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Abstract 

As of April 5th 2020, SARS-CoV-2 has resulted in over 273,000 confirmed infections in the United 

States of America. Incidence continues to rise. As the epidemic threatens to overwhelm health care 

systems, identifying regions where the expected disease burden is likely to be high relative to the 

rest of the country is critical for enabling prudent and effective distribution of emergency 

resources. Across all global regions affected by the pandemic, an elevated risk of severe outcomes 

has consistently been observed in older age groups. Using age-specific mortality patterns in 

tandem with demographic data, we map a projection of the cumulative burden of COVID-19 and 

the associated cumulative burden on the healthcare system at the county-scale in the United States 

for a scenario in which 20% of the population of each county acquires infection. We identify 

regions that may be particularly impacted relative to the rest of the country, and observe a general 

trend that per capita disease burden and relative healthcare system demand may be highest away 

from major population centers. 
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Introduction 

The novel human coronavirus SARS-Cov-2 was first identified in December 2019 in Wuhan, 

China 1, and was observed in the United States shortly thereafter on January 7th 2020 2. The disease 

caused by SARS-Cov-2, termed COVID-2019, is both highly transmissible, with estimates of the 

basic reproductive number, R0, ranging from 1.4 - 6.49 3, and clearly virulent, with an estimated 

overall case fatality rate of 1.4% 4, albeit this is highly dispersed across age groups. As of April 4th 

2020, the pathogen has spread globally, resulting in over 1,133,000 confirmed cases and killing 

over 62,000 individuals. Currently, the cumulative reported incidence of COVID-19 in the U.S. is 

the highest in the world, with over 273,000 confirmed cases 5. 

As the COVID-19 epidemic expands within the U.S., a central focus of public health efforts 

will be limiting fatalities. A key driver of this outcome will be keeping the case burden of COVID-

19 patients within the treatment capacity of the healthcare system. If the medical system is 

overwhelmed, case fatality rates are expected to increase, as severely ill COVID-19 patients will 

be unable to receive adequate care, or possibly any care at all, thereby exacerbating health 

outcomes. Critically ill patients may fare even worse; high mortality rates within this group would 

likely be further compounded by shortages of intensive care facilities and / or access to mechanical 

ventilation. Patients requiring care for non-COVID-19 reasons will also be indirectly affected by 

the health system’s inability to meet their needs.  

 The effective distribution of limited emergency medical resources, including personnel, 

protective equipment, and ventilators, to medical systems could help reduce the probability that 

specific hospitals will be overwhelmed by COVID-19 cases. Effectively distributing such 

resources requires information on the distribution of the burden of disease, and how that burden 

aligns with healthcare system capacity. 
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Several factors likely contribute to the heterogeneous distribution of COVID-19 burden 

across the U.S. The first of these is demography. A consistent trend in COVID-19 case 

distributions in the U.S. 6 and elsewhere 7 has been markedly higher incidence in older age groups 

(noting that observed cases do not necessarily reflect total infections). Several different 

mechanisms, including differential susceptibility or transmission potential between age classes, 

could potentially give rise to these patterns 8. However, differences in symptomatic infection rate 

between age groups has emerged as the most parsimonious explanation 7,8. Rates of hospitalization 

and intensive care unit admission have also been observed to be higher in older individuals 9. 

Spatial variation in age structure between counties, particularly the distribution of older 

individuals, may lead to differences in the per capita burden of disease between regions. Further, 

access to health care is another factor that could potentially affect the distribution of COVID-19 

burden. Many rural areas of the U.S. may have insufficient ability to provide acute or critical care, 

or lack the capacity for both entirely. Residents of such areas may be at an increased risk for 

insufficient treatment. Finally, limited resources in rural areas may lead to an unexpected influx of 

cases to hospitals in population centers.  

The temporal distribution of COVID-19 cases could also contribute to heterogeneity in 

disease burden. The magnitude and timing of the epidemic ‘peak’ is an obvious example -- the 

maximum demand for care determines the minimum healthcare system capacity necessary to 

provide adequate care. However, obtaining accurate predictions of the epidemic peak is a central 

challenge in emerging outbreaks due to limited, and often unreliable, data on incidence, and rapidly 

deployed and changing mitigation efforts. In the case of SARS-CoV-2, county-level variability in 

testing standards 10,11, Nonpharmaceutical Interventions (NPIs) 12, and timing of initial case 

introductions 13 limit our ability to produce accurate epidemic predictions at the weeks and months-
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ahead temporal resolution. While precise projections of peak disease burden would be highly 

