1	ESTIMATION OF COVID-19 CASES IN FRANCE AND IN DIFFERENT COUNTRIES:
2	HOMOGENEISATION BASED ON MORTALITY
3	Marc DHENAIN
4 5 7 8 9 10 11 12 13 14 15 16 17	 (1) Académie Vétérinaire de France, 34, rue Bréguet, 75011 Paris, France (2) Académie Nationale de Médecine, 16 rue Bonaparte, 75006 Paris, France (3) Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay UMR 9199, Laboratoire des Maladies Neurodégénératives, 18 Route du Panorama, F-92265 Fontenay-aux-Roses, France. (4) Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut François Jacob, Molecular Imaging Research Center (MIRCen), 18 Route du Panorama, F-92265 Fontenay-aux-Roses, France. Correspondance Marc Dhenain MIRCen, UMR CEA-CNRS 9199, 18 Route du Panorama, 92 265 Fontenay-aux-Roses CEDEX, France Tel: +33 1 46 54 81 92; Fax: +33 1 46 54 84 51; email: Marc.Dhenain@cea.fr
18	Abstract:
19	Every day the authorities of different countries provide an estimate of the number of persons
20	affected by Covid-19 and a count of fatality. We propose to use the fatality reported in each
21	country to provide a better estimate ($C_{t0-estimated}$) of the number of cases at a given time t_0 .
22	$C_{t0\text{-estimated}} = (F_{t0} / F_{r\text{-est}}) * (F_{t0} / F_{t0\text{-}3d})^6$
23	With F_{t0} : number of fatalities reported in a country at time t_0 ; F_{t0} : number of fatalities reported
24	in a country at time t_0 minus 3 days; F_{r-est} : estimated fatality rate. Based on $C_{t0-estimated}$ calculated
25	using a fatality rate of 2%, we assessed the number of cases April 10 th , 2020 in Belgium, China,
26	France, Germany, Iran, Italy, South Korea, Netherlands, Spain, United Kingdom and USA.
27	This number reached 2,872,097 in France and 924,892 persons in Germany. This work
28	suggests a very strong underestimation of the number of cases of people affected, with a
29	notification index often lower than 5%. The proposed formulas also make it possible to evaluate
30	the impact of policies to prevent the spread of epidemic.
31 32 33	Key-Words: Covid-19, Estimated number of cases, Mortality, Prevalence
34	Version submitted on May 10th 2020
35 36	A French first version of this article is "in press" as Dhenain Marc, Estimation du nombre de cas de Covid-19 en France et dans différents pays :

- 37 homogénéisation basée dur la mortalité, Bulletin de l'Académie Vétérinaire de France, 2020 (provisionally
- 38 accepted), <u>https://academie-veterinaire-defrance.org/bavf-coronavirus/</u>

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

1 INTRODUCTION

- 2 The Sars-CoV-2 coronavirus infection that causes Covid-19 has spread worldwide leading to
- 3 significant deaths (European Center for Disease Prevention and Control 2020). Every day
- 4 authorities of different countries provide an estimate of the number of affected persons and a
- 5 count of fatalities (Dong et al. 2020, <u>https://ourworldindata.org/covid-testing</u>,
- 6 https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_time_series).
- 7 Knowing the number of affected subjects is critical for implementing strategies to protect
- 8 populations and for ending the crisis. Figures reported by different countries reveal strong
- 9 differences and only partly reflects the reality (Table I). For example, the day their death toll
- 10 approached 3,000 people, France had 44,550 people affected versus 80,537 for China and
- 11 122,171 for Germany. Calculating the case fatality rate (F_r) on a given day (t_0) is another way
- 12 to objectify differences between countries. At first sight,

 $F_r = Ft_0 / Ct_0$

(Eq. 1)

- 14 With Ft_0 = number of fatalities reported on day t_0 ; Ct_0 = number of cases reported on day t_0 .
- 15 The day (the closest to April 10^{th} , date of redaction of this article) when the death toll of
- 16 different countries was the closest to 3,000 people, three countries (Germany, South Korea,
- and the United States) had fatality rates close to 2%; seven countries (Belgium, France, Iran,
- 18 Italy, the Netherlands, Spain, and the United Kingdom) had rates between 6% and 12%, and
- 19 China had an intermediate value of 3.7% (Table I).
- 20 Patients who die on any given day were infected much earlier, and thus the denominator of
- 21 the fatality rate should be the total number of patients infected at the same time as those who
- died (Baud et al. 2020). This is particularly true as the rates of evolution of the pandemic
- evolve differently in various countries: in March 2020, the number of people affected
- 24 increased sharply from day to day in France, while it was stable in China.
- 25 A better estimate of fatality rate is thus:

26

(Eq. 2)

- 27 With $C_{t0-xdays}$ = number of cases reported on day t_0 minus x days, with x = average time-
- 28 period from onset of symptoms to death.

