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34  Abstract

35 The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a
36  global pandemic of novel corona virus disease (COVID-19). To date, no prophylactic
37  vaccines or approved therapeutic agents are available for preventing and treating this
38 highly transmittable disease. Here we report two monoclonal antibodies (mAbs)
39 cloned from memory B cells of patients recently recovered from COVID-19, and both
40  mAbs specifically bind to the spike (S) protein of SARS-CoV-2, block the binding of
41  receptor binding domain (RBD) of SARS-CoV-2 to human angiotensin converting
42  enzyme 2 (hACE2), and effectively neutralize S protein-pseudotyped virus infection.
43  These human mAbs hold the promise for the prevention and treatment of the ongoing

44  pandemic of COVID-19.
45
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46  Main text

47  According to World Health Organization (WHO) newly updated situation report on
48 March 18", 2020, the corona virus disease 2019 (COVID-19) pandemic has
49  confirmed 191,127 cases and claimed 7,807 deaths worldwide'. The etiological agent
50 of COVID-19 has been identified as a novel coronavirus, the severe acute respiratory
51  syndrome coronavirus 2 (SARS-CoV-2), belonging to Sarbecovirus subgenus (genus
52  Betacoronavirus, family Coronaviridae) and showing 79.6% and 96.2% sequence
53 identity in nucleotide to SARS-CoV and a bat coronavirus (BatCoV RaTG13),
54  respectively?*. Like SARS-CoV infection, a substantial fraction of COVID-19 patients
55  exhibits severe respiratory symptoms and has to be hospitalized in intensive care unit
56  (ICU)*®. Although the mortality rate of COVID-19 is significantly lower than that of
57 SARS-CoV infection, SARS-CoV-2 shows much higher human-to-human
58 transmission rate, rapidly leading to a global pandemic declared by WHO on March

59 11" 2020°.

60  Currently, there are no approved prophylactic vaccines or therapeutic drugs that are
61 specific to COVID-19. Blocking monoclonal antibodies (mAbs), due to their
62  extraordinary antigen specificity, are one of the best candidates for neutralizing virus
63 infection'® . Therefore, identifying and cloning blocking mAbs that can specifically
64  target surface viral proteins to block the viral entry to host cells is a very attractive
65  approach for preventing and treating COVID-19, in particular when effective vaccines
66  and therapeutics are unavailable in the outbreak of the COVID-19 pandemic. We then
67  sought to identify and clone blocking mAbs from the memory B cell repertoire of
68  recently recovered COVID-19 patients to prevent the entry of COVID-19 virus to the

69  host cells.

70  Similar to SARS-CoV, SARS-CoV-2 also utilizes highly glycosylated homotrimeric

3, 12-15

71  spike (S) protein for receptor binding and virus entry . The S protein of

72  SARS-CoV-2 consists of two subunits, S1 and S2. To engage host cell receptor
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73 human angiotensin-converting enzyme 2 (hACE2), shared by both SARS-CoV and
74  SARS-CoV-2, S protein undergoes dramatic conformational changes to expose the
75 RBD and key residues for receptor binding. S protein is metastable, and binding of
76  RBD to hACE2 receptor likely leads to the shedding of S1 protein from S2 protein,
77  thus promoting S2-mediated virus-host membrane fusion and virus entry'®". Given
78  the critical role of the RBD in initiating invasion of SARS-CoV-2 into host cells, it
79  becomes a vulnerable target for neutralizing antibodies. Thus far, the human mAbs
80  specifically target the SARS-CoV-2 RBD-hACE?2 interaction have not been reported,
81 and a monoclonal antibody targeting S1 made from immunized transgenic mice
82  expressing human Ig variable heavy and light chains has been recently shown to
83  neutralize both SARS-CoV-2 and SARS-CoV infection, but by an unknown

84  mechanism that is independent of the blockade of RBD-hACE2 interaction™®.

85  Prior to cloning SARS-CoV-2 RBD specific human mAbs, we first examined whether
86  patients recently recovered from COVID-19 had mounted anti-SARS-CoV-2 S$1
87  protein IgG antibodies in sera. Among 26 recovered COVID-19 patients, we found
88 that the maijority of these recruited patients were able to produce high titers of
89 SARS-CoV-2 S1-specific IgG antibodies and only 3 patients mounted relatively lower
90 anti-S1 IgG responses, by enzyme-linked immunosorbent assay (ELISA) (Fig. 1a).
91 Consistently, we also found that SARS-CoV-2 RBD specific IgG antibodies were
92 present in sera of all patients by ELISA (Fig. 1b). Next, we sought to investigate
93 whether RBD-specific antibodies in patient serum can block the binding of
94  SARS-CoV-2 RBD to hACE2. To this end, we set up an ELISA-based inhibition assay
95 to examine the blocking function of these antibodies. We noted that there were only 3
96  out of 26 patients showed effective blockade of SARS-CoV-2 RBD binding to hACE2
97  (Fig. 1c). Taken together, these results suggested that while all recovered COVID-19
98 patients can generate anti-S1 and anti-RBD antibodies, there were only a small
99 fraction of these antibodies can block the binding of RBD to hACE2 receptor. This

