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Abstract

The rapid spread of the novel coronavirus (SARS-CoV-2) has highlighted the need
for the development of rapid mitigating responses under conditions of extreme
uncertainty. While numerous works have provided projections of the progression
of the pandemic, very little work has been focused on its progression in Africa
and South Africa, in particular. In this work, we calibrate the susceptible-infected-
recovered (SIR) compartmental model to South African data using initial conditions
inferred from progression in Hubei, China and Lombardy, Italy. The results suggest
two plausible hypotheses - either the COVID-19 pandemic is still at very early
stages of progression in South Africa or a combination of prompt mitigating
measures, demographics and social factors have resulted in a slowdown in its
spread and severity. We further propose pandemic monitoring and health system
capacity metrics for assisting decision-makers in evaluating which of the two
hypotheses is most probable.

1 Introduction

The novel coronavirus first manifested in the city of Wuhan, China in December 2019. The disease has
subsequently spread around the world, leading to the World Health Organisation (WHO) declaring it
a pandemic on 11 March 2020 [1]. In South Africa, by 5 April 2020, 1585 people had been confirmed
to have infected by the coronavirus with 9 fatalities [2].

African states, together with their counterparts around the globe, have embarked on numerous strict
measures to lockdown their countries to “flatten” the curve of COVID-19 cases [3, 4, 5]. The measures
are mainly driven by quarantine and isolation strategies that seek to separate the infected population
from the susceptible population [3].

These initiatives aim to strategically reduce the surge in infections to a level that their healthcare
systems can manage. However, for governments to plan appropriately, they have to answer some
of the following questions: how much of the population will be affected? How many will require
hospitalisation? When will the country hit the peak infection level? Is the current lockdown effective?

Answers to these questions lie in projections of each country’s infection trajectory. As the pandemic
is currently in its early stage in most African countries - calibration of epidemiological models on the
basis of available data can prove to be difficult [3]. This effect is escalated by the difference between
“confirmed” infected and infected population due to the high number of asymptomatic cases [1] and
constrained testing protocols.

In this work, we propose a framework for a data-driven approach to managing the COVID-19
outbreak. We further calibrate the susceptible-infected-recovered (SIR) model based on literature and
available data for South Africa. We begin by proposing key metrics for management of a pandemic
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in section 2, setting out and calibrating the SIR model for South Africa in sections 3 and 3.2. We
present our discussion and conclusion in sections 4 and 5.

2 Data-Driven Management of the Outbreak

2.1 Data and Key Indicators

Effective management of any pandemic will require up to date, good quality data on metrics that are
representative of both the spread of the pandemic and healthcare system capacity.

2.1.1 Pandemic Monitoring Metrics

While many jurisdictions report on up to date confirmed case numbers which track the number of
individuals who have tested positive for COVID-19, these numbers require to be accompanied by the
corresponding number of tests performed for correct interpretation of the progression of the pandemic.
This avoids misinterpretation of the trend in tests performed as the trend in prevalence.

An example of this phenomenon is illustrated in figure 1 showing the cumulative confirmed cases,
tests performed and positives cases per test in South Africa. It can be seen that the cumulative positive
cases reflect the exponential trend in tests performed scaled by the prevalence of the tested cases. The
prevalence within the tested population remained relatively stable between 3-4%.

The confirmed positive case metrics are constrained by the healthcare system’s testing capacity and
protocols, thus difficult to model. Thus confirmed cases do not necessarily provide an accurate
measure of the infected population [3, 5]. Death data, on the other hand, provides a relatively
independent unconstrained measure of disease spread. This is because many jurisdictions often have
robust protocols for verification of deaths [6].

Other key pandemic spread indicators include:

• The number of persons under investigation (PUIs) at health facilities.
• The numbers of confirmed positive cases per confirmed cases as a result of the contact

tracing process.
• The outcomes of mass and randomly sampled screening and testing drives.

(a) Cumulative Confirmed Positive
Cases

(b) Cumulative Tests Performed (c) Positive Cases Per Test

Figure 1: Plots showing the cumulative time series of confirmed positive cases 1(a), tests performed
1(b) and the number of positive cases per test over time. 1(c)

2.1.2 Health System Capacity Metrics

The metrics described in 2.1.1 provide the demand side elements of the healthcare resources equation.
To co-ordinate an efficient response, States must maintain clean real-time data on their healthcare
supply capacity. Such data should include inter-alia some of the following metrics:

• Hospital bed capacity at various levels of care (general, high-care, critical)
• Real-time hospital bed occupation levels
• Stock levels of personal protective equipment (PPE)
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• The number of registered healthcare practitioners, both in-service and retired.

States must not be reactive in collecting and curating such data but rather keep databases up to date
and ready in pre and post-pandemic times.

3 Epidemiological Modelling

Epidemiological Modelling of infectious diseases is dominated by compartmental models which
simulate the transition of individuals between various stages of disease [7, 8]. We now introduce the
Susceptible- Infected-Recovered (SIR) compartmental model that has been dominant in COVID-19
modelling literature [4, 5].

3.1 The Susceptible- Infected-Recovered Model

The SIR is an established epidemiological model for the projection of infectious disease. The SIR
models the transition of individuals between three stages of a condition:

• being susceptible to the condition,

• having the condition and being infectious to others and

• having recovered and built immunity for the disease.

The SIR can be interpreted as a three-state Markov chain illustrated diagrammatically in figure 2.

