The immune profile of the gut microbiome in graft versus host disease patients ============================================================================== * Marcel A. de Leeuw * Manuel X. Duval ## Abstract **Background** Acute Graft-versus-Host Disease (aGvHD) is the main complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Gut microbiota composition has been associated with aGvHD, however, the specific composition of the intestinal ecosystem involved in the pathologic process at the time of aGvHD onset is not yet fully known. **Methods** A relevant series of allo-HSCT microbiome data sets were combined and reanalyzed, with focus on species level changes in the microbiota, using state-of-the-art and in part proprietary 16S analysis routines. **Results** Immunosuppressive conditioning was found to impact gut microbiome (GM) composition. GM composition was found highly correlated with aGvHD status at onset (R2=0.5). The species diversity, average biological safety level (BSL), gram staining balance and the strict anaerobe proportion at aGvHD onset indicate that a moderate level of gram positive strict anearobe cleansing with antibiotics reduces the risk of aGvHD. Butyrate producers were found associated with aGvHD controls, as well as the probiotic species and IL-10 inducer *Bifidobacterium longum*. Among species associated with mortality and aGvHD, we found Th1 and Th17 eliciting bacteria. **Implications** To restore the Treg/Th17 balance, probiotic supplementation with *B. longum* eventually combined with non-butyrigenic prebiotics and vitamin B9 is a treatment option. Simultaneous use of Van-comycin, Metronidazole, Ceftazidime and Rifaximin for GM control is a possibility, because of antibiotic resistance of *B. longum*. ## Introduction Allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT) is a curative option for many patients with high-risk hematopoietic malignancies and hematological disorders. The success of allo-HSCT can be hampered by a process in which donor-derived T cells recognize host healthy tissue as non-self, causing an immune-mediated complication known as acute Graft-versus-Host Disease (aGvHD), predictive for morbidity and mortality of the patients. Even among transplants sourced from HLA-matched siblings, aGvHD occurs in 40% of recipients and reaches 50-70% with unrelated donor HSCT, yet less than half of the patients who develop aGVHD experience a response [Magenau et al. 2016]. Bacterial LPS has been proposed as a triggering factor for aGvHD, based on murine models [Hill et al. 1997] In patients undergoing allo-HSCT, antibiotics are routinely prescribed to reduce the risk of opportunistic infections. Antibiotics can profoundly impact gut micro-biome (GM) composition and it has been shown broad spectrum antibiotics used after allo-HSCT increase the risk of aGvHD in mice and humans [Shono et al. 2016, Weber et al. 2019]. On the other hand, gut decontamination (GD), i.e. the complete suppression of the GM, has been shown to prevent aGvHD following allo-HSCT, but is difficult to achieve [Beelen et al. 1999, Vossen et al. 2014]. As a matter of fact, no standardized protocol for prophylactic and peri-transplant antibiotic treatment has been established as standard of care across transplantation centers. It has been reported that autologous fecal micro-biota transfer (auto-FMT) can in some instances restore the baseline GM after antibiotics courses applied during the allo-HSCT [Taur et al. 2018]. Of note, this base-line GM is potentially already impacted by chemotherapy [Montassier et al. 2014]. Hence some centers practice probiotics and 3rd party FMT reconditioning of GM once the antibiotics treatment has been ended [Vossen et al. 2014]. One report suggesting that high bacterial donor GM diversity is associated with decreased aGvHD risk has been made [Liu et al. 2017]. However, conflicting reports have been made about the relation between the baseline GM diversity and aGvHD risk [Liu et al. 2017, Biagi et al. 2019]. A lower GM diversity index at the time of engraftment (neutrophil recovery) has been associated in multiple studies with increased incidence of intestinal aGvHD disease and transplant related mortality (TRM) [Pamer et al. 2014, Taur et al. 2014, Golob et al. 2017, Han et al. 2018, Galloway-Peña et al. 2019]. *Entero-cocci* have been proposed as a landmark for aGvHD whether induced by antibiotics or not [Holler et al. 2014], whereas intestinal *Blautia* has been found associated with reduced death from aGvHD [Jenq et al. 2015]. It has also been reported that at the time of engraftment, decreased *Lachnospiraceae* and *Ruminococcaceae* and increased *Enterobacteriaceae* correlate with aGvHD development and a lowered Treg/Th17 ratio [Han et al. 2018]. We combined a series of relevant microbiome studies, available in the form of raw 16S data, in order to increase statistical power and investigate detailed baseline and aGvHD onset microbiome composition in relation to therapeutic outcome. ## Materials & Methods The materials summarized in Table 1 have been made available in the form of raw 16S data sets in the short read archive. Five of the six collected datasets have been made available as part of scientific publication: PRJEB23820 [Biagi et al. 2019], PRJEB16057 [Liu et al. 2017], PRJNA528754 [Galloway-Peña et al. 2019], PRJNA592853 [D’Amico et al. 2019] and PRJNA491657 [Taur et al. 2018]. View this table: [Table 1:](http://medrxiv.org/content/early/2020/04/11/2020.04.08.20058198/T1) Table 1: Prospective data sets used in the study. N: number of patients, n: number of samples, 16S: variable regions covered. ### Data analysis Amplicon Sequence Variants (ASVs) were generated with the R Bioconductor package dada2, version 1.12.1 with recommended parameters [McMurdie, Paul J et al. 2016], involving quality trimming, discarding of sequences with N’s, assembly of forward and reverse sequences and contamination and chimera removal. Further analysis involved multiple alignment with mafft, version 6 [Katoh et al. 2009] and approximately-maximum-likelihood phylogenetic tree generation with FastTreeMP, version 2 [Price, Morgan N et al. 2010]. Taxonomic classification of ASVs was performed by cur|sor, an inhouse program using random forest based