 $F_{r-xday} = F_{t0} / C_{t0-xdays}$

- An average duration of 18 days is reported between the onset of symptoms and the death of
- 30 Covid-19 patients (Ruan et al. 2020; Verity et al. 2020; Zhou et al. 2020). Thus, the adjusted
- Fatality rate (F_{r-18d}) that takes into account this average delay is (Flaxman et al. 2020).
- 32 $F_{r-18d} = F_{t0} / C_{t0-18d}$ (Eq. 3, Table I)

1 With C_{t0-18d} = number of cases reported on day t_0 minus 18 days. The calculation of F_{r-18d} 2 reveals widening gaps between countries compared to F_r with variations ranging from 2.3%

3 (South Korea) to more than 700% for Spain.

4 When comparing F_{t0} and C_{t0-18d} in different countries (Fig. 1), we see a linear relationship

5 between mortality at t_0 and the number of cases at $t_{0-18days}$ for all countries (Pearson linear

6 correlation test, p<0.05 except for Belgium (p=0.07) due to the small number of points (n=3)).

7 The slopes of the regression lines fitting the data vary widely between countries, which is

8 consistent with variable F_{r-18} . The values of fatality rate F_{r-18} based on the cases reported by

9 the different countries are therefore unreliable, in part because the number of cases reported in

10 different countries is not reliable (different testing strategies in different countries).

11 How to assess more precisely the number of people affected using a similar method for

12 different countries? We offer a simple method using the number of deaths reported by each

13 country to estimate and compare the rate of people affected by Covid-19. This method relies

14 on three first assumptions: 1. The number of deaths reported by each country is reliable; 2.

15 The fatality rate (F_r) is known and similar in different countries; 3. The average time between

16 the onset of symptoms and death is known (here considered 18 days). Based on these

17 assumptions, one can calculate the number of cases presented eighteen days before a given

 $day(t_0)$. Two methods are then proposed to infer the number of cases, eighteen days later, at

19 time t_0 . The first one relies on the time-dependent increase in the number of cases reported in

20 databases during these 18 days. The second one models the evolution of the number of cases

21 based on daily rate of changes of the number of estimated cases 18 days before t₀.

22

23 METHODS

24 Estimation of the number of cases at time t0 minus 18 days based on fatality rate

One way to estimate the number of Covid-19 cases is to infer the number of cases based on

the number of death and the fatality rate calculated from well-controlled studies using the

27 following formula

$28 C_{(est-18d)} = F_{t0} / F_{r-est}$

(Eq. 4, Table II)

With $C_{(est-18d)}$: number of cases estimated 18 days before t_0 ; Ft_0 = number of deaths reported on day t_0 ; F_{r-est} = estimated fatality rate from well-controlled studies. F_{r-est} can be assessed

31 from well-controlled studies based on residents of mainland China, travelers returning from

32 mainland China, repatriated from China, passengers on the *Diamond-Princess* cruise ship

33 (values of 0.7 to 3.6% (Verity et al. 2020)). Here, based on this last study, we proposed to use

34 $F_{r-est} = 2\%$.

