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The infectious novel coronavirus disease COVID-19 outbreak has been declared as a public health
emergency of international concern, and later as an epidemic. To date, this outbreak has infected
more than one million people and killed over fifty thousand people across the world. In most coun-
tries, the COVID-19 incidence curve rises sharply in a short span of time, suggesting a transition
from a disease free (or low-burden disease) equilibrium state to a sustained infected (or high-burden
disease) state. Such a transition from one stable state to another state in a relatively short span
of time is often termed as a critical transition. Critical transitions can be, in general, successfully
forecasted using many statistical measures such as return rate, variance and lag-1 autocorrelation.
Here, we report an empirical test of this forecasting on the COVID-19 data sets for nine countries in-
cluding India, China and the United States. For most of the data sets, an increase in autocorrelation
and a decrease in return rate predict the onset of a critical transition. Our analysis suggests two key
features in predicting the COVID-19 incidence curve for a specific country: a) the timing of strict
social distancing and/or lockdown interventions implemented, and b) the fraction of a nation’s pop-
ulation being affected by COVID-19 at the time of implementation of these interventions. Further,
using satellite data of nitrogen dioxide which is emitted predominantly as a result of anthropogenic
activities, as an indicator of lockdown policy, we find that in countries where the lockdown was
implemented early and strictly have been successful in reducing the extent of transmission of the
virus. These results hold important implications for designing effective strategies to control the
spread of infectious pandemics.

I. INTRODUCTION

The outbreak of the COVID-19 disease caused by a
novel pathogenic coronavirus (SARS-CoV-2) - which ini-
tiated in Wuhan, China in December 2019 - is a global
challenge for the healthcare, economy and the society
[1]. The World Health Organization (WHO) assessed
the massive epidemics of the disease (COVID-19) and
declared it as a Public Health Emergency of Interna-
tional Concern (PHEIC) [2]. Since the Wuhan outbreak,
nearly all the United Nations member countries have ex-
perienced a rapid spread of the virus and are taking pre-
ventive measures to overcome the threats posed by the
pandemic [3].

The COVID-19 disease can spread in a population
through infected symptomatic/asymptomatic individuals
who come in contact directly/indirectly [4]. Thus, con-
cerned with the public health and well-being affected due
to COVID-19, various countries have adopted compre-
hensive strategies converging to social distancing such as
the closure of schools, ban of large gatherings, isolation of
symptomatic individuals, and monitoring travelers, par-
ticularly to those from COVID-19 hotspots. Large scale
lockdowns of populations have been implemented to pre-
vent social contacts and reduce reproduction of the in-
fected cases [5–7]. Evidence also highlights the impor-
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tance of mitigation interventions in controlling the trans-
mission of the virus [5, 8, 9]. Nonetheless, the timing of
the implementation of strategies vary between countries
and can significantly influence the growth curve of the
epidemic [10].

The growth curve of total confirmed cases for many
countries initially demonstrates a gradual increase near
the start of the epidemic and is often followed by a sud-
den shoot or a critical transition [11, 12], as the disease
spreads. This shoot places a considerable burden on the
limited availability of the public health resources required
to treat the disease and inhibit its further spread. Thus,
it is crucial to anticipate this inevitable transition to take
effective controlling measures for the outbreak. There
exists a rich history of investigations that can predict
processes that could lead to ecological outbreaks [13–
16]. Theory suggests practical applicability of a variety of
leading generic indicators, widely known as Early Warn-
ing Signals (EWSs) (e.g. return rate, variance, autocor-
relation, and conditional heteroskedasticity) to identify
the proximity of a system to such a critical transition
[13, 14, 17]. For instance, in time-series data following
ancient abrupt climate shifts, EWSs can be identified
before the critical transition took place [18]. Similarly,
EWSs were seen in the resurgence of malaria in Kericho,
Kenya [19].

EWSs are hallmarks of critical slowing down (CSD)
of a system as it approaches a critical transition. The
phenomenon of CSD owes to the loss of resilience in the
system such that even small disturbances can invoke an
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often irreversible transition to an alternative stable state
[11, 20]. In particular, the phenomenon of CSD can be
captured as a large time taken by a system to return to
its previous states due to which the rate of return of a
system decreases prior to a transition. Moreover, it leads
to an increase in the short term memory of a system, this
feature can be identified by the changes in the correla-
tion structure of a time-series preceding a critical tran-
sition [13, 14, 21–23]. Thus, it is crucial to understand
whether these indicators capture the characteristics of
slowing down in the epidemic growth curves.