Figure 2: An Illustration of the underlying states of the Susceptible Infected Recovered Model(SIR)

The SIR relies on solving the system of differential equations below representing the analytic
trajectory of the infectious disease.

dS

dt
= −βSI (1)

dI

dt
= βSI − γI (2)

dR

dt
= γI. (3)

Where S is the susceptible population, I is the infected population, R is the recovered population. β is
the transmission rate, and γ is the recovery rate. 1/γ, therefore, becomes the infectious period.

The Basic Reproductive Number R0

The contagiousness of a disease is often measured using a metric called the basic reproductive
number(R0). R0 represents the mean number of additional infections created by one infectious
individual in a susceptible population. According to the latest available literature, without accounting
for any social distancing the policies the R0 for COVID-19 between 2 and 2.75[1, 5, 9]. R0 can be
expressed in terms of γ and β as R0 = β

γ .
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3.2 Localised Calibration

We calibrate the SIR using the reported confirmed South African COVID-19 cases. We follow the
framework proposed by [10] for inference of the number of COVID-19 infections from the total
number of reported cases to establish initial conditions for the SIR. Specifically, following [10, 11]
who suggest that reported confirmed cases represent between 0.2% and 1% of the total infected
population. Thus we scale up the confirmed cases reported on 05/04/2020 using correction factors
from Hubei, China and Lombardy Italy[10]. We further assume an infectious period of 14 days
as suggested by [1] and explore basic reproductive numbers of 2,3,4 inline with related literature
[1, 4, 9].

Figure 3 shows the resultant simulated progression of infected cases in South Africa with theabove-
mentioned parameters.
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Figure 3: Simulation of COVID-19 infected population progression in South Africa using various
initialisation from April 5 2020

3.2.1 Healthcare Resource Estimation

We use the calibrated SIR model in section 3.2 to estimate the healthcare resources required to
manage the pandemic in South Africa. We use the guidance from [1] and [10] as a basis for setting
assumptions for transition rates of the infected population into various levels of care.

The healthcare demands of any condition depend on its Clinical Attack Rate (CAR). The CAR is
the percentage of the entire population that has been clinically infected (having had mild symptoms ,
severe or critical ) after completion of the outbreak. An empirical study of study by [10] estimated
the of CAR 1% for Wuhan city, about 0.2% for Hubei region and 0.01% throughout China. In Italy,
the CAR in Lombardy (the hardest-hit part of Italy) is estimated at 0.7%. Given recent trends in
hospital admissions in South Africa, we assume a midpoint CAR of 0.5% for South Africa.
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We assume guidance from [1] on the distribution of severity for the clinically attacked individuals
such that 80% will display mild or no symptoms, 15% will be severe (General Admission), and 5%
will require an Intensive Care Unit (ICU) admission.
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Figure 4: Plots showing the projected hospital admissions based on infection projections in figure 3(c).
Figure 4 (a) shows projected general admissions while figure 4 (b) shows projected ICU admissions.

3.3 Parameter Uncertainty

We have so far assumed that the model parameters of the SIR are fixed albeit at various ranges. In
reality there is uncertainty around these parameters that require Bayesian treatment. We illustrate
the uncertainty around parameters in figure 5 by sampling β and γ with midpoint initialisation from
log-normal distributions at mean R0 equivalent to R0 = 2.5. Future investigations will involve full
Bayesian treatment of parameters using Markov Chain Monte Carlo techniques [12, 13]

4 Discussion

We have attempted to calibrate the SIR model for South Africa and estimate the required healthcare
resources using the available literature on inference of infected population. The results show that
using the midpoint initial conditions the infected population is expected to peak in: 71 days atR0 = 2,
in 42 days at R0 = 3 and in 31 days at R0 = 4. The corresponding estimated general hospital beds
required capacities are at 7000 (R0 = 2), 13500 (R0 = 3) and 18000 (R0 = 3). The estimated ICU
capacity requirement is estimated at 2350 (R0 = 2), 4500 (R0 = 3) and 6000 (R0 = 3).
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Figure 5: Results of sampling β and γ from a log-normal distribution with a mean R0 = 2.5. The
green shade shows one standard deviation above and below the mean.

The projections provided in this work, however, do not take into account several elements of the South
African condition that could significantly alter the dynamics of COVID-19 in South Africa. These
fundamental elements include a reduction in imported infections due to the travel ban put in place
on 18 March 2020 and the subsequent lockdown on 27 March 2020. Other aggravating conditions
unique to South Africa include the high prevalence of the human immunodeficiency viruses (HIV),
densely populated informal urban settlements and a population pyramid skewed towards younger
ages relative to Italy and China.

Early indications when contrasting the projections to the current trends in confirmed infections and
the limited publicly available hospitalisation data suggest two plausible hypotheses:

1. The pandemic is still in very early stages in South Africa as compared to the rest of the
world OR,

2. A combination of factors such as the reduction in imported infections (travel ban), young
population (demographic dividend) , social dynamics (class separation) and climate have
resulted in a significant slowdown in the spread and severity of COVID-19 in South Africa.

A Data-driven pandemic surveillance system including the elements suggested in section 2 is therefore
required to evaluate which of the two hypotheses is most likely.

5 Conclusion

We have developed a numerical model projection of the COVID-19 infections in South Africa based
on publicly available data with initial conditions based on jurisdictions where progression is at
advanced stages.

The results suggest that either the progression of COVID-19 in South Africa is still at very early
stages or that a combination of prompt mitigating measures, demographics and social factors have
resulted in a slowdown in the spread and severity of COVID-19 in South Africa. We further propose
data elements that encompass pandemic monitoring metrics and health system capacity metrics to
assist decision-makers in evaluating which of the two hypotheses is most likely.
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