Knowing $C_{(est-18d)}$ eighteen days before t0, one needs to assess the progression rate of the 1 cases during the 18 last days to estimate the number of cases at day t₀ (C_{t0-estimated}). We tested 2 two methods to assess this progression. 3 Estimation of progression of cases for 18 days based on reported number of cases 4 5 One can assume that progression of estimated cases (P_{18d}) reflects the time-dependent increase in the reported number of cases during the same time-period. In that case, 6 7 $P_{18d} = C_{t0} / C_{t-18d}$ (Eq. 5) With Ct0: number of cases reported in a country at time to; Ct-18d: number of cases reported in 8 9 the country at time t0 minus 18 days. Thus, $C_{t0-estimated} = C_{(est-18d)} * P_{18d}$ 10 (Eq. 6, Table II) Estimation of progression of cases for 18 days based on 3-day rate of change of the 11 estimated C_(est-18d) 12 13 Another option to assess the progression of cases for 18 days is to calculate the daily rate of change of the number of estimated cases (R_d) or alternatively 3-day rate of change (R_{3d}) of the 14 15 number of estimated cases $R_{3d} = (C_t / C_{t-3d}) - 1$ (*i.e.* $(C_t - C_{t-3}) / C_{t-3d}$) (Eq. 7) 16 17 With C_{t0}: number of cases reported at time t₀; C_{t0-3d}: number of cases reported at time t₀ minus 3 days. 18 The last day when this calculation is possible is 18 days before t₀. 19 $R_{3d-18d} = (C_{(est-18d)} / C_{(est-21d)}) - 1$ $(i.e. (C_{(est-18d)} - C_{(est-21d)}) / C_{(est-21d)})$ 20 (Eq. 8) With C_(est-18d): estimated cases 18 days before t₀ (see Eq. 4); C_(est-21d): estimated cases three 21 days before. Assuming that the progression of the estimated cases follows an exponential 22 model then 23 $C_{t0-estimated} = C_{(est-18d)} * (1 + R_{3d-18d})^6 = C_{(est-18d)} * (F_{t0} / F_{t0-3d})^6$ 24 (Eq. 9) With F_{t0-3d} : number of fatalities reported in a country at time t₀ minus 3 days. The exponent 6 25 represents the period of the model as 6 * 3 days = 18 days. This estimation supposes that R_{3d} 26 does not evolve with time, during the last 18 days. 27 Thus $C_{t0-estimated} = (F_{t0} / F_{r-est}) * (F_{t0} / F_{t0-3d})^6$ 28 (Eq. 10) 29 Comparison with basic reproductive potential of the pathogen (\mathbf{R}_0) 30 The basic reproductive potential of the pathogen (R_0) is an important index in epidemiology. 31 It is defined as the average number of secondary cases arising from a primary case in an 32 entirely susceptible population. Another critical parameter is the mean generation time (Tg) 33

1	<i>i.e.</i> , the time between the infection of a primary case and the infection of a secondary case								
2	(Flaxman et al. 2020; Keeling & Rohani, 2008).								
3	Assuming that the progression of Covid-19 follows a SEIR model based on four								
4	compartments (Susceptible, Exposed, Infectious, and Recovered subjects (Keeling & Rohani,								
5	2008)), the increase in prevalence during the invasion phase of the disease is estimated as								
6	$C_{SEIR(t)} \approx C_{(t0)} \exp \{ [(\sqrt{R_0} - 1) * \gamma] * t \}$ (Eq. 11, Keeling & Rohani, 2008)								
7	With C: number of infected cases at a time t or t_0 ; R_0 : the basic reproductive potential of the								
8	pathogen; γ : the recovery rate γ with $1/\gamma$: the infectious period (Di).								
9	This equation allows to estimate the doubling time for cases (T2) if $C_{SEIR(t)}/C_{(t0)}=2$.								
10	T2=ln(2) / [($\sqrt{R_0} - 1$) * γ] (Eq. 12)								
11	thus $R_0 = [[ln(2) / (T2 * \gamma)] + 1]^2$ (Eq. 13)								
12	$Tg \approx De + Di/2$ (Eq. 14)								
13	if Covid-19 is modeled with a SEIR model (with De = exposition time during which a subject								
14	is exposed but not infectious), and $De \approx Di$ (Li et al., 2020).								
15	One can thus estimate that								
16	$R_0 = \left[\left[2 * Tg * \ln(2) / (3 * T2) \right] + 1 \right]^2 $ (Eq. 15)								
17	Using the daily rate of change (R_d) (or R_{3d} / 3), and the "rule of 70", one can estimate								
18	$T2 = 0.7 / R_d$ (Eq. 16)								
19	Thus $R_0 = [[2 * Tg * ln(2) / (3 * 3* 0.7 / R_{3d})] + 1]^2$ (Eq. 17)								
20	Tg can be estimated to be 6.5 according to (Flaxman et al. 2020).								
21									
22	RESULTS								
23	Estimations relying on number of cases at time to minus 18 days								
24	Using the (Eq. 4) and international databases (Dong et al. 2020,								
25	https://github.com/CSSEGISandData/COVID-19/tree/master/csse covid 19 data/csse covid 19 time series),								
26	we estimated the number of people that have been affected by Covid-19 eighteen days before								
27	April 10 st 2020 in different countries (Table II). This estimation was 659,850 persons in								
28	France and 138,350 in Germany. We then proposed two different methods to infer the number								
29	of cases 18 days latter (Fig. 2). Method based on P_{18d} evaluation using the reported number of								
30	cases during the same time-period suggested a time-dependent decrease of number of cases in								
31	some countries (e.g. Germany (Fig. 2C) or USA (Fig. 2D)), which is not consistent. Method								
32	based on the evaluation of R_{3d} provided a better correspondence with the estimated cases in								
33	all tested countries (Fig. 2). We thus retained results from the R_{3d} method for further analyses.								