Acquiring prior information about an upcoming tran-
sition that may occur in many countries with confirmed
cases of COVID-19 is urgent to curb the impact of the
rising pandemic and take appropriate containment mea-
sures. While the effectiveness of transmission of the dis-
ease and its severity in an individual depends on various
factors [24], the timing of implementation of various so-
cial distancing measures can play a crucial role to influ-
ence the spread of the epidemic, assuming that the ef-
fectiveness of social communication/interaction in trans-
mitting the disease can be of similar or equal probability
across countries.

To mitigate the epidemic, China strictly restricted
public movement and followed measures of quarantine
and symptomatic isolation 24 days later (i.e., 23 January)
to the arrival of the first reported case. The total re-
ported cases (confirmed) at the time of the lockdown were
nearly 623 (accounting for approximately 4.4732×10−7 of
the total population). The daily increase in the number
of confirmed cases in China, thus, saturated nearly in mid
of March, hence flattening the growth curve of the total
confirmed cases. European countries adopted different
non-pharmaceutical measures to intervene in the disease
transmission. The spread began later in Italy as com-
pared to China; however, the strict interventions were
initiated on 9 March, which marks a gap of nearly 40 days
from the first reported case. Spain, which is continued to
suffer severely by the virus, reported its first infected case
on 1st Feb and took nearly 45 days to put the country on
lockdown(see Table I). India confirmed its first case on
30 January and prompted “Janata curfew” and lockdown
measures for complete cessation of public contacts nearly
around 22 March, with approximately 2.36× 10−7 of its
population as COVID-19 infected cases, while this pro-
portion was more than 1.7×10−4% in the US. Therefore,
it is essential to unfold how prolonged gaps between the
arrival of the epidemic and non-pharmaceutical interven-
tions such as quarantining/social distancing can influence
public health and the environment at a national as well
as a global scale. More interesting is to understand if the
statistical tools can be useful to formulate laws to stifle
the spread of an epidemic.

In this work, we analyse how the timing of strict con-
trolling strategies influence the COVID-19 growth curve
of the total confirmed cases in different countries. We
use statistical tools to calculate the return rate and lag-
1 autocorrelation function of the time-series data of the

cumulative confirmed cases each in nine different coun-
tries. We investigate the EWSs for the alarming situa-
tions observed in the growth curves in each of the coun-
tries and record the timing of implementation of contain-
ment strategies to slow down the outbreak. Our work
suggests that the dynamics of growth curve in the initial
40 days since the first reported case can signal an up-
coming sudden rise in the cumulative number of infected
cases. Thus, preliminary actions of at least 20 days be-
fore the timing of observed EWSs is crucial for an ef-
fective and timely containment of the disease. Delay in
the strict surveillance and control measures can increase
the time to contain the spread, which in turn will af-
fect a larger proportion of the population. Furthermore,
the proportion of the affected cases on the commence-
ment of public health measures plays a significant role in
containing the epidemic in each country. The timeline of
implementation of strict intervention strategies coincided
with that of emergence of EWSs for many countries such
as India, Italy and Germany. However, the relatively
low proportion of the affected cases in the case of In-
dia compared to Italy or Germany can be a significant
factor explaining the slow rise for India but a relatively
disruptive situation in the other countries. Thus, a com-
bination of these two factors for India may restrict the
extent of COVID-19 spread in the country, as compared
to many other countries across the world. We conclude
that model-independent forecasting systems can be ap-
plied to clinical data sets for predictability of the disease
re-occurrence and formulate control policies.

II. RESULTS

We obtain the data sets of the cumulative number of
the COVID-19 cases from the date of reporting of the
first affected person up to 25 March, 2020 each for In-
dia, China, South Korea, the United States (US), Singa-
pore, Germany, Italy, United Kingdom (UK) and Spain
(for the data source see Materials and Methods section).
Figure 1 depicts the growth curve of the fraction of the
affected population in each of these countries. Interest-
ingly, it is noted that the growth curve of the confirmed
cases follows a slow increment for around initial 20-25
days, which can be interpreted as a time window to con-
trol the epidemic promptly and effectively. Since human
to human contact is a leading transmitter of the dis-
ease, therefore, by-passing a certain threshold of infected
cases, the growth curve shows an increasing slope and
finally depicts a sudden large shift/transition in the frac-
tion of affected populations (Fig. 1) [25]. It is important
to note that the growth in number of cases for China
and South Korea, the countries which initiated public
monitoring/social distancing actions relatively earlier as
compared to the other countries, saturates after nearly
3-4 weeks from the initiation of the lockdown. The shift
of the COVID-19 from a low-burden to a high-burden
state can be associated with the phenomenon of critical
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FIG. 1. Time-series constructed as a fraction of total infected cases in nine different countries across the world. The increasing
curves depict growth in the number of cases after the onset of the epidemic in the respective countries up to 25 March. Shaded
regions identify the transition phase nearly after around 40 days (35 in the US) and marks the data used to compute the
indicators of slowing down. The arrows mark the size of the moving window. In the subfigures, A, B, C, F, G, and H, the
arrow-heads on the x-axis mark the beginning of the officially recorded social-distancing and/or lockdown dates, and for other
countries, the recorded social-distancing and/or lockdown dates are after 25 March.

transition. Thus we employ statistical methods that can
monitor the onset of the transition phase and provide in-
sights into the growth curve so as to suggest establishing
worldwide disease elimination campaigns.