supervised learning on the Ribosomal Database Project (RDP) release 11.5. Resulting classifications are available from [https://github.com/GeneCreek/](https://github.com/GeneCreek/) GvHD-manuscript in the form of R data objects. Detection of aGvHD and control associated taxa was performed with negative binomial differential analysis implemented by the R Bioconductor package DESeq2 [Love et al. 2014], using Wald significance tests and local fitting, requiring pAdj < 0.001. aGvDH status regression analysis, with relative abundance of taxa resolved at the species level as independent variables, was performed using the R package relaimpo [Groemping, Ulrike [2006]. ## Results ### Overall GM composition evolution across allo-HSCT Data set SRP162022 comprises patients undergoing allo-HSCT (n=736) of which 14 received an auto-FMT 49 days after stem cell infusion, Fig. 1. Recovery of Shannon species diversity seems to be boosted through auto-FMT, whereas strict anaerobes were not recovered. The antimicrobial resistance of the microbiome decreased, as reflected by the average biological safety level (BSL), which means that a less pathogenic GM was recovered through auto-FMT. ![Figure 1:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/04/11/2020.04.08.20058198/F1.medium.gif) [Figure 1:](http://medrxiv.org/content/early/2020/04/11/2020.04.08.20058198/F1) Figure 1: GM composition evolution across allo-HSCT. Data set SRP162022, 736 patients receiving stem cell infusion day 0. 14 patients (red) received an auto-FMT day 49. BSL: biological safety level. ### Influence of conditioning on the GM Dataset ERP017899 contains conditioning intensity information and baseline GM samples of 41 patients who underwent allo-HSCT. The conditioning was qualified as low, intermediate or high with few cases of high conditioning. We regrouped the intermediate level with the high level and tested various GM composition covariates comparing the two regimes. The Shannon species richness and the strict anaerobe proportion reached significance, Fig. 2. ![Figure 2:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/04/11/2020.04.08.20058198/F2.medium.gif) [Figure 2:](http://medrxiv.org/content/early/2020/04/11/2020.04.08.20058198/F2) Figure 2: Baseline GM composition and conditioning level. Data set ERP017899, baseline samples of 41 patients who underwent allo-HSCT. Numbers reflect Wilcoxon signed rank test p-values. Furthermore, the use of the immunosuppressant cyclosporine, which in the dataset is mutually exclusive with the use of tacrolimus, seems to favor the growth of gram-positive bacteria, Fig. 3. ![Figure 3:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/04/11/2020.04.08.20058198/F3.medium.gif) [Figure 3:](http://medrxiv.org/content/early/2020/04/11/2020.04.08.20058198/F3) Figure 3: GM composition and the use of cyclosporine. Data set ERP017899, baseline samples of 41 patients who underwent allo-HSCT. Numbers reflect Wilcoxon signed rank test p-values. ### Baseline GM composition and survival Dataset ERP017899 contains baseline GMs and survival information for up to two years of 41 patients who un-derwent allo-HSCT. In brief, we fitted random survival forests (RSF) using log scaled relative abundances of taxa resolved at the species level as independent variables. Variable importance and associated p-values were estimated using permutation. We retained p<0.05 taxa as selected variables and the experience was repeated 50 times. Final models were built using 20 fold cross validation and a subset of taxa selected at least 10 times. Model performance was assessed using the integrated Brier score (IBS) and the best performing model was retained. This model used 11 taxa, Fig. 4 and had an IBS of 0.176. All selected taxa had higher average relative abundance at baseline in patients who subsequently deceased during the two year censoring time span. Of note is the position of the probiotic species *Bifidobacterium bifidum*. ![Figure 4:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/04/11/2020.04.08.20058198/F4.medium.gif) [Figure 4:](http://medrxiv.org/content/early/2020/04/11/2020.04.08.20058198/F4) Figure 4: Variable importance estimated by the RSF. All selected species are associated with mortality. Data set ERP017899, 41 patients who underwent allo-HSCT, with right-censoring of survival up to 2 years. ### aGvHD onset and GM composition We combined data sets SRP243841, ERP105598 and SRP234378 into a 68 patients and 80 samples dataset comprising samples taken at aGvDH onset or beyond with matched controls. There is a significant difference in Shannon species diversity between the two patient groups, Fig. 5. Compositional differences could also be documented at the species level. Using linear regression and relative importance analysis, we found that 12 taxa plus added Shannon diversity index accounted for 49.7% of the aGvHG/non-aGvHD variability, Fig. 6. The linear model performs on the dataset with a receiver operating characteristic (ROC) area under the curve (AUC) of 0.915, supplemental Fig. S1. ![Figure 5:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/04/11/2020.04.08.20058198/F5.medium.gif) [Figure 5:](http://medrxiv.org/content/early/2020/04/11/2020.04.08.20058198/F5) Figure 5: Shannon species diversity and aGvHD. Combined datasets SRP243841, ERP105598 and SRP234378-68 patients and 80 samples. Numbers reflect Wilcoxon signed rank test p-values. ![Figure 6:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/04/11/2020.04.08.20058198/F6.medium.gif) [Figure 6:](http://medrxiv.org/content/early/2020/04/11/2020.04.08.20058198/F6) Figure 6: Relative importance of regressors explaining the aGvHD status. Combined datasets SRP243841, ERP105598 and SRP234378 - 68 patients and 80 samples. Paradoxically, although not reaching significance, the strict anaerobe proportion of aGvHD controls seems even lower at the time of aGvHD onset as compared to the baseline, Fig. S2. aGvHD controls have a significantly lower proportion of gram positive bacteria as compared to baseline, Fig. S3. Another remarkable feature of the aGvHD control GM is the higher average biological safety level (BSL) which reaches significance at aGvHD onset, Fig. S4. ### modulating the aGvHD GM To investigate if qualified presumption