- 1 Estimation of the number of cases based, April 10th was 2,872,097 in France, 924,892 in
- 2 Germany, 1,811,469 in Spain, 4,240,198 in the United Kingdom and 9,035,229 in the United
- 3 States (Table II, Fig. 2, Fig. 3A). R_{3d} evaluation can further be used to assess the basic
- 4 reproductive potential of the pathogen (R_0) based on (Eq. 17). We reported R_0 values from 1.0
- 5 (China) to 2.86 (Belgium) (Table II).
- 6 This analysis is based on an estimated fatality rate from well-controlled studies (M_{r-est}) of 2%.
- 7 The estimated number of cases must be halved if the mortality rate used jumps from 2 to 4%
- 8 (Table II). It must be doubled if the fatality rate used drops from 2 to 1%. Some authors
- 9 suggest that the real fatality rate for Covid-19 could be 5.6 to 15.6% (Baud et al. 2020). If the
- 10 calculation uses a fatality rate of 15%, then the estimated number of cases drops to 382,946
- 11 for France, but it becomes lower than the number of cases actually reported for some
- 12 countries (e.g. 2,242 *versus* 10,450 for South Korea), which is not consistent (Table II).
- 13 In our study, we set the delay between the onset of symptoms and death at 18 days based on
- robust data from the literature (Ruan et al. 2020; Verity et al. 2020; Zhou et al. 2020) and
- delays used in other models (Flaxman et al. 2020). Lowering this delay, for example to 12
- 16 days, sharply decreases the number of estimated cases (*e.g.* 1,645,302 for France (Table II))

17 although it remains high compared to figures reported by most countries.

- 18 Using estimations based on R_{3d} model, with delay of 18 days between the onset of symptoms
- and death and fatality rate of 2%, we could thus compare estimated cases of Covid-19 in
- 20 different countries (Fig. 3A), proportion of cases in different countries (Fig. 3B), as well as
- 21 notification indexes which is the ability to report cases (Fig. 3C-D). These data highlight
- 22 strong discrepancies between countries. It suggests a high proportion of affected persons in
- 23 Belgium. It also shows notification indexes that varies from 60 to 80% in Korea while it is
- 24 below 5% in most countries.

25 Comparison of estimated cases with the number of cases reported afterwards

- The number of cases evaluated between March 16 and April 10, 2020 from the number of
- 27 cases at time t_0 minus 18 days and the R_{3d} model was compared with cases estimated from the
- number of cases at time t_0 minus 18 days (without the R_{3d} -based model) calculated from
- 29 mortality data collected between April 11 and 28, 2020 (Fig. 4). The cases estimated with the
- R_{3d} model were higher than those estimated a posteriori. This can easily be explained by the
- reduction in the spread of the disease (and thus of R_{3d}) in the past 18 days following the
- 32 containment measures in many countries. The three-day rate of change in the number of
- estimated cases (R_{3d}) we used is overstated.

- 1 The measurements that we have made allow to assess the impact of containment policies. For
- 2 example, for France, the cases estimated on April 10 were based on an R_{3d} of 0.28 (measured
- 3 on March 23). Five days before this date (March 19), R_{3d} was 0.50. Using an R_{3d} of 0.50
- 4 (instead of 0.28) leads to an estimate of 7,516,104 cases on April 10. The reduction of R_{3d}
- 5 from 0.50 to 0.28 thanks to containment therefore prevented the appearance of 4,644,007 new
- 6 cases in France (7,514,104 2,872,097). The number of cases estimated from the deaths
- 7 which occurred on April 28, 2020 was in fact 1,141,450. Thus, the number of cases actually
- 8 avoided is 7,514,104 1,181,450 = 6,332,654. This represents 126 653 avoided deaths.
- 9