Signals of critical slowing down

To estimate statistical indicators anticipating the up-
coming shifts in the growth curve, we extract the cu-
mulative daily number of COVID-19 cases up to 35-40
days from the beginning of the epidemic (shaded regions
in Fig. 1), for each country (note that the EWSs anal-
yses on the fraction of reported case datasets result in
qualitatively similar outcomes). To examine whether the
system slows down to recover from perturbation while ap-
proaching the transition, we estimate the changes in the
return rate and autocorrelation at first lag (ACF(1)) of
each extracted data for all the nine countries (see Meth-
ods). Critical slowing down is reflected in systems near a
critical transition through an increase in the autocorrela-
tion. We observe that after nearly 40 days of the onset of
the epidemic, the short term memory of the time-series
data exhibits an increasing trend in most of the coun-
tries (Fig. 2). However, there are no significant signals
of CSD exhibited by ACF(1) for the datasets of India as
well as Italy (Figs. 2J and 2P). The return rates for all,
except India (Fig. 2A), decreases, thus signaling to ex-

pect a sudden rise in the number of the COVID-19 cases
for these countries. Furthermore, the strength of signals
varies amongst countries depending upon the data sets
determining the fraction of affected populations in indi-
vidual countries. For instance, the trends in the UK are
observed to be very strong, with ACF(1) approaching
close to 1 (see Fig. 2Q) [21]. Since the time lag of up to
almost two weeks is expected for the detection of symp-
tomatic cases, the observed signals of CSD around 40
days indicate that the total cases gathered till then must
be infected with the disease around two weeks ago. Thus,
suitable preventive and surveillance strategies adopted
in the initial 20-25 days are capable of suppressing the
COVID-19 outbreak [26].

EWSs and enforcement of interventions

The timing of intervention measures varies among the
countries. China was the first country to take the con-
tainment measures, nearly after 24 days at the beginning
of the epidemic, while Italy took around 40 days, and
other countries followed afterward. As a consequence, the
COVID-19 growth curve in China flattened after 20-25
days of implementing the intervention measures. Similar
to China, South Korea adopted different combinations of
controlling measures around mid February (in the time
window of 20-25 days since the epidemic began there).
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FIG. 2. Statistical estimates used to analyse the signals of a
forthcoming transition in the COVID-19 growth curve. Fig-
ures on the left panel depicts the return rate measures each for
India, China, South Korea, USA, Singapore, Germany, Italy,
UK, and Spain. The right panel shows the lag-1 autocorre-
lation of the time-series data analysed in the corresponding
countries. Scattered points are the estimated values of the
respective slowing down indicators. Solid lines reflect the in-
creasing/decreasing trend in the indicators and are obtained
by fitting linear regression models. The shaded regions are
the confidence bounds for the fitted models.

This measure was accompanied by a drop in the number
of cases, and the curve followed the pattern as observed
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FIG. 3. Statistical analyses to measure the indicators of
CSD using a backward approach while data extraction, in the
case of India. A: The growth curve depicting the fraction of
people infected from 30 January up to 25 March. The shaded
region is the data used to calculate the return rate and lag-1
autocorrelation function. It demonstrates the epidemic situa-
tion during the period of 40 days prior to the commencement
of the nationwide lockdown. The arrow marks the size of the
rolling window (75%) used to calculate the statistical signals.
B-C: The estimated values of the slowing down indicators.
Solid lines are the fitted linear regression models to analyse
the trend in the indicators along with the confidence bounds
(shaded regions).

for China (Fig. 1 C). The rising indicators of CSD around
40 days also suggest that the time gap in implementing
the protocols such as the closure of public gatherings,
controlled public movement, lockdown beyond 15-25 days
from the onset of the crisis can significantly influence the
growth curve and result in the more extended time re-
quired to flatten it. However, the interventions during
the initial 40 days in each of these countries can slowly
hamper the daily increase in the number of cases. In
the US, the hints of an approaching transition are visible
relatively early (around 35 days after the first case was
reported) by both the return rate as well as the ACF(1)
(Figs. 2D and 2M).