100 observation may be explained by transient and dynamic perfusion conformational
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101  states of S protein that provide very limited window for the immunogenic epitopes of

102  RBD exposure to specific B cells®.

103  Next, we set out to clone human monoclonal antibodies using the blood samples from
104  three COVID-19 recovered patients, of which their sera showed potent hACE2
105 receptor binding inhibition. To this end, we sorted each SARS-CoV-2 RBD specific,
106  IgG class-switched memory B cell into a single well of the 96-well microplates.
107  Subsequently, we used reverse transcription polymerase chain reaction (RT-PCR) to
108  amplify IgG variable heavy chain (VH) and light chain (VL) from each single memory B
109 cell. After cloning both VH and VL, we inserted both sequences into expression
110 plasmids that encoding constant regions of human IgG1 heavy chain and light chain
111  (Fig. 2a)*". We found that SARS-CoV-2 RBD specific, IgG-positive memory B cells
112  only enriched in COVID-19 recovered patients, but not in healthy controls (Fig. 2b),
113  suggesting the specificity of our sorting strategy. The representative RT-PCR and
114  cloning of IgG1 heavy chains and light chains to expression plasmids were shown in
115 Figure 2c and 2d. After antibody cloning, we acquired 3 pairs of IgG VHs and VLs
116 inserted expression plasmids and the CDR3 sequences of heavy chains were shown
117 in Figure 2e (analyzed with IMGT browser,

118  http://www.imgt.org/IMGT_vquest/analysis#sequence1_alj).

119 Finally, we expressed these paired plasmids encoding IgG VH and VL sequences and
120 named these three mAbs as 311mab-31B5, 311mab-32D4 and 311mab-31B9,
121  respectively. We first examined whether these human mAbs were able to bind to
122  SARS-CoV-2 RBD protein by ELISA. The results showed that all three mAbs strongly
123  and specifically bind to the RBD protein (Fig. 3a). Next, we tested whether these
124  mAbs can block the interaction between SARS-CoV-2 RBD and hACE2. We found
125 that both 311mab-31B5 and 311mab-32D4 could efficiently block SARS-CoV-2
126 RBD-hACE2 interaction (IC5=0.0332, and 0.0450 pg/ml, respectively), while

127 311mab-31B9 clone failed to inhibit such an interaction (Fig. 3b). The 31B5- and
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128  32D4-mediated inhibition of RBD-hACE2 interaction was also evidenced by flow
129  cytometry analysis (Fig. 3c-e). Furthermore, we determined the neutralization of these
130 three mAbs using a SARS-CoV-2 S pseudotyped lentiviral particle®. In line with
131 ELISA- and flow cytometry-based blockade results, both 311mab-31B5 and
132 311mab-32D4 effectively neutralized pseudovirus entry to host cells ectopically
133  expressing hACE2 (IC5,=0.0338, and 0.0698 ug/ml, respectively). As expected,

134  311mab-31B9 clone failed to show any neutralization activities (Fig. 3f).

135 In conclusion, we have successfully cloned two human blocking mAbs using
136 SARS-CoV-2 RBD-specific memory B cells isolated from recovered COVID-19
137 patients. These two mAbs can specifically bind to SARS-CoV-2 RBD, block the
138 interaction between SARS-CoV-2 RBD and hACE2 receptor, and lead to efficient
139 neutralization of SARS-CoV-2 S protein pseudotyped virus infection. Such human
140  anti-SARS-CoV-2 RBD-hACE2 blocking mAbs hold great promise to be exploited as

141  specific prophylactic and therapeutic agents against ongoing SARS-CoV-2 pandemic.
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159  Materials and methods

160

161 Human samples. The 26 COVID-19 patients enrolled in the study were provided
162  written informed consent. Prior to blood collection, the patients were clinically
163 recovered and tested negative qPCR for SARS-CoV-2 virus RNA. Healthy control
164  subjects were 2 adult participants in the study. The study received IRB approval at
165  Chongging Public Health Medical Center (2020-023-01-KY).

166

167 PBMC and serum collection. Blood samples were collected in cell preparation tubes
168  with or without sodium citrate (BD Bioscience). PBMCs were isolated from blood in
169  sodium citrate tubes using Ficoll (TBD Science), washed with PBS plus 2% FBS,
170  suspended in cell freezing medium (90% FBS plus 10% DMSO), frozen in freezing
171  chamber first at -80°C, and then transferred to liquid nitrogen. Sera were collected
172  from blood without sodium citrate treatment and stored in aliquots at -80°C.