10 DISCUSSION

It is essential to assess the number of persons affected by Covid-19 in all countries of the world to stem this crisis. We propose to use the mortality reported by each country at a time t_0 to create an index of the number of real cases at this same time t_0 . Mortality at t_0 makes it possible to estimate the number of cases 18 days earlier (C_(est-18d)). Then, the rate of change over time of the estimated cases (C_(est)) is evaluated over 3 days (R_{3d}). This rate is used to modulate C_(est-18d), and calculate the number of cases at time t0. This calculation leads to the following equation

17

$$C_{t0-estimated} = (F_{t0} / F_{r-est}) * (F_{t0} / F_{t0-3d})^{6}$$
(Eq. 10)

With F_{t0}: number of fatalities reported in a country at time t₀; F_{t0}: number of fatalities reported 18 in a country at time t₀ minus 3 days; F_{r-est}: estimated fatality rate. This analysis is based on 19 four assumptions: 1. The number of deaths reported by each country is reliable, 2. The 20 estimated fatality rate among people affected is known (Fr-est, here considered as 2%), 3. The 21 22 average time between the onset of symptoms and death is known (here considered 18 days). 4. The rate of variation over three days of the estimated cases (R_{3d}) does not change during the 23 last 18 days. This last condition is not entirely exact because, thanks to containment policies, 24 the rate of change over three days decreased continuously until the beginning of May 2020. 25 26 Ct0-estimated is thus overestimated as shown by the comparison of the values obtained with measurements a posteriori, that is to say without taking into account the modeling of the last 27 18 days. Estimating the 3-day rate of change in the number of estimated cases ($C_{(est-18d)}$ -28 Eq.4) can be used to assess R_0 . The values of R_0 that we have reported (from 1.0 (China) to 29 30 2.86 (Belgium)) are consistent with data from the literature (for example $R_0 = 4.0$ in Flaxman 31 et al. 2020, at the beginning of pandemic). Conversely, the estimation of R_0 on the basis of an epidemiological model (cf. for example (Flaxman et al. 2020)) could be used to calculate R_{3d} 32 (cf. Eq. 17) and refine the estimation of the number of cases. It would also be possible to 33

1 smooth out the risks of daily variations in the calculation of R_{3d} by using average measures of

 $2 \qquad R_{3d} \text{ over a longer period of time.}$

Our analyses showed that the number of Covid-19 cases in several country greatly exceeds 3 4 the number of cases presented in international databases (2,872,097 (or 1,181,450 cases with a posteriori measures) versus 124,869 for France on April 10th, 2020). The very high values of 5 estimated cases that we report are consistent with those evaluated with another method by 6 7 (Flaxman et al. 2020). For example, we report 1.8 million cases in Spain while Flaxman reports 7.0 million on March 28th. Our calculation relies on a relatively simple method while 8 9 that of Flaxman uses more complex analyzes (hierarchical semi-mechanistic Bayesian model). Our model used a fatality rate of 2% while several strongly controlled international studies 10 11 reported rates of 0.7 to 3.6% (Verity et al. 2020). Values from 0.5 to 4% could thus be other reasonable options to estimate fatality rate. One of the limitations of our model is that fatality 12 13 rates can change from one country to another, for example depending on the distribution of the population of different age groups that have different susceptibility to Covid-19. Also, it is 14 15 possible that death rate changes over time in a given country, for example because of the saturation of hospitals or the correction of mortality figures to include non-counted cases (as 16 17 done in France between April 1 and 4, 2020 to include mortality in nursing homes). We fixed a single value for the time between symptom occurrence and death (18 days). In reality, this 18 time is variable with a 95% credible interval of 16.9 to 19.2 or more (Verity et al. 2020). We 19 20 however considered that using such interval would make the model more complicated without strongly adding reliability compared to other potential sources of errors. Our analysis is based 21 solely on the number of people who have died with confirmed Covid-19 cases. It is therefore 22 essential that all countries are able to provide very reliable Covid-19 death values. Finally, 23 note that to know the number of actual cases in a country at a given time, we must subtract 24 from the estimates presented here the number of people healed, including those whose disease 25 26 has not been identified. To conclude, our model questions the small number of people reported to be affected by 27

28 Covid-19 in most countries compared to the large numbers we estimate. This difference could

29 be explained by a large underestimation of the "mortality rate". For example, in France, the