The scenario is quite different in the case of India. The
COVID-19 growth curve does not signal the behavior of
CSD within the initial 40 days of the outbreak (Figs. 2A
and 2J). Due to a continuous rise in the number of cases
and the exponential curve observed for many countries,
we also analyse the EWSs in the growth curve for India,
following a backward approach. We consider the cumula-
tive cases of 40 days prior to the beginning of the country-
wide lockdown (25 March, Fig. 3A). The autocorrelation
captures the signals of CSD (Fig. 3C), whereas the return
rate does not show a decreasing trend (Fig. 3B).
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FIG. 4. The probability distribution of Kendall-τ test statis-
tic on a set of 1000 surrogate time-series generated by boot-
strapping residual time-series of the original data. Histograms
depict the distribution of the test statistic for the surrogate
time-series return rate (left panels) and autocorrelation func-
tion at lag-1 (right panels). Solid lines indicate the limit
beyond which the Kendall-τ of the surrogate data is higher
(lower) than the statistic observed in the ACF(1) (return rate)
of the original time-series.

Onset of social distancing practices and the affected
population density

Another important aspect is to consider the reported
proportion of a population affected at the time of the
implementation of intervention measures. So far, Ger-
many and Italy, which had the largest outbreak in Eu-
rope around mid of the March, had visible signals of the
forthcoming transition (Figs. 2F and 2O). It is noted that
each of the countries, namely India, Germany, and Italy,
adopted concerned public health measures around the
time when the EWSs were visible in their respective data
sets (see the arrow-heads on the x-axis in Fig. 1). How-
ever, the fraction of the population affected by the time
in Germany and Italy was much higher (approximately
2.9× 10−4 and 1.2× 10−4, respectively) as compared to
that for India − 2.36×10−7. Thus, the growth curve pro-
jected a significant rise in these two countries, whereas
the rise in the number of cases in India is still gradual
and is expected to follow a similar response owing to the
effectiveness of these interventions. Overall, our analyses
suggest that delayed interventions (depending upon the
signals of CSD) along with the fraction of the affected
population can influence the country-wise variation in
the daily number of rising cases.
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FIG. 5. The sensitivity of the choice of the rolling window
size and the filtering bandwidth to estimate the EWSs. Con-
tour plots demonstrate the effect of moving window size and
the filtering bandwidth on the trends observed while calculat-
ing the return rate, using the Kendall-τ test statistic. Panels
on right show the frequency distribution of the trend statistic.

Surrogate analyses

The lower number of data points available for the anal-
yses can lead to feeble trends and influence the proba-
bility of occurrence of the increased signals of CSD by
chance. Further, due to undocumented patients, there is
always a chance of stochasticity in the number of reported
cases. Thus, we studied the likelihood of coincidence in
the occurrence of trends in the ACF(1) and the return
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rate observed in our original data sets by investigating
the indicators in the surrogate time-series (see Materials
and Methods). The surrogate time-series is generated
to follow similar distribution (mean and variance) of the
data time-series before the episode of a sudden rise in the
number, denoted by shaded regions in Fig. 1 (see Mate-
rials and Methods). Figure 4 depicts the distribution of
the test statistic of the surrogate time-series. Solid lines
show the trend estimate obtained for the original time-
series. We calculate the probability of randomness of
our observed estimates as the fraction of 1000 surrogate
time-series having trend statistic of same or higher abso-
lute values than the original trend, i.e., P (τ∗ ≤ τ). The
probability to, by chance, obtain similar trend statistic
varies from country to country, depicting most signifi-
cant estimates for Singapore (Figs. 4D and 4L) and UK
(Figs. 4G and 4O). The probability estimates P obtained
by bootstrapping the data sets for each of the countries
are given in the Table II. While in the case of the US,
the probability of randomness in our observed estimates
is relatively high (Figs. 4C and 4K), rapid spreading in
the epidemic makes it keystone to consider applicability
of EWSs to warn-off such events. Overall, we find a low
probability of randomness in both the ACF(1) and the
return rate estimates for all the cases. However, the ob-
servations are more significant for the return rate. This
analysis suggests the robustness of the return rate as an
EWS in predicting the signals of CSD.

Sensitivity analyses of the generic indicators

The choices made in data transformations such as fil-
tering/ Gaussian detrending can also influence the trends
observed. Thus, it is necessary to test the robustness of
the estimated trends towards the choice of rolling window
size and the filtering bandwidth. Here, we employ sensi-
tivity analyses for the return rate using the CSD dataset.
(see Fig. 5). We use Kendall-τ estimates of the return
rate for all the combinations of these two parameters (for
details, see Materials and Methods).

