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Abstract

In this paper, we try to identify the parameters in an elementary epidemic model, the
so-called SI-model, via non-linear regression using data of the COVID-19 pandemic. This
is done based on the data for the number of total infections and daily infections, respec-
tively. Studying the convergence behavior of the two parameter sets obtained this way,
we attempt to estimate the reliability of predictions made concerning the future course of
the epidemic. We validate this procedure using data for the case numbers in China and
South Korea. Then we apply it in order to find predictions for Germany, Italy and the
United States. The results are encouraging, but no final judgment on the validity of the
procedure can yet be made.
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1 Introduction

In most countries, social distancing measures are in effect now in order to fight the covid-
19 pandemic. Considering the serious effects of these measures on the affected societies
and the ensuing political discussions on their intensity and duration, it would be highly
desirable to be able to make modeling based predictions on the future timeline of the
epidemic, as long as the measures are upheld. Of course, many attempts are made in
this direction. However, most of them require very detailed data that are laborious and
time-consuming to generate.

In this work, we try to study the possibility to base predictions on data sets readily
available, namely the number of reported infections. We are aware, that these numbers
depend strongly on the intensity of testing done in the various countries and the reliability
of the reported numbers. In this work we presume that there is a factor, country-specific,
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2 2 An elementary model

but constant in time, between the reported and the actual number of cases. If this
assumption were valid, the total number of infected individuals would be off by this very
factor. However, other parameters, like the point in time when the peak in the numbers
of daily infections would occur, or the following rate of decay of these numbers, would
not be affected.

Finally, we would like to stress, that we intend this work to be the starting point of a
discussion and maybe further research. By no means, having a background in engineering
and not in virology or epidemiology, we are claiming any medical expertise. The paper
should be rather seen as a general exercise in modeling and interpretation of data.

2 An elementary model

Our aim is to model a situation where social distancing measures are in effect, as currently
is the case in most countries. This means, that only a small portion of the population is
affected, which is well but not completely isolated from the rest. As starting point, we
refer to the compartmental model by Kermack, McKendrick and Walker, [3]. It is defined
by the differential equations

Ṡ = −αSI, İ = αSI − γI. (1)

Here I(t) is the number of individuals in the infectious population and S(t) denotes
the number of individuals in the susceptible population, in our case those who can get
infected because they are not protected by social distancing. This formulation is also
called the SIR-model, where the dependent variable R(t) stands for the removed (by
recovery of death) population, and we have Ṙ = γS. The parameter α is related to the
basic reproduction number by

R0 = NTinf α, (2)

where N is the initially susceptible population and Tinf = 1/γ is the time period during
which an individual is infectious. For Sars-Cov-2, no definite value for Tinf has yet been
reported. The parameter γ denotes the rate at which individuals are removed from the
infected population because of an outcome (recovery or death).

In our study, we are going to neglect the term γI, which will have an effect only in late
stages of the epidemic when S ≈ γ/α. As a result, we obtain the so-called SI-model,
[4]. Later, we will see, that it is basically impossible to identify the parameter γ from
the data available unless the epidemic is in a very late stage. So, for our purposes, this
simplification amounts to a necessity.

Employing the assumption above, Eqs. (1) become equivatent to the so-called logistic
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differential equation having the closed form solution

S(t) =
Imax e

Imaxαtmax

eImaxαtmax + eImaxαt
, I(t) =

Imax e
Imaxαt

eImaxαtmax + eImaxαt
, (3)

where
Imax = I(∞) = Smax = S(−∞) = N, (4)

and tmax, marking the peak of the epidemic, is defined by

S(tmax) = I(tmax) =
1

2
Imax. (5)

3 Parameter identification

In order to achieve a more robust parameter identification, we precondition our solution
by introducing new parameters a, b given by

a = α I2max, b = α Imax. (6)

Note, that Eq. (6) implies

Imax =
a

b
, R0 = Tinfb. (7)

After substitution of Eqs. (6) into Eqs. (3), the number of total infections is then given
as

Ia,b,tmax(t) =
a

b

ebt

ebtmax + ebt
, (8)

and the rate of daily infections becomes

∆Ia,b,tmax(t) =
d

dt
Ia,b,tmax(t) = a

eb(t+tmax)

(ebtmax + ebt)2
. (9)

We determine the three parameters {a, b, tmax} of our model via non-linear regression.
The data taken from the worldometer web page, [1], which essentially uses the data from
the Johns Hopkins University Center for Systems Science and Engineering (JHU CCSE).
For the parameter identification done in this paper, we have used the available data up to
including Apr. 4, 2020. The data are provided in form of lists {(t1, I1), . . . , (tNdata

, INdata
)}

for the total number of infections up to day ti, and {(t1,∆I1), . . . , (tNdata
,∆INdata

)} for the
number of daily infections. Time is measured in days, starting on Jan. 1, 2020. Hence,
t = 1 d corresponds to Jan. 1, t = 32 d to Feb. 1, t = 61 d to Mar. 1, 2020, and so on.
Obviously, we have

Ii =
i∑

j=1

∆Ij. (10)
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4 4 Results

Let us define errors e0(a, b, tmax) with respect to the total cases and e1(a, b, tmax) with
respect to the daily cases by

e0(a, b, tmax)
2 =

Ndata∑
i=1

(Ia,b,tmax(ti)− Ii)2 , e1(a, b, tmax)
2 =

Ndata∑
i=1

(∆Ia,b,tmax(ti)−∆Ii)
2 .