30 "estimated mortality rate" should be changed from 2 to ~ 46% to decrease the estimate of the

number of cases from 2,872,097 to 124,869. Obviously, a mortality rate of 46% is not

- 32 observed. Thus, the only explanation that remains is that most countries strongly
- 33 underestimate the number of affected people. The secondary interest of our model is that it

8

1	takes into account the rate of change over 3 days, over the past 18 days. Thus it can be used to
2	model the effectiveness of policies to prevent the spread of Covid- 19.
3	
4	ACKOWLEDGMENTS
5	We thank Matthieu Domenech de Cellès for constructive and supportive advices during the
6	redaction of this manuscript.
7	
8	REFERENCES
9	Baud D, Qi X, Nielsen-Saines K, Musso D, Pomar L, Favre G. Real estimates of mortality
10	following COVID-19 infection [published online ahead of print, 2020 Feb 19]. Lancet Infect
11	Dis. 2020. doi: 10.1016/S1473-3099(20)30195-X.
12	
13	Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real
14	time [published online ahead of print, 2020 Feb 19]. Lancet Infect Dis. 2020;S1473-
15	3099(20)30120-1. doi:10.1016/S1473-3099(20)30120-1. Database available on:
16	https://github.com/CSSEGISandData/COVID-19/tree/master/csse covid 19 data/csse covid 19 time series
17	Consulted 2020/04/20
18	
19	Flaxman S, Mishra S, Gandy A, Unwin JT, Coupland H, Mellan TA et al. 2020. Estimating
20	the number of infections and the impact of nonpharmaceutical interventions on COVID-19 in
21	11 European countries. Imperial College London (30-03-2020). doi: 10.25561/77731
22	
23	European Centre for Disease Prevention and Control. Situation Update-Worldwide.
24	Disponible à: https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases.
25	Consulted 2020/04/20
26	
27	Keeling, M.J. & Rohani, P. 2008. Modeling infectious diseases in humans and animals.
28	Chapter 2- Introduction to simple epidemic models. Princeton University Press.
29	
30	Li, R., Pei, S., Chen, B., Song, Y., Zhang, T., Yang, W., Shaman, J. 2020. Substantial
31	undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-
32	CoV2). Science. doi: 10.1126/science.abb3221
33	

- 1 Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-
- 2 19 based on an analysis of data of 150 patients from Wuhan, China [published online ahead of
- 3 print, 2020 Mar 3]. Intensive Care Med. 2020;1–3. doi:10.1007/s00134-020-05991-x
- 4
- 5 Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N et al. Estimates of the
- 6 severity of coronavirus disease 2019: a model-based analysis [published online ahead of print,
- 7 2020 Mar 30]. Lancet Infect Dis. 2020;S1473-3099(20)30243-7. doi:10.1016/S1473-
- 8 3099(20)30243-7
- 9
- 10 Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z et al. Clinical course and risk factors for mortality
- 11 of adult in patients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet.
- 12 2020; 395: 1054-1062. doi: 10.1016/S0140-6736(20)30566-3

1 FIGURES AND TABLES

2

	Day	Fatalities	Cases	Fatality	Cases	Fatality	
Country	Day			-		-	
country		at to	at to	rate	at t _{0-18j}	rate	
	(t ₀)	(F _{t0})	(Ct0)	Fr	(Ct _{0-18d})	Fr-18d	
Belgium	April 10	3 019	26 667	11.3%	3743	80.7%	
China	March 5	3 015	80 537	3.7%	70 513	4.3%	
France	March 30	3 024	44 550	6.8%	2 281	132.6%	
Germany	April 10	2 767	122 171	2.3%	29 056	9.5%	
Iran	April 1	3 036	47 593	6.4%	12 729	23.9%	
Italy	March 18	2 978	35 713	8.3%	1 128	264.0%	
South-Korea	April 10	208	10 450	2.0%	8 961	2.3%	
Netherlands	April 10	2 511	23 097	10.9%	4 749	52.9%	
Spain	March 24	2 808	39 885	7.0%	400	702.0%	
United Kingdom	April 2	2 921	33 718	8.6%	1 140	256.2%	
USA	March 30	2 978	161 807	1.8%	1 163	256.1%	