We find that the observed trends in the return rate
are sensitive to the choice of parameters and can signif-
icantly vary between the datasets. High bandwidths re-
veal the opposite outcome of the return rates for most of
the data sets analysed (Figs. 5C–5I). Since we use Silver-
man’s thumb rule to select the bandwidth, which gives
the best fit to the data, therefore, the choice of window
size can influence the observed trends (Figs. 5A–5I). In
our work, we find a large size of the rolling window can
alter the EWSs analyses and produce misleading esti-
mates for the return rate. For instance, sensitivity anal-
yses show that it is challenging to disentangle accurate
signals of an impending transition from the false ones
(Figs. 5G and 5P) for a wide range of window sizes and
bandwidths. False signals of an alarming situation can
deviate from understanding the gravity of any situation
and intensity of surveillance needed. Thus, the choice
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FIG. 6. Time-series of triads of the population-weighted
total-column NO2 (molecules/cm2) density over the length
of the study period for the nine countries considered in this
work (depicted by the circular points). The solid curve in
each subfigure represents a 10-triad moving window average
of the time-series.

of these parameters is crucial in anticipating the signals
of a forthcoming transition and implementing convincing
public health measures.
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Impact of COVID-19 spread on the atmospheric
total-column NO2 density

The rigor of social distancing/intervention strategies
can be measured by atmospheric data, as the lock-
down periods have witnessed better air quality across the
globe. Thus, we first obtain time-series of triads of the
population-weighted total-column NO2 (molecules/cm2)
density over the length of the study period for the nine
countries considered in this work (the circular points in
Fig. 6). The solid curve in each subfigure of Fig. 6 repre-
sents a 10-triad moving window average. In the majority
of the countries, the timing of NO2 decline concurs with
the spread of the virus and the onset of pragmatic lock-
down in a country may be hypothesized by the reversal
(or break) in the trend of NO2. In China (Fig 6B), the
decreasing trend in NO2 is evident from January end till
February; after that, it starts increasing which is coin-
cident with the dynamics of the spread of COVID-19
disease. In India (Fig 6A), South Korea (Fig 6C), US
(Fig 6D), Italy (Fig 6G) and Spain (Fig 6F), the decreas-
ing trend in NO2 coincides with time of the rapid spread
in the virus (Fig. 1). We estimate that after the date of
official enforcement of lockdown, time-averaged NO2 de-
creased by 35.9% in China and 50.4% in Italy compared
to the pre-lockdown period. India has also seen a sig-
nificant drop by 5% of NO2 in the last 2 triads around
the day of “Janata curfew”. The decreased pattern in
NO2 is expected to continue as the lockdown prevails up
to 14 April. It should be noted that we did not control
for meteorological variations which may have a significant
impact on total-column NO2 over the period of our study
[27]. Overall, amidst the fears of the novel coronavirus,
the countries where the lockdown intervened are expect-
ing a rejuvenated environment. However, at the same
time, possibilities to lower down air pollutants when the
world is not facing such harsh conditions is also impor-
tant to understand.

A minimal stochastic model

We propose a minimal kinetic model for the short term
prediction of the spreading of COVID-19 disease. Sup-
pose that the only processes are infection and recovery.
The processes can be described as:

I +H
ki−→ I + I; and I

kr−→ H, (1)

where I and H are infected and healthy people, respec-
tively, and ki and kr are rate constants for infection and
recovery. The first equation shows that if I is the in-
fected people, then H becomes I at a rate ki; and the
second equation indicates that I recovers at a rate kr.
A minimal kinetic model can be formulated as ordinary
differential equations for the population of I, as:

dI

dt
= kiI(1− I

K
)− krI, (2)

where K is the size of the population.
We develop a master equation for the infected popula-

tion by considering the two elementary processes (Eq. 1).
The transition probability at which the number of in-
fected population increases from i to (i+1) is w(i+1|i) =
kii(1−i/K), and the rate at which the number of infected
population reduces from i to (i-1) is w(i − 1|i) = kri.
From these, the probability of finding i infectives in the
system at time t, P (i, t) can be obtained from the follow-
ing equation:

dP (i, t)

dt
= w(i|i− 1)P (i− 1, t) + w(i|i+ 1)P (i+ 1, t)

−(w(i+ 1|i) + w(i− 1|i))P (i, t). (3)

The above probabilistic model is solved by the kinetic
Monte Carlo simulations by means of the Gillespie algo-
rithm, which incorporates the intrinsic noise [28]. The
algorithm considers each of the events as individual real-
isations of Markov process. The time and species num-
bers are updated stochastically by choosing the random
processes.