(11)
In order to judge the accuracy of the modeling, let us define the data norms

n2
0 =

Ndata∑
i=1

I2i , n2
1 =

Ndata∑
i=1

∆I2i , (12)

and the relative errors

e0,rel(a, b, tmax) =
e0(a, b, tmax)

n0

, e1,rel(a, b, tmax) =
e1(a, b, tmax)

n1

. (13)

Finally, we find the parameters a, b, tmax by minimizing the errors:

{a0, b0, t0max} = argmin
{
e0(a, b, tmax)

2
∣∣ a, b, tmax

}
, (14)

{a1, b1, t1max} = argmin
{
e1(a, b, tmax)

2
∣∣ a, b, tmax

}
. (15)

Minimization is done using the computer algebra system Mathematica, [2]. For our pur-
poses, the simulated annealing global minimization algorithm works best. Attention has
to be given, though, to choosing appropriate initial intervals for the parameters in order
to achieve convergence.

4 Results

In Figs. 1 to 5, the numbers of daily cases (left) and total cases (right) are plotted versus
time in days. In order to get an estimation of the variability of the predictions, we use
both parameter identification schemes defined in Eqs, (14) and (15). The results obtained
by fitting the number of total cases according to Eq. (14) are shown in red color and those
obtained obtained by fitting the number of daily cases according to Eq. (15) are shown
in magenta. The corresponding data are shown in blue color.

In Fig. 1 and Fig. 2 the data for China and South Korea are displayed. Both countries can
be considered to be in a late stage of the epidemic and the data are matched well by the
model. Especially for China, the predictions obtained by both parameter identification
schemes are close together. The pronounced spike in the number of daily cases is due
to a change of the procedure how infections are counted, and is averaged out by the
model. It is apparent that the model cannot fit the remaining almost constant level of
daily infections around 100 and the corresponding ongoing rise in the total cases in the
South Korea data. This causes the predictions generated by both procedures to lie a little
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further apart.

In Figs. 3, 4 and 5, the numbers of daily new cases are plotted for Germany, Italy and the
United States. These countries can be considered to be in earlier stages of the epidemic.
For Germany and Italy, the predictions generated by both procedures agree closely in the
time range where data are already available and are divergent for later points in time.
This divergence is especially strong in case of the United States data, indicating a very
dynamic epidemic process of exponential growth taking place there.

Figure 1: China, left: daily cases (∆Ia0,b0,t0max
(t) red, ∆Ia1,b1,t1max

(t) magenta), right: total
cases (Ia0,b0,t0max

(t) in red, Ia1,b1,t1max
(t) in magenta), data in blue

Figure 2: South Korea, left: daily cases (∆Ia0,b0,t0max
(t) red, ∆Ia1,b1,t1max

(t) magenta), right:
total cases (Ia0,b0,t0max

(t) in red, Ia1,b1,t1max
(t) in magenta), data in blue
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6 4 Results

Figure 3: Germany, left: left: daily cases (∆Ia0,b0,t0max
(t) red, ∆Ia1,b1,t1max

(t) magenta),
right: total cases (Ia0,b0,t0max

(t) in red, Ia1,b1,t1max
(t) in magenta), data in blue

Figure 4: Italy, left: left: daily cases (∆Ia0,b0,t0max
(t) red, ∆Ia1,b1,t1max

(t) magenta), right:
total cases (Ia0,b0,t0max

(t) in red, Ia1,b1,t1max
(t) in magenta), data in blue

Figure 5: United States, left: left: daily cases (∆Ia0,b0,t0max
(t) red, ∆Ia1,b1,t1max

(t) magenta),
right: total cases (Ia0,b0,t0max

(t) in red, Ia1,b1,t1max
(t) in magenta), data in blue

Some key data provided by the model are given in Table 1. They are defined as follows:

I0max = a0/b0, I1max = a1/b1: This is the total number of population getting infected, if the
social distancing measures taken are upheld until the epidemic has completely subsided.
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Note, that for China and South Korea,these numbers correspond closely to the total
number of cases reported.