173

174  Single-cell sorting by flow cytometry. For B cell enrichment, PBMCs were firstly
175  stained with FITC-conjugated anti-CD19 antibody (Biolegend) on ice for 30 min. Then,
176  FITC-CD19 stained PBMCs were enriched using anti-FITC MicroBeads (Miltenyi
177  Biotec) by following manufacturer’s protocol. For surface staining, the enriched CD19*
178 B cells were stained with biotin-conjugated SARS-CoV-2 RBD protein (Sino Biological,
179  40592-VO5H) at 4°C for 20 min, followed by PE-Cy7-conjugated streptavidin
180 (eBioscience), PE-conjugated anti-CD20 antibody (Biolegend), APC-conjugated
181 anti-human IgG (Fc) (Biolegend), APC-Cy7-conjugated anti-CD3 antibody (Biolegend),
182 APC-Cy7-conjugated anti-CD14 antibody (Biolegend), APC-Cy7-conjugated
183 anti-CD56 antibody (Biolegend) and APC-Cy7-conjugated LIVE/DEAD dye (Life
184  Technologies). Cell staining was performed in PBS containing 5% mouse serum
185  (wt/vol). For cell sorting, the stained SARS-CoV-2 RBD-specific IgG* B cells were

186  single-cell sorted into 96-well plates loaded with 10 ul catch buffer and then stored at
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187  -80°C. Catch buffer: to 1 ml of RNAase-free water (Tiangen Biotech), add 50 yl 1.5 M
188  Tris pH 8.8 (Beijing Dingguo Changsheng Biotech) and 40 ul Rnasin (NEB).

189

190 RT-PCR and PCR cloning. The heavy and light chain genes were PCR amplified as
191  previously described?'. Briefly, single-cell sorted plates were thawed on ice and added
192  with 15 yl RT-PCR master mix following the one step RT-PCR kit protocol (Takara,
193 RRO057A) with primers for IgG VH and IgG VL. RT-PCR program: 50°C for 30 min,
194  94°C for 2 min, 45 cycles of 94°C for 30 sec, 57°C for 30 sec and 72°C for 1 min. Then,
195 RT-PCR products were nested PCR-amplified with nested PCR master mix following
196 the HS DNA polymerase kit protocol (Takara, TAK R010) with primers for IgG VH or
197 1gG VL. Nested PCR program: 98°C for 4 min, 45 cycles of 98°C for 1 min, 57°C for 1
198  min and 72°C for 1 min. Next, heavy and light chain PCR products were purified and
199 nuclease digested with Age1-HF/Sal1-HF (NEB) and Age1-HF/BsiW1-HF (NEB),
200 respectively. The digested heavy and light chain genes were further cloned into
201  human IgG1 heavy chain and light chain expression vectors, respectively.

202

203  Transfection. Human embryonic kidney (HEK) 293T cells of 80-90% confluent in the
204 15 cm tissue culture plate were transfected with master mixture containing 9 pg heavy
205 chain plasmid, 9 ug light chain plasmid and 60 pl TranslIT-293 Transfection reagent
206  (Mirus). The culture media was changed to basal media 24 hours-post transfection.
207  Then, the culture media was collected from the plate 2 days later.

208

209 ELISA. 50 ng of SARS-CoV-2 S1 protein (Sino Biological, 40591-VO8H) or
210  SARS-Cov2 RBD protein (Sino Biological, 40592-V08B) in 100 pl PBS per well was
211 coated on ELISA plates overnight at 4°C. Then, the ELISA plates were blocked for 1
212  hour with blocking buffer (5% FBS plus 0.05% Tween 20). Next, mAbs or ten-fold
213  diluted patient sera were added to each well in 100 pl blocking buffer for 1 hour. After

214  washing with PBST, the bound antibodies were incubated with anti-human IgG HRP

10
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215 detection antibody (Bioss Biotech) for 30 min, followed by washed with PBST, then
216  PBS and addition of TMB (Beyotime). The ELISA plates were allowed to react for 5
217  min and then stopped by 1 M HCI stop buffer. The optical density (OD) value was
218  determined at 450 nm.

219

220 ELISA-based receptor-binding inhibition assay. 200 ng of hACE2 protein (Sino
221 Biological, 10108-H08H) in 100 ul PBS per well was coated on ELISA plates overnight
222  at4°C. Then, the ELISA plates were blocked for 1 hour with blocking buffer (5% FBS
223 plus 0.05% Tween 20); meanwhile, three-fold serial dilutions of mAbs or ten-fold
224  diluted patient sera were incubated with optimal dose (based on ECs,) of SARS-Cov2
225 RBD protein (Sino Biological, 40592-V05H) for 1 hour. Then, the incubated mixtures
226  were added to ELISA plates and allowed to develop for 30 min, followed by PBST
227  washing and anti-mouse Fc HRP antibody (Thermo Fisher Scientific). Next, the ELISA
228  plates were washed with PBST, then PBS and added with TMB (Beyotime). After 5
229  min, the ELISA plates were stopped and determined at 450 nm. The half maximal
230 inhibitory concentration (ICsg) was determined by using 4-parameter logistic
231  regression.