To simulate the system (Eq. 3), we first obtain the
parameters from the cumulative time series data of con-
firmed cases for India, China, and South Korea. In the
data sets, we fitted the below logistic function (which is
a solution of Eq. 2):

f(t) =
a

1 + b exp(−ct)
, (4)

where a, b, and c are parameters. Once we obtain these
parameters for an individual country, we map them to
our model and find the system parameters ki, kr and
K, and i0 is the initial infected poplation. We list those
parameters below:

Country ki kr K i0
India 0.895 0.716 10566605 2
China 0.967 0.7736 413210 27
S. Korea 1.0120 0.8096 51420 4

Then the above parameters are used to solve the Mas-
ter equation (Eq. 3), and we perform Monte-Carlo sim-
ulation to get stochastic trajectories up to 15 April. We
present the simulated stochastic trajectories in Fig. 7.
For each country, we have five trajectories. For China
and South Korea, we find that our stochastic trajectories
are consistent with the real time-series of the number of
infected people. However, for India, our result shows that
on 15 April 2020, the number of infected people can go
up to approximately 13500 (which is an average of final
values of the five simulated trajectories).

The problem of predicting the spreading of COVID-
19 is a complex one and depends on many factors like
social distancing, an early detection of the disease, the
detection of major hubs of the disease, etc. Here, we
have provided a minimal kinetic model which uses the
trends of the available data and may work only for short
term prediction.
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FIG. 7. Stochastic trajectories (marked with pink, yellow, grey, green, and blue curves) of the infected population generated
using the Gillespie algorithm for: A. India, B. China, and C. South Korea. The original data sets up to 6 April for the respective
countries are depicted by circular (red) points, for a comparison.

III. DISCUSSION

The COVID-19 pandemic revealed an exponential rise
in the reported number of cases and affected the public
health ranging from mild to severe conditions. Countries
across the world are combating the spread of the coro-
navirus through various social distancing/intervention
measures such as closure of schools and universities, ban-
ning of public events and large gatherings, isolation of
symptomatic COVID-19 cases, mass quarantines etc. For
national as well as international control of public health,
it is crucial to understand the significance of the onset
timing of such measures [29].

The World Health Organisation lately reports new
cases being reported into several new countries across
the globe [30–32]. Our study can provide an insight to
tackle the ongoing pandemic and its associated growth
curve in the context of the timing and strength of the in-
terventions. We use the data of the number of COVID-19
cases in nine different countries to investigate some sta-
tistical patterns in the growth curves. The number of
cases covers a small fraction of the population during
the initiation of the epidemic, and the fraction remains
nearly stagnant for around 20 days from the arrival of
the first case. After the threshold of around 20 days, the
number of cases starts increasing rapidly, and in a rela-
tively shorter span a significant fraction of the population
can be affected. This trend is analogous to the idea that
the growth curve remains close to one stable state for
sufficient time and, crossing a time threshold invokes a
sudden shift/transition to another stable state, where a
significant fraction of the population gets affected. In our
work, we employ statistical indicators of critical slowing
down to check if such transitions can be signaled before-
hand and how the anticipation of such transitions can
help mitigate such crisis at a policy level.

We observe that the 35-40 days window from the ar-
rival of the first case in each country signaled an impend-
ing transition. In the vicinity of 35-40 days, an increase
in the short term memory (at lag 1) of the data as well as
a decrease in the return rate indicates the phenomenon of
critical slowing down. Our work suggests that while non-

pharmaceutical interventions are necessary to mitigate
such epidemic, the timing of initiation of concerned ac-
tions can strongly influence the outcome of the situation.
Owing to the time lag in the detection of symptomatic
cases, the statistical indicators suggest that the initial
20-25 days being crucial to suppress the loss of public
health. The controlled response of the epidemic growth
curve for China and South Korea can be associated with
the time distance between implementation of interven-
tions and the transition point. Thus, EWSs analyses is
crucial while defining the onset of the interventions and
suppress the rise of daily cases. Importantly, another
crucial aspect is the proportion of affected cases in each
country, i.e., a measure of the fraction of the country’s
population, and not the absolute numbers, which is in-
fected at the time of interventions such as a strict lock-
down. As probability of the propagation of disease can
be thought of as mostly similar or equal amongst indi-
viduals across the globe, it depends upon the fraction
of infected cases in each country during the beginning
of interventions. For instance, a decrease in the return
rate and increased autocorrelation anticipated the up-
coming rise in the growth curves for both India as well
as Italy, and interestingly, both the countries imposed
individual nationwide lockdown near the situation close
to the transition (Table I). However, the control in In-
dia depicts better results in altering the growth curve
than that in Italy. The alterations in the growth curve
is most likely to be a consequence of a difference in the
proportion of cases affected by the epidemic at the be-
ginning of mitigation strategies. India resembling China
in terms of the total population density accounted for
approximately 2.36× 10−7 cases of the total population,
while Italy with relatively less population density crossed
1.22 × 10−4 cases of their total population. Thus, even
with imposition of the public health measures near the
signals of CSD, the outcome for both the countries can
dramatically vary. Furthermore, the disruptive situation
in the US is indicated by EWSs, as the EWSs indicators
were visible quite early for the US. Thus, sharp rise in
the number of cases for the country is a consequence of
both the delay in effective social distancing interventions
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as well as a large proportion of affected cases at that
time. Overall, our work suggests that in almost all the
countries, a sharp upcoming rise in the growth curve can
be captured using statistical measures, before the actual
transition.