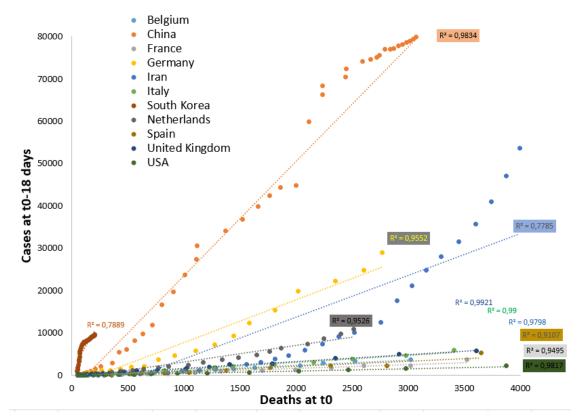
3

4 Table I: Fatality rates in different countries when the number of deaths approached 3,000

5 *people (or the last figure available when the 3,000 deaths were not reached April 10th 2020).*

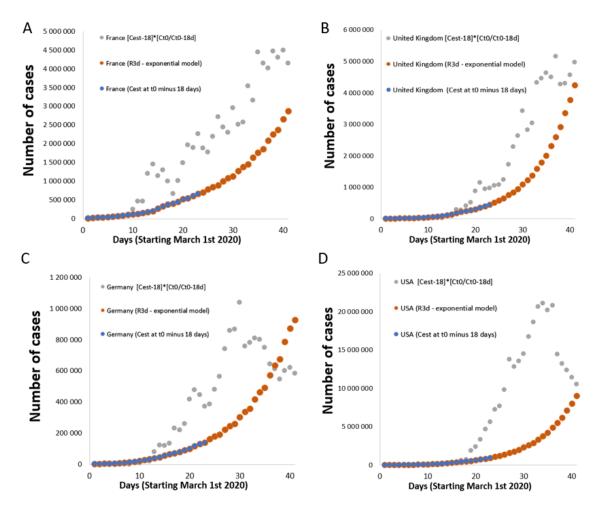
6 (https://github.com/CSSEGISandData/COVID-19/tree/master/csse covid 19 data/csse covid 19 time series)

7


1

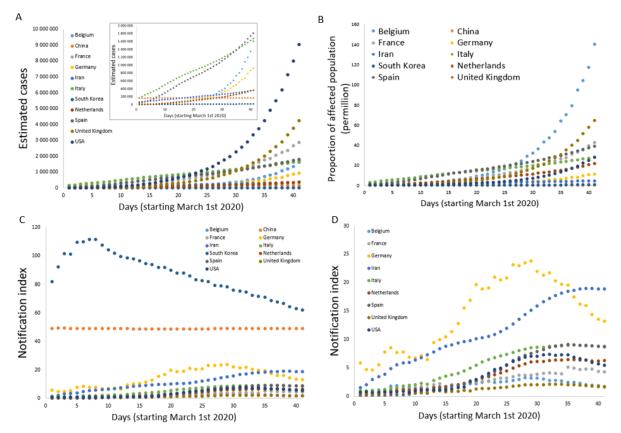
					Method	Method	1	Method 2						
					1&2	Progression rate from actual cases		Estimation from 3-days rate of change						
	Population	Reported	Reported	Reported	Estimated	Progression rate	Estimated	R _{3d-18j}	Ro	Estimated	Estimated	Estimated	Estimated	
	(million)	cases	deaths	cases	cases	from	Cases			cases	cases	cases	cases	
Country		at t _o	at t _o	at t _{0-18d}	at t _{0-18d}	t_{-18} to t_0 P _{18d} = Ct0 / Ct-18d								
		(April 10)	(April 10)	(March 23)	(March 23)	(April 10)	(April 10)	(April 10)	(April 10)	(April 10)	(April 10)	(April 10)	(April 10)	
		(Ct ₀)	(F _{t0})	(Ct _{0-18d})	C _(est-18d)	P _{18d}	C _{t0-estimated}	Ct0-estimated	C _{t0-estimated}					
Delay							t _{0-18d}	t 0-18d	t 0-18d	t 0-18d	t 0-18d	t 0-18d	t 0-12d	
M _{r-est}							2%	2%	2%	2%	4%	15%	2%	
Belgium	11,476	26 667	3019	3 743	150 950	7,12	1 075 443	0,48	2,86	1 609 257	804 628	214 568	683 894	
China	1,384,688	82 941	3340	81 498	167 000	1,02	169 957	0,00	1,00	168 508	84 254	22 468	168 003	
France	67,795	124 869	13197	19 856	659 850	6,29	4 149 618	0,28	1,95	2 872 097	1 436 049	382 946	1 645 302	
Germany	83,073	122 171	2767	29 056	138 350	4,20	581 717	0,37	2,35	924 892	462 446	123 319	482 669	
Iran	82,022	68 192	4232	23 049	211 600	2,96	626 033	0,09	1,28	360 726	180 363	48 097	294 241	
Italy	60,360	147 577	18849	63 927	942 450	2,31	2 175 668	0,10	1,31	1 674 559	837 279	223 275	1 364 771	
South-Korea	51,709	10 450	208	8 961	10 400	1,17	12 128	0,08	1,25	16 811	8 406	2 242	14 306	
Netherlands	17,282	23 097	2511	4 749	125 550	4,86	610 619	0,20	1,64	365 882	182 941	48 784	240 570	
Spain	46,935	158 273	16081	35 136	804 050	4,50	3 621 909	0,14	1,46	1 811 469	905 735	241 529	1 345 788	
United Kingdom	65,761	73 758	8958	6 650	447 900	11,09	4 967 851	0,45	2,72	4 240 198	2 120 099	565 360	2 041 524	
USA	328,240	496 535	18586	43 847	929 300	11,32	10 523 638	0,46	2,75	9 035 229	4 517 615	1 204 697	4 086 903	

