5zbWVkIjtzOjU6InJlc2lkIjtzOjE1OiIxMC80NjAvZWFhcDk0ODkiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMC8wNC8yMy8yMDIwLjA0LjA4LjIwMDU4MTk4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 54. Sanja Vodanovic-Jankovic, Parameswaran Hari, Paulette Jacobs, Richard Komorowski, and William R Drobyski. NF-kappaB as a target for the prevention of graftversus-host disease: comparative efficacy of bortezomib and PS-1145. Blood, 107(2):827–834, January 2006. doi: 10.1182/blood-2005-05-1820. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImJsb29kam91cm5hbCI7czo1OiJyZXNpZCI7czo5OiIxMDcvMi84MjciO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMC8wNC8yMy8yMDIwLjA0LjA4LjIwMDU4MTk4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 55. Jaak M Vossen, Harry F L Guiot, Arjan C Lankester, Ann C T M Vossen, Robbert G M Bredius, Ron Wolter- beek, Hanny D J Bakker, and Peter J Heidt. Complete suppression of the gut microbiome prevents acute graft-versus-host disease following allogeneic bone marrow transplantation. PLoS ONE, 9(9), 2014. doi: 10.1371/journal.pone.0105706. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0105706&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25180821&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F23%2F2020.04.08.20058198.atom) 56. D Weber, P J Oefner, K Dettmer, A Hiergeist, J Koestler, A Gessner, M Weber, F Stämmler, J Hahn, D Wolff, W Herr, and E Holler. Rifaximin preserves intestinal microbiota balance in patients undergoing allogeneic stem cell transplantation. Bone marrow transplantation, 51(8):1087–1092, August 2016. doi: 10.1038/bmt.2016.66. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/bmt.2016.66&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26999466&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F23%2F2020.04.08.20058198.atom) 57. Daniela Weber, Peter J Oefner, Andreas Hiergeist, Josef Koestler, André Gessner, Markus Weber, Joachim Hahn, Daniel Wolff, Frank Stämmler, Rainer Spang, Wolfgang Herr, Katja Dettmer, and Ernst Holler. Low urinary indoxyl sulfate levels early after transplantation reflect a disrupted microbiome and are associated with poor outcome. Blood, 126(14):1723–1728, October 2015. doi: 10.1182/blood-2015-04-638858. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImJsb29kam91cm5hbCI7czo1OiJyZXNpZCI7czoxMToiMTI2LzE0LzE3MjMiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMC8wNC8yMy8yMDIwLjA0LjA4LjIwMDU4MTk4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 58. Daniela Weber, Andreas Hiergeist, Markus Weber, Katja Dettmer, Daniel Wolff, Joachim Hahn, Wolfgang Herr, André Gessner, and Ernst Holler. Detrimental Effect of Broad-spectrum Antibiotics on Intestinal Microbiome Diversity in Patients After Allogeneic Stem Cell Transplantation: Lack of Commensal Sparing Antibiotics. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 68(8): 1303–1310, April 2019. doi: 10.1093/cid/ciy711. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/cid/ciy711&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30124813&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F23%2F2020.04.08.20058198.atom) 59. Hirokatsu Yanagihori, Noritaka Oyama, Koichiro Naka- mura, Nobuhisa Mizuki, Keiji Oguma, and Fumio Kaneko. Role of IL-12B promoter polymorphism in Adamantiades-Behcet’s disease susceptibility: An involvement of Th1 immunoreactivity against Streptococcus Sanguinis antigen. Journal of Investigative Dermatology, 126(7):1534–1540, July 2006. doi: 10.1038/sj.jid.5700203. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/sj.jid.5700203&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16514412&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F23%2F2020.04.08.20058198.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000238969100018&link_type=ISI) 60. Daping Yang, Xi Chen, Jingjing Wang, Qi Lou, Yunwei Lou, Li Li, Honglin Wang, Jiangye Chen, Meng Wu, Xinyang Song, and Youcun Qian. Dysregulated Lung Commensal Bacteria Drive Interleukin-17B Production to Promote Pulmonary Fibrosis through Their Outer Membrane Vesicles. Immunity, 50(3):692–706.e7, March 2019. doi: 10.1016/j.immuni.2019.02.001. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.immuni.2019.02.001&link_type=DOI)