Another horizon the infectious coronavirus put for-
wards is on the quality of air pollution in countries where
social distancing/lockdown is enforced. NO2, which is
majorly emitted from anthropogenic activities like land
transportation, industries, and energy sectors, was esti-
mated to decrease in consequence of lockdown measures
implemented by the government of respective countries.
Population weighted average column NO2 was found to
decrease with amplification in a number of cases across
most of the countries. Apart from this, NO2 column
quantities may be used as a proxy to estimate the effec-
tiveness of a lockdown on air quality. We find that NO2

column quantities started following a decreasing trend
during the last week of February in Italy and US which in-
dicate a partial unofficial closure of anthropogenic activi-
ties, taking into consideration that the official COVID-19
induced lockdown was enforced on 09 March and around
25 March in Italy and the US, respectively. Whereas, in
the UK, an increasing trend in NO2 column till the last
week of March indicates no such public awareness to re-
strict anthropogenic activities (the government declared
the lockdown from 23 March). We acknowledge that the
reduction in NO2 is also associated with the compliance
of the population of the individual nation to abide by the
lockdown measures.

Furthermore, we suggest that the interventions em-
ployed by India may not be at the time when the curve
is very far from reaching the transition; however, the
smaller proportion of affected cases may be the deter-
mining factor in limiting the disease spread in India. Im-
plementation of a nationwide lockdown in India may have
better prepared the country for taking measures to con-
trol the epidemic spread and bend the curve. However,
our analyses also suggest that the period beyond the sig-
nals of CSD also needs efficient monitoring. The result of
our minimal stochastic model predicts that on 15 April,
the number of infected people can go up to approximately
13500. Thus, the extended period of such measures are
needed and likely to be effective [5].

We envision that it is fundamental to identify the situ-
ation of such a crisis across the world and make use of the
lead time. The EWSs can keep track of the changes in
the trend statistics in the number of reported cases and
warn when a threshold is reached. The statistical tools
used can be beneficial to identify whether the features
of shift in a system are suppressed by the intervention
strategies being adopted. In particular, while different
combinations of strategies are adopted to overcome such
crisis, the information of an upcoming transition and its
threshold is important to formulate the degree of such in-
terventions. However, special care should be taken in the
choice of rolling window size and the filtering bandwidth
while estimating the signals of slowing down. Inappro-

priate choices may give weak and/or diminish the sig-
nals of an imminent transition, which may deviate from
understanding the urgency of the situation. Another as-
pect to consider is that the varying extent of testing for
COVID-19 across the countries may have affected the to-
tal number of reported cases; thus, our results here hold
specifically for the number of reported cases.

MATERIALS AND METHODS

The COVID-19 Data Source. We have used
the COVID-19 data set provided by the Euro-
pean Centre for Disease Prevention and Con-
trol (ECDC): An agency of the European Union
(https://www.ecdc.europa.eu/en/publications-
data/download-todays-data-geographic-distribution-
covid-19-cases-worldwide). Initially we extract the data
of the daily number of reported cases up to 25 March,
2020 and in general mark the first date of the reported
cases as the day of the beginning of the epidemic in the
respective countries. Regardless of the affected person
recovers or dies, the virus contraction occurs once; thus,
we consider cumulative data of the daily number of
the confirmed cases for nine different countries for our
analyses.

Data selection. We use the available time-series to
test the predictability of an upcoming transition for each
country. The generic indicators are examined using the
time-series segments of an initial 35−40 days (35 days for
the US) of the epidemic in each country (shaded regions
in Fig. 1).

Detrending. Often, non-stationarities in the data
lead to false indications of impending transitions. To
overcome this, we obtain the residual time-series by sub-
tracting a Gaussian kernel smoothing function from the
empirical time-series [14]. Further, we estimate the re-
turn rate and autocorrelation at first lag for the residual
time-series choosing a rolling window of 3

4 the size of the
time-series data (i.e., 75 %) for Italy and 50% for the
other countries. We choose the filtering bandwidth using
Silverman’s thumb rule to avoid any overfit.