232

233  Flow cytometry-based receptor-binding inhibition assay. 311mab mAbs or
234  isotype were incubated with optimal dose (based on ECsy) of SARS-Cov2 RBD
235  protein (Sino Biological, 40592-V05H) for 1 hour at RT. Then, the mixtures were
236  incubated with 10,000 hACE2-plasmid transiently transfected 293T cells for 40 min on
237 ice, followed by stained with Alexa Fluor 647-conjugated goat anti-mouse IgG
238 (Biolegend) and APC-Cy7-conjugated LIVE/DEAD dye (Life Technologies).

239

240  Pseudovirus neutralization assay. Spike protein of SARS-Cov-2 typed pseudovirus
241  was produced as previously described?. Concisely, HEK-293T cells were transfected

242  with psPAX2, pLenti-GFP and 2019-nCov S plasmids by using Trans|T-293

11
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243  Transfection reagent (Mirus). The culture media was changed to fresh media 12
244 hours-post transfection. And at 64 hours after transfection, supernatants were
245  harvested. For pseudovirus neutralization assay, three-fold serially diluted mAbs were
246  mixed with SARS-Cov-2 typed pseudovirus for 1 hour. Then, the mixture was
247  incubated with hACE2-expressing HEK-293T (hACE2/293T) cells overnight, followed
248 by change of fresh media. At 40 hours-post incubation, the luciferase activity of
249  infected hACE2/293T cells were detected by Dual-Luciferase Reporter Assay System
250 (Promega). The percent of infection was calculated as ratio of luciferase value with
251 mAbs to that without mAbs. The half maximal inhibitory concentration (ICso) was

252  determined by using 4-parameter logistic regression.
253

12
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254
255  Figure legends

256

257  Figure 1 ELISA binding and blocking assays of COVID-19 patient sera. (a) ELISA
258 binding assay of COVID-19 patient sera to ELISA plate coating of SARS-CoV-2 S1
259  protein. (b) ELISA binding assay of COVID-19 patient sera to ELISA plate coating of
260 SARS-CoV-2 RBD protein. (c) COVID-19 patient serum-mediated inhibition of the
261  SARS-CoV-2 S1 protein binding to hACE2 protein by ELISA. NC, negative control.
262  HD, healthy donor.

263

264  Figure 2 Cloning human mAbs from single SARS-Cov2 RBD-specific IgG*
265 memory B cells of three recovered patients whose sera potentially blocked
266 RBD-hACE?2 interaction. (a) An overall strategy of anti-SARS-CoV-2 RBD mAbs. (b)
267  Flow cytometry analysis of SARS-CoV-2 RBD-specific IgG* B cells in PBMCs of
268  healthy donor and patient XFQ. (c¢) Heavy and light Ig-chain encoding segments of
269 SARS-CoV-2 RBD-specific IgG" B cells were amplified by single-cell RT-PCR. (d)
270  Endonuclease digestion of IgG VH and VL inserts in the plasmids. (e) CDR3
271  sequences of heavy chains.

272

273  Figure 3 Characterization of mAbs against SARS-Cov2 RBD. (a) Specificity of
274  mAbs (311mab-31B5, -32D4 and -31B9 clones) to SARS-CoV-2 RBD protein by
275 ELISA. (b) ELISA analysis of SARS-CoV-2 RBD-hACE2 interaction inhibited by
276  311mab-31B5, -32D4 and -31B9 mAbs. (c¢) Flow cytometry analysis of SARS-CoV-2
277 RBD-hACE2 interaction inhibited by 311mab-31B5, -32D4 and -31B9 mAbs. The
278 numbers adjacent to the outlined areas indicate the percentages of anti-mouse IgG*
279  hACE2-plasmid transiently transfected 293T cells, which are summarized in (d). (e)
280 Mean fluorescence intensity of Alexa Fluor 647 anti-mouse IgG in anti-mouse IgG*
281  hACE2-plasmid transiently transfected 293T cells. (f) Antibody-mediated blocking of
282  luciferase-encoding SARS-Cov-2 typed pseudovirus into hACE2/293T cells. The data

13
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283  are representative of two independent experiments with three replicates per group (a,

284 b, d-f; error bars in a, b, d-f indicate the SD).

285
286
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Figure 2
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Figure 3
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