of safety (QPS), other than *Bifidobacterium longum* are of therapeutic interest, we computed pairwise *χ*2 tests for all QPS with aGvHD case associated species reported above, Fig. 7. We used over 20,000 samples from several tens of studies as the basis for the test. Supplemental Fig. S5 provides the same analysis for control associated species and Fig. S6 provides pairwise *χ*2 tests results between QPS species, the former to assess respect of control associated species and the latter to assess compatibility of QPS species for combination therapy. ![Figure 7:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/04/11/2020.04.08.20058198/F7.medium.gif) [Figure 7:](http://medrxiv.org/content/early/2020/04/11/2020.04.08.20058198/F7) Figure 7: Co-exclusion by and co-occurrence with QPS species. Putative inhibition is in shades of red, potential synergy in shades of green. White reflect neutrality or too little combined prevalence to make a call. Genera are abbreviated as follows: **Bcl**.: *Bacillus*, **Bf**.: *Bifidobacterium*, **Gb**.: *Geobacillus*, **Lcn**.: *Leuconostic*, **Lctb**.: *Lactobacillus*, **Lctc**.: *Lactococcus*, **Pd**.: *Pediococcus*, **S**.: *Streptococcus*. ## Discussion ### Metabolites and aGvHD It has been shown in a mouse model that indoles derived from intestinal microbiota act via type I interferon signaling to limit GvHD [Swimm et al. 2018]. The relation between indole and GvHD has been established in humans as well, through the quantification of an indole derivative, 3-indoxyl sulfate (3-IS), in urine [Weber et al. 2015]. Folate (vitamin B9) is known to enhance the survival of Foxp3+ Threg cells, thus diminishing intestinal inflammation through stabilization of the intestinal Threg population [Kinoshita et al. 2012]. Bifidobacteria from human origin are folate producers [D’Aimmo et al. 2012, Sugahara et al. 2015]. Furthermore, GM production of butyrate benefits intestinal barrier function and decreases GvHD in a mouse model [Mathewson et al. 2016]. Notwithstanding this, it has been shown once aGvHD of the gut has occurred, butyrogens may impair recovery and lead to chronic GvHD [Golob et al. 2019]. In this perspective, a lower proportion of strict anaerobes and thus butyrate producers in aGvHD controls as we reported above (Fig. S2) does make sense and even questions the transfer-ability of the mouse model to human allo-HCST conditions. ### Butyrate producers are among control-GM *Blautia* has been found associated with reduced death from aGvHD [Jenq et al. 2015]. In line with this report, we found all three *Blautia* species, *Blautia faecis, Blautia producta* and *Blautia glucerasea*, selected by DESeq analysis to be associated with aGvHD controls. Blautia are indole negative but possible butyrate producers via the Acetyl-Coa/buk pathway [Vital et al. 2014]. We found the butyrate producers *Clostridium butyricum* [Cassir et al. 2016], *Clostridium sporosphaeroides* [Louis and Flint 2017], *Anaerostipes caccae* [Schwiertz et al. 2002], *Acidaminococcus fermentans* and *Acidaminococcus intestini* [Vital et al. 2013] and *Sutterella wadsworthensis* [Lahi-ani et al. 2019] to be associated with aGvHD controls. Thus a butyrigenic GM does seem to avoid aGvHD on-set. ### Allo-HSCT conditioning and the GM Our analysis of overall GM evolution across allo-HSCT shows that at baseline, i.e. after immunosuppressive conditioning, GM composition is already significantly altered, with notably decrease of strict anaerobes among which most butyrate producers are found. At the same time, gram positive bacteria seem to be boosted by the immunosuppressive conditioning. Cyclosporine for instance seems to boost gram positive species, whereas its alternative tacrolimus does not. ### Auto-FMT and allo-HSCT If auto-FMT is to be practiced, the question arises when to source the samples. Sourcing after the initiation of immunosuppressive conditioning would avoid restoring butyrate producing species, which could be the safest option. Auto-FMT from our results not only restores a certain level of species diversity but also lowers the relative abundance of pathobionts as indicated by the average biological safety level. ### antibiotics use and the GM Three features in our analysis point to a different use of oral antibiotics in aGvHD controls as compared to aGvHD cases: the lower proportion of gram positive and strict anaerobes and the higher proportion of BSL 2 organisms, all at aGvHD onset. This tends to credit the thesis that antibiotic gram positive anaerobe cleansing lowers the risk of aGvHD. On the other hand, higher species diversity is associated with aGvHD controls, which does not plead for a high overall GM cleansing level. ### The Treg/Th17 balance *Bifidobacterium bifidum* and *Bifidobacterium adolescentis* influence the Treg/Th17 balance, inducing Th17 differentiation [López et al. 2011, Tan et al. 2016]. Likewise, *Prevotella* species are associated with a Th17 response [Larsen 2017], with a pro-inflammatory role for *Prevotella copri* in rheumatoid arthritis [Scher et al. 2013]. Treg/Th17 decrease has been associated with aGvHD and proposed as a biomarker [Liu et al. 2013, Han et al. 2018]. The selection of *Bifidobacterium bifidum* and *Prevotella melaninogenics* by the RSF method reported above as important mortality associated species and the selection of *Prevotella copri* as an aGvHD associated bacterium thus are coherent with previous findings. On the other hand, *Bifidobacterium longum* strains elicit in majority IL-10 [López et al. 2011], which is a powerful negative regulator of immunemediated inflammation with a broad range of target cell types, primarily of hematopoietic origin [Chaudhry et al. 2011]. Regulatory T-cell therapy for GvHD has been suggested [Heinrichs et al. 2016, Elias and Rudensky 2019]. Of note, another *Bifidobacterium, B. breve* stands out in our analysis since selected by DESeq as an aGvDH associated taxon with significant fold change. *B. breve* elicits IFN*γ*, TNF*α* and IL-10, a Th1 profile [López et al. 2011]. ### Modulating the allo-HSCT GM An indole producer such as *Escherichia coli* Nissle [Schumann et al. 2012] could be used for prophylactic treatment - we found *E. coli* to be a control associated species. The strain has a well