Autocorrelation at first lag and return rate. The
fluctuations in the time-series reveal different novel phe-
nomena such as sudden transition, flickering and stochas-
tic switching, etc. It is established that followed by a per-
turbation, the rate of return of the system slows down
near an impending transition or a tipping point. This
phenomenon of slow return rate or recovery from a per-
turbation in the vicinity of a sudden transition is known
as critical slowing down (CSD). We capture the signals
of CSD by estimating short term autocorrelation (at lag-
1) and return rate of the time-series. Furthermore, CSD
also increases the short term memory of the time-series,
which is observed through the correlation structure of
the time-series before a transition. We compute auto-
correlation at lag-1 by fitting an autoregressive model of
order 1 (of the form zt+1 = α1zt + εt) using an ordinary
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least-squares fitting method. Return rate is calculated as
the inverse of the first-order term of fitted autoregressive
model, given by 1

α1
[14, 33]. The time-series analysis has

been performed using the “Early Warning Signals Tool-
box” (http://www.early-warning-signals.org/).

Surrogates. To test the significance of our statis-
tical analyses, we estimate Kendall rank correlation-τ
test statistic for both the generic indicators. We gen-
erate 1000 surrogate time-series of the same length as
the analysed real data sets to test the likelihood of ob-
taining the computed trends by chance. The surrogate
records are obtained on bootstrapping the real datasets
by shuffling the original residual time-series and sampling
the data with replacement. This method generates the
surrogate time-series with a similar distribution of the
original time-series [18]. For each surrogate, we consider
the Kendall-τ estimate as the test statistic to measure
the robustness of the outcomes. Further, we calculate
the fraction of the surrogates having the same or higher
(lower, for return rates) test static value than the original
data and measure the probability P (τ∗ ≤ τ) to calculate
that the observed test statistic is by chance.

Sensitivity Analyses. The predictability of each of
the indicator depends upon the datasets investigated as
well as the choices made for processing the data. Thus,
it is essential to check the efficacy of our results to such
choices. In particular, we analyse the sensitivity of our
observations to the choice of rolling window size and
degree of smoothing (filtering bandwidth) used during
the calculation of indicators and detrending/filtering the
data sets, respectively. We estimate the return rate using
window sizes ranging from 40% to 90% of the time-series
length in an increment of 2 points and for bandwidths
ranging from 5% to 100% with the increment of 2 points.
We quantify the robustness of the outcomes towards the
range of window sizes and bandwidth using the distribu-

tion of the Kendall-τ test statistic.
Satellite retrieved NO2 emissions data source.

Worldwide, the lockdown response to the onset and
spread of COVID-19 caused a decrease in daily and
economic activities, which in turn is expected to
cause a reduction in ambient air pollution. This can
also be used as an indicator to determine whether
government policies of lockdowns/restricted human
movements are successful or not. To further exam-
ine this, we use the Ozone Monitoring Instrument
(OMI) retrieved total column NO2 (available from
https://aura.gsfc.nasa.gov/omi.html) as a proxy to infer
the change in anthropogenic air pollution for the time-
period of our study. OMI flies onboard the EOS Aura
sun-synchronous polar-orbiting satellite. It has a swath
length of 2600km and a level-2, spatial resolution of
13×24km2 [34]. The OMI NO2 column was satisfactorily
validated against surface spectrometer measurements
in recent studies [35, 36]. To roughly obtain a global
coverage, we consider 3-day time slices (triads) within
which the overlapping swath overpasses were averaged.
Thereafter, we perform a population-weighted average
of the grids that lie within the political boundaries
of the countries considered in this study. Gridded
population data was obtained for 2015 from SEDAC
(https://sedac.ciesin.columbia.edu/data/collection/gpw-
v4).
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TABLE I. Country wise dates of the onset of restricted public movement or respective nation-wide lockdown [37], along with
the fraction of infected cases reported at the mentioned dates. Note that the fraction of infected cases is calculated over the
total population of each country, which is considered to be constant.

Country Lockdown dates Fraction of the affected
population during lockdown

India 22 March (Janata curfew) ≈ 2.36 × 10−7

China 23 January ≈ 4.47 × 10−7

South Korea Early February (social distancing measures) ≈ 3.09 × 10−7

US After 25 March (partial lockdown) More than 1.7 × 10−4

Singapore 27 March (partial lockdown) ≈ 9.89 × 10−5

Germany 23 March ≈ 2.98 × 10−4

Italy 9 March ≈ 1.22 × 10−4

UK 23 March ≈ 8.54 × 10−5

Spain 14 March More than 9.05 × 10−5

TABLE II. Probability of, by chance, obtaining the observed trend statistic of the original data for the set of 1000 surrogates
having similar distribution. The likelihood of randomness in the estimated return rates and ACF(1) is mentioned for the data
sets of each country studied in the work.

Country Kendall-τ (Return rate) Kendall-τ (ACF(1))
China 0.26 0.36
South Korea 0.24 0.16
US 0.17 0.34
Singapore 0.05 0.10
Germany 0.36 0.20
Italy 0.27 0.49
UK 0.19 0.12
Spain 0.26 0.35
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