T 0
100, T

1
100: This is the time predicted when the number of daily new cases will drop below

100 using both regression procedures, indicating a point in time when social distancing
measures might be loosened. For Germany, Italy and the United States the values are in
the range from mid of April to mid of May.

Tdata: The dates, when the number of daily new cases dropped below 100 in China and
South Korea, agreeing very well with the model data. (For South Korea, the number of
daily new cases is fluctuating strongly. So we took the date, when the number dropped
below 100 the second time.)

e0,rel, e1,rel: The is relative errors produced by both parameter identification procedures,
as defined in Eq. (13). Note, that due to the fluctuating nature of the number of daily
cases, e1,rel is much larger than e0,rel.

I0max I1max T 0
100 T 1

100 Tdata e0,rel e1,rel
China 80442 82273 62 64 66 0.023 0.58
South Korea 9110 8251 73 70 74 0.059 0.31
Germany 163215 143074 123 121 0.052 0.21
Italy 137044 149882 113 118 0.016 0.13
United States 421846 642700 118 131 0.027 0.09

Table 1: values of key parameters on Apr. 4, 2020

5 Reliability of predictions

In the initial stages of an epidemic, the number of cases grows exponentially. This is easy
to see by considering the limit t→ −∞ in Eqs. (8) and (9), giving

I inia,b,tmax
(t) =

a

b

ebt

ebtmax
, ∆I inia,b,tmax

(t) = a
ebt

ebtmax
. (16)

From Eq. (16), we see that during an early stage, it is impossible to identify the parameters
a and tmax independently, because the occur via the common factor a/ebtmax . Hence, there
are infinitely many pairs of a and tmax giving the same behavior and thus being minimizers
in Eqs. (14) and (15). By virtue, it is even harder to fit all parameters in the SIR-model
or one of the many existing extensions of it. Only past this phase of exponential growth,
it is possible to identify all three parameters and thus arrive at viable predictions. But
how to identify this point in time from the available data?

Our suggestion for a solution of this problem is to monitor the two different parameter
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8 5 Reliability of predictions

sets {a0, b0, t0max} and {a1, b1, t1max} defined in Eqs. (14) and (15). Theoretically, the
values should be close to each other. However, during a phase of exponential growth, the
mentioned ill-posedness of the minimization problems given by Eqs. (14) and (15) will
give results lying substantially apart.

Lets test this hypothesis: In Figs. 6 to 10, we display the parameters I0max (in red) and
I1max (in magenta) to the left and b0 (in red) and b1 (in magenta) to the right, respectively,
versus time in days.

Looking at the timeline for China, we can state stable behavior starting between day
50 and 60, agreeing with the converged behavior in Fig. 1. For South Korea, we have
convergence around day 66. Afterwards, the graphs diverge slightly again, which is likely
due to the constant number of daily infections occurring in the later stage of the epidemic,
already mentioned above. From this observation we can deduce with some caution, that
the predictions based on the present model will be reliable to a certain extent as soon as
the parameters identified by the two procedures stated in Eqs. (14) and (15) approach
each other.

Applying this reasoning to the data for Italy, Fig. 9, we can assume reliable predictions
starting on day 83. This is supported by the close values for T100 in Table 1. Less
confidence can be put into the predictions for Germany. In Fig. 8, the graphs for I0max

and I1max seem to have converged, but for b0 and b1, this cannot be stated with certainty.
We will have to wait for the development during the upcoming few days. No convergence
can be observed up to now for the United States data, Fig. 10, where we are likely still
in a phase of rapid growths of the case numbers.

Figure 6: China, left: I0max (in red) and I1max (in magenta), right: b0 (in red) and b1 (in
magenta)

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 11, 2020. ; https://doi.org/10.1101/2020.04.07.20056937doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.07.20056937
http://creativecommons.org/licenses/by-nc/4.0/


9

Figure 7: South Korea, left: I0max (in red) and I1max (in magenta), right: b0 (in red) and
b1 (in magenta)

Figure 8: Germany, left: I0max (in red) and I1max (in magenta), right: b0 (in red) and b1 (in
magenta)

Figure 9: Italy, left: I0max (in red) and I1max (in magenta), right: b0 (in red) and b1 (in
magenta)
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Figure 10: United States, left: I0max (in red) and I1max (in magenta), right: b0 (in red) and
b1 (in magenta)

6 Conclusion

We have identified the parameters in an elementary epidemic model via non-linear re-
gression using data of the covid-19 pandemic. Furthermore, we have attempted to get
an insight into the reliability of predictions based on this procedure by observing the
timeline of the parameters calculated by two different schemes. Our results indicate, that
this approach might work. However, more detailed studies will be necessary in order to
establish this method as valid. So caution is required when interpreting the results stated
here. In the future, it would be desirable, too, to identify more complex models. It is
uncertain, though, if this will be possible at all without more detailed data available.
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