documented chromosome encoded antibiotic resistance spectrum [Sonnenborn and Schulze 2009]; for instance it is resistant to Vancomycin and Metronidazole allowing for prophylactic treatment during antibiotic cleansing of the gut. From our in silico GM modulation test results, *Bifidobacterium longum* seems to present high interest but is difficult to combine with other QPS species. Hence, *B. longum* could be used as a prophylactic monotherapy. A selection of a high folate producer could be privileged. Combination of *B. longum* with a bifidogenic but not butyrigenic prebiotic seems indicated, avoiding the butyrigenic inulintype fructans (ITF) or arabinoxylan-oligosaccharides (AXOS) [Rivière et al. 2016]. Metronidazole resistance among *Bifidobacteria* is common [Charteris et al. 1998, Moubareck et al. 2005]. Importantly, *Bifidobacteria* are only moderately suscpetible to the antigram positive Vancomycin [Lim et al. 1993, Charteris et al. 1998, Kheadr et al. 2007] and to the anti-anaerobe Ceftazidime but susceptible to Amoxicillin [Charteris et al. 1998]. Of note, a Rifaximin resistant strain of *B. longum* W11 has been documented and is commercially available [Graziano et al. 2016]. Prophylactic use of Rifaximin has been shown to lower IL-6 levels [Qayed et al. 2013], preserve urinary 3-IS levels and increase survival as compared to Ciprofloxacin/Metronidazole [Weber et al. 2016]. ## Conclusions From our results, it appears aGvDH risk is reduced by GM cleansing with targeted antibiotics. Auto-FMT is capable of accelerating the recovery of GM diversity and replacement of pathobionts selected by antibiotics. The Threg/Th17 balance could explain why we see certain species associated with aGvHD or TMR and others with aGvHD controls. From this perspective, and because of in silico prediction of antagonism of aGvHD associated species, it seems of interest to supplement *B. longum* as a prophylactic, especially if antibiotics use is limited to Vancomycin, Metronidazole, Ceftazidime and Rifaximin. Prebiotics and vitamin B9 could further enhance the treatment. ## Data Availability Data and ananlysis scripts have been made available under Github. [https://github.com/GeneCreek/GvHD-manuscript](https://github.com/GeneCreek/GvHD-manuscript) ## Acknowledgements The authors acknowledge the contributions to the Short Read Archive made by the respective institutions and acknowledge scientific journals for enforcing this practice. * Received April 8, 2020. * Revision received April 8, 2020. * Accepted April 11, 2020. * © 2020, Posted by Cold Spring Harbor Laboratory This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at [http://creativecommons.org/licenses/by-nc-nd/4.0/](http://creativecommons.org/licenses/by-nc-nd/4.0/) ## Bibliography 1. D W Beelen, A Elmaagacli, K D Müller, H Hirche, and U W Schaefer. Influence of intestinal bacterial decontamination using metronidazole and ciprofloxacin or ciprofloxacin alone on the development of acute graft-versus-host disease after marrow transplantation in patients with hematologic malignancies: final results and long-term follow-up of an open-label prospective randomized trial. Blood, 93(10):3267–3275, May 1999. doi: 10.1182/blood.V93.10.3267.410k22\_3267\_3275. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImJsb29kam91cm5hbCI7czo1OiJyZXNpZCI7czoxMDoiOTMvMTAvMzI2NyI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIwLzA0LzExLzIwMjAuMDQuMDguMjAwNTgxOTguYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 2. Elena Biagi, Daniele Zama, Simone Rampelli, Silvia Turroni, Patrizia Brigidi, Clarissa Consolandi, Marco Severgnini, Eleonora Picotti, Pietro Gasperini, Pietro Merli, Nunzia Decembrino, Marco Zecca, Simone Cesaro, Maura Faraci, Arcangelo Prete, Franco Locatelli, Andrea Pession, Marco Candela, and Riccardo Masetti. Early gut microbiota signature of aGvHD in children given allogeneic hematopoietic cell transplantation for hematological disorders. BMC medical genomics, 12(1):49–11, March 2019. doi: 10.1186/s12920-019-0494-7. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12920-019-0494-7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30845942&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F11%2F2020.04.08.20058198.atom) 3. N Cassir, S Benamar, and B La Scola. Clostridium butyricum: from beneficial to a new emerging pathogen. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 22(1):37–45, January 2016. doi: 10.1016/j.cmi.2015.10.014. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.cmi.2015.10.014&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26493849&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F11%2F2020.04.08.20058198.atom) 4. W P Charteris, P M Kelly, L Morelli, and J K Collins. Antibiotic susceptibility of potentially probiotic Bifidobacterium isolates from the human gastrointestinal tract. Letters in applied microbiology, 26(5):333–337, May 1998. doi: 10.1046/j.1472-765x.1998.00342. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1046/j.1472-765X.1998.00342.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9674160&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F11%2F2020.04.08.20058198.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000074528800001&link_type=ISI) 5. Ashutosh Chaudhry, Robert M Samstein, Piper Treuting, Yuqiong Liang, Marina C Pils, Jan-Michael Heinrich, Robert S Jack, F Thomas Wunderlich, Jens C Brüning, Werner Müller, and Alexander Y Rudensky. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity, 34(4):566–578, April 2011. doi: 10.1016/j.immuni.2011.03.018. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.immuni.2011.03.018&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21511185&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F11%2F2020.04.08.20058198.atom) 6. M R D’Aimmo, P Mattarelli, B Biavati, N G Carlsson, and T Andlid. The potential of bifidobacteria as a source of natural folate. Journal of applied microbiology, 112(5): 975–984, May 2012. doi: 10.1111/j.1365-2672.2012.05261.x. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1365-2672.2012.05261.