2


3 Table II: Estimation of the number of cases in different countries April 10st (t₀) using different methods and an estimated Fatality rate (*F*_{*r*-est}) of 2%. Numbers

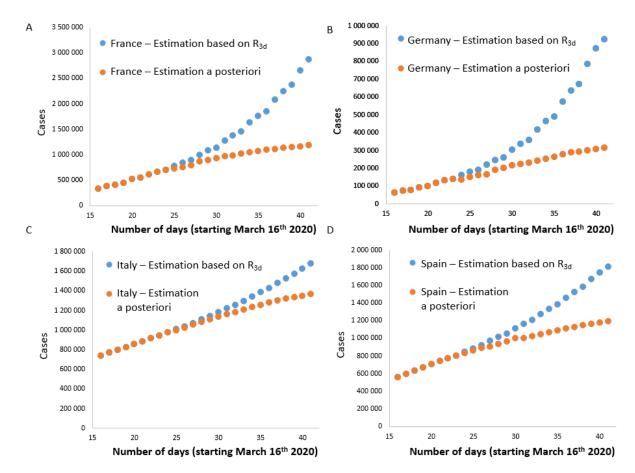
4 of cases estimated with different methods are provided using delays of 18 or 12 days between symptom occurrence and death.

Figure 1: Relationships between deaths a given day (*t*₀) *and the number of cases eighteen*


- *days before* (*t*_{0-18days}) *in different countries. The figure includes only values between 50 and 4*
- 4 000 deaths (or less if the number of deaths was lower in the country April 10^{th}).

1

2 Figure 2: Comparison of evolution of estimated Covid-19 cases in France (A), United Kingdom (B), Germany (C), and USA (D) from March 1st 2020 to April 10th 2020. The estimated values 3 corresponding to the number of cases estimated 18 days before t_0 ($C_{est-18d}$), based on the number 4 of deaths at t0 are displayed in blue. The progression of these cases, taking into account a 5 multiplying factor (P_{18d}) which reflects the increase over time in the number of cases declared 6 during the same period is noted in gray. This calculation method leads to a large number of 7 cases and to daily variations. The orange marks correspond to a model based on R3d ($(1 + C_{est})$ 8 9 $_{3d}$) * R_{3d}). It provides curves which follow the values corresponding to C_{est} based on fatalities estimated 18 days before a given day (blue marks). 10


- 11
- 12
- 13

2 Fig. 3. Comparison of estimated cases and related parameters in different countries. A.

- 3 estimated cases in different countries. B. Proportion of affected person compared to the
- 4 country population. C-D. Notifications indexes reflecting the number of cases reported by
- 5 *different countries compared to the estimated number of cases (percentages).*
- 6

1

Fig. 4. Comparison of cases estimated in different countries from day 16 (March 16th) using a
method based on fatality rates reported from March 16 to April 10 with an estimate based on
R_{3d} (blue). Results of an a posteriori method following the fatality rates reported from April 3
to April 28 are shown in orange.