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22335359&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F11%2F2020.04.08.20058198.atom) 7. Federica D’Amico, Elena Biagi, Simone Rampelli, Jessica Fiori, Daniele Zama, Matteo Soverini, Monica Barone, Davide Leardini, Edoardo Muratore, Arcangelo Prete, Roberto Gotti, Andrea Pession, Riccardo Masetti, Patrizia Brigidi, Silvia Turroni, and Marco Candela. Enteral Nutrition in Pediatric Patients Undergoing Hematopoietic SCT Promotes the Recovery of Gut Microbiome Homeostasis. Nutrients, 11(12), December 2019. doi: 10.3390/nu11122958. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/nu11122958&link_type=DOI) 8. Shlomo Elias and Alexander Y Rudensky. Therapeutic use of regulatory T cells for graft-versus-host disease. British journal of haematology, 187(1):25–38, October 2019. doi: 10.1111/bjh.16157. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/bjh.16157&link_type=DOI) 9. Jessica R Galloway-Peña, Christine B Peterson, Farida Malik, Pranoti V Sahasrabhojane, Dimpy P Shah, Chelcy E Brumlow, Lily G Carlin, Roy F Chemaly, Jin Seon Im, Gabriela Rondon, Edd Felix, Lucas Veillon, Philip L Lorenzi, Amin M Alousi, Robert R Jenq, Dimitrios P Kontoyiannis, Elizabeth J Shpall, Samuel A Shelburne, and Pablo C Okhuysen. Fecal Microbiome, Metabolites, and Stem Cell Transplant Outcomes: A Single-Center Pilot Study. Open forum infectious diseases, 6(5):ofz173, May 2019. doi: 10.1093/ofid/ofz173. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/ofid/ofz173&link_type=DOI) 10. Jonathan L Golob, Steven A Pergam, Sujatha Srinivasan, Tina L Fiedler, Congzhou Liu, Kristina Garcia, Marco Mielcarek, Daisy Ko, Sarah Aker, Sara Marquis, Tillie Loeffelholz, Anna Plantinga, Michael C Wu, Kevin Celustka, Alex Morrison, Maresa Woodfield, and David N Fredricks. Stool Microbiota at Neutrophil Recovery Is Predictive for Severe Acute Graft vs Host Disease After Hematopoietic Cell Transplantation. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 65(12): 1984–1991, November 2017. doi: 10.1093/cid/cix699. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/cid/cix699&link_type=DOI) 11. Jonathan L Golob, Martha M DeMeules, Tillie Loeffelholz, Z Z Quinn, Michael K Dame, Sabrina S Silvestri, Michael C Wu, Thomas M Schmidt, Tina L Fiedler, Matthew J Hoostal, Marco Mielcarek, Jason Spence, Steven A Pergam, and David N Fredricks. Butyrogenic bacteria after acute graft-versus-host disease (GVHD) are associated with the development of steroid-refractory GVHD. Blood advances, 3(19):2866–2869, October 2019. doi: 10.1182/bloodadvances.2019000362. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmxvb2RvYSI7czo1OiJyZXNpZCI7czo5OiIzLzE5LzI4NjYiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMC8wNC8xMS8yMDIwLjA0LjA4LjIwMDU4MTk4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 12. Teresa Graziano, Angela Amoruso, Stefania Nicola, Francesca Deidda, Serena Allesina, Marco Pane, Pietro Piffanelli, Francesco Strozzi, Luca Mogna, and Mario Del Piano. The Possible Innovative Use of Bifidobacterium longum W11 in Association With Rifaximin: A New Horizon for Combined Approach? Journal of clinical gastroenterology, 50 Suppl 2, Proceedings from the 8th Probiotics, Prebiotics & New Foods for Microbiota and Human Health meeting held in Rome, Italy on September 13-15, 2015: S153–S156, November 2016. doi: 10.1097/MCG.0000000000000683. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/MCG.0000000000000683&link_type=DOI) 13. Groemping, Ulrike. Relative Importance for Linear Regression in R: The Package relaimpo. Journal of Statistical Software, 17(1):1–27, September 2006. doi: 10.18637/jss.v017.i01. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.18637/jss.v017.i01&link_type=DOI) 14. Lijie Han, Hua Jin, Lizhi Zhou, Xin Zhang, Zhiping Fan, Min Dai, Qianyun Lin, Fen Huang, Li Xuan, Haiyan Zhang, and Qifa Liu. Intestinal Microbiota at Engraftment Influence Acute Graft-Versus-Host Disease via the Treg/Th17 Balance in Allo-HSCT Recipients. Frontiers in immunology, 9:669, 2018. doi: 10.3389/fimmu.2018.00669. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fimmu.2018.00669&link_type=DOI) 15. Jessica Heinrichs, David Bastian, Anandharaman Veerapathran, Claudio Anasetti, Brain Betts, and Xue-Zhong Yu. Regulatory T-Cell Therapy for Graft-versus-host Disease. Journal of immunology research and therapy, 1(1):1–14, 2016. 16. G R Hill, J M Crawford, K R Cooke, Y S Brinson, L Pan, and J L Ferrara. Total body irradiation and acute graftversus-host disease: the role of gastrointestinal damage and inflammatory cytokines. Blood, 90(8):3204–3213, October 1997. doi: 10.1182/blood.V90.8.3204. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImJsb29kam91cm5hbCI7czo1OiJyZXNpZCI7czo5OiI5MC84LzMyMDQiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMC8wNC8xMS8yMDIwLjA0LjA4LjIwMDU4MTk4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 17. Ernst Holler, Peter Butzhammer, Karin Schmid, Christian Hundsrucker, Josef Koestler, Katrin Peter, Wentao Zhu, Daniela Sporrer, Thomas Hehlgans, Marina Kreutz, Barbara Holler, Daniel Wolff, Matthias Edinger, Reinhard Andreesen, John E Levine, James L Ferrara, André Gessner, Rainer Spang, and Peter J Oefner. Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation, 20 (5):640–645, May 2014. doi: 10.1016/j.bbmt.2014.01.030. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bbmt.2014.01.030&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24492144&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F11%2F2020.04.08.20058198.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000334649000007&link_type=ISI) 18. Robert R Jenq, Ying Taur, Sean M Devlin, Doris M Ponce, Jenna D Goldberg, Katya F Ahr, Eric R Littmann, Lilan Ling, Asia C Gobourne, Liza C Miller, Melissa D Docampo, Jonathan U Peled, Nicholas Arpaia, Justin R Cross, Tatanisha K Peets, Melissa A Lumish, Yusuke Shono, Jarrod A Dudakov, Hendrik Poeck, Alan M Hanash, Juliet N Barker, Miguel-Angel Perales, Sergio A Giralt, Eric G Pamer, and Marcel R M van den Brink. Intestinal Blautia Is Associated with Reduced Death from Graft-versus-Host Disease. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation, 21 (8):1373–1383, August 2015. doi: 10.1016/j.bbmt.2015.04.016. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bbmt.2015.04.016&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25977230&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F11%2F2020.04.08.20058198.atom) 19. Kazutaka Katoh, George Asimenos, and Hiroyuki Toh. Multiple alignment of DNA sequences with MAFFT. Methods in molecular biology (Clifton, N.J.), 537(Suppl 5):39–64, 2009. doi: 10.1007/978-1-59745-251-9_3. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/978-1-59745-251-9_3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19378139&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F11%2F2020.04.08.20058198.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000268335500003&link_type=ISI) 20. E Kheadr, N Dabour, C Le Lay, C Lacroix, and I Fliss. Antibiotic susceptibility profile of bifidobacteria as affected by oxgall, acid, and hydrogen peroxide stress. Antimicrobial agents and chemotherapy, 51(1):169–174, January 2007. doi: 10.1128/AAC.00261-06. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjg6IjUxLzEvMTY5IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjAvMDQvMTEvMjAyMC4wNC4wOC4yMDA1ODE5OC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 21. Makoto Kinoshita, Hisako Kayama, Takashi Kusu, Tomoyuki Yamaguchi, Jun Kunisawa, Hiroshi Kiyono, Shimon Sakaguchi, and Kiyoshi Takeda. Dietary folic acid promotes survival of Foxp3+ regulatory T cells in the colon. Journal of immunology (Baltimore, Md. : 1950), 189(6):2869–2878, September 2012. doi: 10.4049/jimmunol.1200420. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiamltbXVub2wiO3M6NToicmVzaWQiO3M6MTA6IjE4OS82LzI4NjkiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMC8wNC8xMS8yMDIwLjA0LjA4LjIwMDU4MTk4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 22. Mohamed H Lahiani, Kuppan Gokulan, Katherine Williams, and Sangeeta Khare. Impact of Pristine Graphene on Intestinal Microbiota Assessed Using a Bioreactor-Rotary Cell Culture System. ACS applied materials & interfaces, 11(29):25708–25719, July 2019. doi: 10.1021/acsami.9b07635. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1021/acsami.9b07635&link_type=DOI) 23. Jeppe Madura Larsen. The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology, 151(4):363–374, August 2017. doi: 10.1111/imm.12760. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/imm.12760&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28542929&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F11%2F2020.04.08.20058198.atom) 24. K S Lim, C S Huh, and Y J Baek. Antimicrobial susceptibility of bifidobacteria. Journal of Dairy Science, 76(8):2168–2174, August 1993. doi: 10.3168/jds.S0022-0302(93)77553-0. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3168/jds.S0022-0302(93)77553-0&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=8408866&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F11%2F2020.04.08.20058198.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1993LR04400006&link_type=ISI) 25. C Liu, D N Frank, M Horch, S Chau, D Ir, E A Horch, K Tretina, K van Besien, C A Lozupone, and V H Nguyen. Associations between acute gastrointestinal GvHD and the baseline gut microbiota of allogeneic hematopoietic stem cell transplant recipients and donors. Bone marrow transplantation, 52(12): 1643–1650, December 2017. doi: 10.1038/bmt.2017.200. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/bmt.2017.200&link_type=DOI) 26. Yuejun Liu, Yifeng Cai, Lan Dai, Guanghua Chen, Xiao Ma, Ying Wang, Ting Xu, Song Jin, Xiaojin Wu, Huiying Qiu, Xiaowen Tang, Caixia Li, Aining Sun, Depei Wu, and Haiyan Liu. The expression of Th17-associated cytokines in human acute graft-versus-host disease. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation, 19(10):1421–1429, October 2013. doi: 10.1016/j.bbmt.2013.06.013. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bbmt.2013.06.013&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23792271&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F11%2F2020.04.08.20058198.atom) 27. Patricia López, Irene González-Rodríguez, Miguel Gueimonde, Abelardo Margolles, and Ana Suárez. Immune response to Bifidobacterium bifidum strains support Treg/Th17 plasticity. PLoS ONE, 6(9), 2011. doi: 10.1371/journal.pone.0024776. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0024776&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21966367&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F11%2F2020.04.08.20058198.atom) 28. Petra Louis and Harry J Flint. Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology, 19(1):29–41, January 2017. doi: 10.1111/1462-2920.13589. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/1462-2920.13589&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27928878&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F11%2F2020.04.08.20058198.atom) 29. Michael I Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology, 15 (12):550, 2014. doi: 10.1186/s13059-014-0550-8. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s13059-014-0550-8&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25516281&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F11%2F2020.04.08.20058198.atom) 30. John Magenau, Lyndsey Runaas, and Pavan Reddy. Advances in understanding the pathogenesis of graftversus-host disease. British journal of haematology, 173(2):190–205, April 2016. doi: 10.1111/bjh.13959. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/bjh.13959&link_type=DOI) 31. Nathan D Mathewson, Robert Jenq, Anna V Mathew, Mark Koenigsknecht, Alan Hanash, Tomomi Toubai, Katherine Oravecz-Wilson, Shin-Rong Wu, Yaping Sun, Corinne Rossi, Hideaki Fujiwara, Jaeman Byun, Yusuke Shono, Caroline Lindemans, Marco Calafiore, Thomas M Schmidt, Kenya Honda, Vincent B Young, Subramaniam Pennathur, Marcel van den Brink, and Pavan Reddy. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nature Immunology, 17(5):505–513, May 2016. doi: 10.1038/ni.3400. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/ni.3400&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26998764&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F11%2F2020.04.08.20058198.atom) 32. McMurdie, Paul J, Rosen, Michael J, Han, Andrew W, Johnson, Amy Jo A, Holmes, Susan P, and Callahan, Benjamin J. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, pages 1–7, May 2016. doi: 10.1038/nmeth.3869. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/nmeth.3869&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27214047&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F11%2F2020.04.08.20058198.atom) 33. Emmanuel Montassier, Eric Batard, Sébastien Massart, Thomas Gastinne, Thomas Carton, Jocelyne Caillon, Sophie Le Fresne, Nathalie Caroff, Jean Benoit Hardouin, Philippe Moreau, Gilles Potel, Françoise Le Vacon, and Marie France de La Cochetière. 16S rRNA Gene Pyrosequencing Reveals Shift in Patient Faecal Microbiota During High-Dose Chemotherapy as Conditioning Regimen for Bone Marrow Transplantation. Microbial Ecology, 67(3):690–699, April 2014. doi: 10.1007/s00248-013-0355-4. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00248-013-0355-4&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24402367&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F11%2F2020.04.08.20058198.atom) 34. C Moubareck, F Gavini, L Vaugien, M J Butel, and F Doucet-Populaire. Antimicrobial susceptibility of bifidobacteria. Journal of Antimicrobial Chemotherapy, 55(1):38–44, January 2005. doi: 10.1093/jac/dkh495. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/jac/dkh495&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15574479&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F11%2F2020.04.08.20058198.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000226309100006&link_type=ISI) 35. Eric G. Pamer, Ying Taur, Robert Jenq, and Marcel R.M. van den Brink. Impact of the Intestinal Microbiota on Infections and Survival Following Hematopoietic Stem Cell Transplantation. Blood, 21(124), December 2014. doi: 10.1182/blood.V124.21.SCI-48.SCI-48. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1182/blood.V124.21.SCI-48.SCI-48&link_type=DOI) 36. Price, Morgan N, Dehal, Paramvir S, and Arkin, Adam P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE, 5(3):e9490, March 2010. doi: 10.1371/journal.pone.0009490. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0009490&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20224823&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F11%2F2020.04.08.20058198.atom) 37. Muna Qayed, Amelia Langston, Kuang-Yueh Chiang, Keith August, Joseph A Hilinski, Conrad R Cole, Andre Rogatko, Roberd M Bostick, and John T Horan. Rifaximin for preventing acute graft-versus-host disease: impact on plasma markers of inflammation and T-cell activation. Journal of pediatric hematology/oncology, 35(4):e149–52, May 2013. doi: 10.1097/MPH.0b013e31827e56af. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/MPH.0b013e31827e56af&link_type=DOI) 38. Audrey Rivière, Marija Selak, David Lantin, Frédéric Leroy, and Luc De Vuyst. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Frontiers in Microbiology, 7(1030):979, 2016. doi: 10.3389/fmicb.2016.00979. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fmicb.2016.00979&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27446020&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F11%2F2020.04.08.20058198.atom) 39. Jose U Scher, Andrew Sczesnak, Randy S Longman, Nicola Segata, Carles Ubeda, Craig Bielski, Tim Rostron, Vincenzo Cerundolo, Eric G Pamer, Steven B Abramson, Curtis Huttenhower, and Dan R Littman. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife, 2: e01202, November 2013. doi: 10.7554/eLife.01202. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.7554/eLife.01202&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24192039&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F11%2F2020.04.08.20058198.atom) 40. Sara Schumann, Carl Alpert, Wolfram Engst, Gunnar Loh, and Michael Blaut. Dextran sodium sulfateinduced inflammation alters the expression of proteins by intestinal Escherichia coli strains in a gnotobiotic mouse model. Applied and Environmental Microbiology, 78(5):1513–1522, March 2012. doi: 10.1128/AEM.07340-11. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWVtIjtzOjU6InJlc2lkIjtzOjk6Ijc4LzUvMTUxMyI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIwLzA0LzExLzIwMjAuMDQuMDguMjAwNTgxOTguYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 41. Andreas Schwiertz, Georgina L Hold, Sylvia H Duncan, Barbel Gruhl, Matthew D Collins, Paul A Lawson, Harry J Flint, and Michael Blaut. Anaerostipes caccae gen. nov., sp. nov., a new saccharolytic, acetateutilising, butyrate-producing bacterium from human faeces. Systematic and applied microbiology, 25(1):46–51, April 2002. doi: 10.1078/0723-2020-00096. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1078/0723-2020-00096&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12086188&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F11%2F2020.04.08.20058198.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000176285200006&link_type=ISI) 42. Yusuke Shono, Melissa D Docampo, Jonathan U Peled, Suelen M Perobelli, Enrico Velardi, Jennifer J Tsai, Ann E Slingerland, Odette M Smith, Lauren F Young, Jyotsna Gupta, Sophia R Lieberman, Hillary V Jay, Katya F Ahr, Kori A Porosnicu Rodriguez, Ke Xu, Marco Calarfiore, Hendrik Poeck, Silvia Caballero, Sean M Devlin, Franck Rapaport, Jarrod A Dudakov, Alan M Hanash, Boglarka Gyurkocza, George F Murphy, Camilla Gomes, Chen Liu, Eli L Moss, Shannon B Falconer, Ami S Bhatt, Ying Taur, Eric G Pamer, Marcel R M van den Brink, and Robert R Jenq. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Science Translational Medicine, 8(339):339ra71–339ra71, May 2016. doi: 10.1126/scitranslmed.aaf2311. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTE6InNjaXRyYW5zbWVkIjtzOjU6InJlc2lkIjtzOjEzOiI4LzMzOS8zMzlyYTcxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjAvMDQvMTEvMjAyMC4wNC4wOC4yMDA1ODE5OC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 43. Ulrich Sonnenborn and Jürgen Schulze. The nonpathogenic Escherichia colistrain Nissle 1917 –features of a versatile probiotic. Microbial Ecology in Health and Disease, 21(3-4):122–158, December 2009. doi: 10.3109/08910600903444267. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3109/08910600903444267&link_type=DOI) 44. Hirosuke Sugahara, Toshitaka Odamaki, Nanami Hashikura, Fumiaki Abe, and Jin-Zhong Xiao. Differences in folate production by bifidobacteria of different origins. Bioscience of microbiota, food and health, 34(4):87–93, 2015. doi: 10.12938/bmfh.2015-003. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.12938/bmfh.2015-003&link_type=DOI) 45. Alyson Swimm, Cynthia R Giver, Zachariah DeFilipp, Sravanti Rangaraju, Akshay Sharma, Alina Ulezko Antonova, Robert Sonowal, Christopher Capaldo, Domonica Powell, Muna Qayed, Daniel Kalman, and Edmund K Waller. Indoles derived from intestinal microbiota act via type I interferon signaling to limit graft-versus-host disease. Blood, 132(23):2506–2519, December 2018. doi: 10.1182/blood-2018-03-838193. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImJsb29kam91cm5hbCI7czo1OiJyZXNpZCI7czoxMToiMTMyLzIzLzI1MDYiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMC8wNC8xMS8yMDIwLjA0LjA4LjIwMDU4MTk4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 46. Tze Guan Tan, Esen Sefik, Naama Geva-Zatorsky, Lindsay Kua, Debdut Naskar, Fei Teng, Lesley Pasman, Adriana Ortiz-Lopez, Ray Jupp, Hsin-Jung Joyce Wu, Dennis L Kasper, Christophe Benoist, and Diane Mathis. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proceedings of the National Academy of Sciences of the United States of America, 113(50): E8141–E8150, December 2016. doi: 10.1073/pnas.1617460113. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMjoiMTEzLzUwL0U4MTQxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjAvMDQvMTEvMjAyMC4wNC4wOC4yMDA1ODE5OC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 47. Ying Taur, Robert R Jenq, Miguel-Angel Perales, Eric R Littmann, Sejal Morjaria, Lilan Ling, Daniel No, Asia Gobourne, Agnes Viale, Parastoo B Dahi, Doris M Ponce, Juliet N Barker, Sergio Giralt, Marcel van den Brink, and Eric G Pamer. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood, 124(7):1174–1182, August 2014. doi: 10.1182/blood-2014-02-554725. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImJsb29kam91cm5hbCI7czo1OiJyZXNpZCI7czoxMDoiMTI0LzcvMTE3NCI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIwLzA0LzExLzIwMjAuMDQuMDguMjAwNTgxOTguYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 48. Ying Taur, Katharine Coyte, Jonas Schluter, Elizabeth Robilotti, Cesar Figueroa, Mergim Gjonbalaj, Eric R Littmann, Lilan Ling, Liza Miller, Yangtsho Gyaltshen, Emily Fontana, Sejal Morjaria, Boglarka Gyurkocza, Miguel-Angel Perales, Hugo Castro-Malaspina, Roni Tamari, Doris Ponce, Guenther Koehne, Juliet Barker, Ann Jakubowski, Esperanza Papadopoulos, Parastoo Dahi, Craig Sauter, Brian Shaffer, James W Young, Jonathan Peled, Richard C Meagher, Robert R Jenq, Marcel R M van den Brink, Sergio A Giralt, Eric G Pamer, and Joao B Xavier. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Science Translational Medicine, 10(460), September 2018. doi: 10.1126/scitranslmed.aap9489. [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MTE6InNjaXRyYW5zbWVkIjtzOjU6InJlc2lkIjtzOjE1OiIxMC80NjAvZWFhcDk0ODkiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMC8wNC8xMS8yMDIwLjA0LjA4LjIwMDU4MTk4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 49. Marius Vital, Christopher R Penton, Qiong Wang, Vincent B Young, Dion A Antonopoulos, Mitchell L Sogin, Hilary G Morrison, Laura Raffals, Eugene B Chang, Gary B Huffnagle, Thomas M Schmidt, James R Cole, and James M Tiedje. A gene-targeted approach to investigate the intestinal butyrate-producing bacterial community. Microbiome, 1(1):8, March 2013. doi: 10.1186/2049-2618-1-8. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/2049-2618-1-8&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24451334&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F11%2F2020.04.08.20058198.atom) 50. Marius Vital, Adina Chuang Howe, and James M Tiedje. Revealing the Bacterial Butyrate Synthesis Pathways by Analyzing (Meta)genomic Data. mBio, 5(2):e00889.#x2013;14–e00889–14, May 2014. doi: 10.1128/mBio.00889-14. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1128/mBio.00889-14&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24757212&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F11%2F2020.04.08.20058198.atom) 51. Jaak M Vossen, Harry F L Guiot, Arjan C Lankester, Ann C T M Vossen, Robbert G M Bredius, Ron Wolter-beek, Hanny D J Bakker, and Peter J Heidt. Complete suppression of the gut microbiome prevents acute graft-versus-host disease following allogeneic bone marrow transplantation. PLoS ONE, 9(9), 2014. doi: 10.1371/journal.pone.0105706. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0105706&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25180821&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F11%2F2020.04.08.20058198.atom) 52. D Weber, P J Oefner, K Dettmer, A Hiergeist, J Koestler, A Gessner, M Weber, F Stämmler, J Hahn, D Wolff, W Herr, and E Holler. Rifaximin preserves intestinal microbiota balance in patients undergoing allogeneic stem cell transplantation. Bone marrow transplantation, 51(8):1087–1092, August 2016. doi: 10.1038/bmt.2016.66. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/bmt.2016.66&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26999466&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F11%2F2020.04.08.20058198.atom) 53. Daniela Weber, Peter J Oefner, Andreas Hiergeist, Josef Koestler, André Gessner, Markus Weber, Joachim Hahn, Daniel Wolff, Frank Stämmler, Rainer Spang, Wolfgang Herr, Katja Dettmer, and Ernst Holler. Low urinary indoxyl sulfate levels early after transplantation reflect a disrupted microbiome and are associated with poor outcome. Blood, 126(14):1723–1728, October 2015. doi: 10.1182/blood-2015-04-638858. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImJsb29kam91cm5hbCI7czo1OiJyZXNpZCI7czoxMToiMTI2LzE0LzE3MjMiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMC8wNC8xMS8yMDIwLjA0LjA4LjIwMDU4MTk4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 54. Daniela Weber, Andreas Hiergeist, Markus Weber, Katja Dettmer, Daniel Wolff, Joachim Hahn, Wolfgang Herr, André Gessner, and Ernst Holler. Detrimental Effect of Broad-spectrum Antibiotics on Intestinal Microbiome Diversity in Patients After Allogeneic Stem Cell Transplantation: Lack of Commensal Sparing Antibiotics. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 68(8): 1303–1310, April 2019. doi: 10.1093/cid/ciy711. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/cid/ciy711&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30124813&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F04%2F11%2F2020.04.08.20058198.atom)