illuminating for informing preparation efforts, such predictions are currently unreliable given the 

sparsity of data, particularly serological surveys. Uncertainty in region-specific transmission rates 

and the efficacy of mitigation efforts (e.g., timing, or absence, of shelter-in-place orders) further 

complicate long-term forecasting. In contrast, projections of cumulative disease burden are 

considerably more tractable. Such estimates will miss the nuance of the intensity and timing of 

outbreaks, yet their projection of the spatial footprint of disease burden contains core information 

relevant to resource distribution. In particular, comparing the total expected number of critical and 

severe infections against healthcare resources in each county in the U.S. allows for the 

identification of regions which may experience relatively high disease burden. Furthermore, 

analyzing simulations of multiple transmission scenarios (e.g., different contact patterns) makes it 

possible to identify regions of consistently high disease burden without needing to project an exact 

epidemic trajectory over time.  

Here, we project the cumulative number of severe and critical COVID-19 cases in each 

county within the U.S. based on demographic data and age-specific risk factors for a scenario in 

which 20% of the population becomes infected. Using these projections, we calculate the 

healthcare system stress each county may experience as its own residents (and those from nearby 

counties with limited or non-existent medical resources) seek care. Finally, we map the expected 

burden of COVID-19 to identify the regions expected to experience the highest cumulative burden 

of disease in the long term. 
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Results 

We developed a modified age-stratified Susceptible-Exposed-Infected-Recovered (SEIR) 

epidemic model (based on the model of Davies et al. 7) to project the number of cases originating 

in each U.S. country. In this model, susceptible individuals (S) become infected in a density 

dependent fashion and enter the exposed (E) class, before eventually becoming either 

asymptomatically infected (IA) or ‘pre-clinically’ infected (e.g. symptomatic but not yet clinically 

presenting) (IP). The fraction of individuals who become pre-clinically infected rather than 

asymptomatically infected increases with age according to published estimates 7. Pre-symptomatic 

individuals eventually become symptomatic (IC). Asymptomatic and symptomatic individuals 

eventually recover with immunity to classes RA and RS respectively. All individuals in the infected 

classes (IA, IP, IC) are infectious; however, our model assumes that the relative infectiousness of 

asymptomatic individuals is reduced by a factor ba, and the relative infectiousness of clinical 

individuals is reduced by a factor bC to account for the effects of case isolation and quarantine. 

This model is aimed specifically at projecting the age distribution of cases over a wide variety of 

transmission scenarios, and not at producing epidemiological forecasts. As such, we do not vary 

the components of our model linked to interventions, (e.g. contact rates) over time or by location 

We chose to investigate a scenario in which 20% of the population in each county becomes 

infected. A 20% cumulative infection rate represents a pessimistic scenario for the short term (i.e., 

the next several months) but perhaps an optimistic scenario in the long term 14. We intentionally 

ignore spatial variation in the progression of the epidemic in order to simplify comparisons of 

disease burden between regions. As our aim is to provide general estimates about relative 

distribution of disease burden rather than to make precise predictions of case load over time, we 

sought to identify patterns of disease burden that are robust to different assumptions about the 
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dynamics of epidemiological spread. To accomplish this, we varied our assumptions about the 

overall transmissibility of COVID-19, contact patterns between different age classes, and the 

contributions of clinically presenting individuals to transmission. For each set of assumptions, we 

simulated our model for each county in the U.S. using demography data from the 2018 American 

Community Survey, and extracted the number of individuals in each age class who had become 

symptomatically infected by the time the cumulative population infection rate had reached 20%. In 

the main text, we present detailed results for the most optimistic scenario and most pessimistic 

scenario. Summarized results for 25 other scenarios are presented in the Supplementary Materials. 

In the ‘optimistic’ scenario (transmission, R0 = 2, mixing structure, Θ = 1, reduction in relative 

infectivity of clinically presenting individuals, bC, = 0.1, see Methods for further details) 

transmission is relatively slow, contact patterns exhibit a strong age structure, and clinically 

presenting individuals are effectively quarantined. In contrast, the ‘pessimistic scenario’ (R0 = 6, 

Θ = 0, bC = 1) is characterized by high transmission, well-mixed contact patterns, and ineffective 

quarantine.  

 Using our projections of cumulative symptomatic infections, we further estimated the 

number of severe cases (i.e., requiring hospitalization) and critical cases (i.e., requiring intensive 

care) using published rates of these outcomes for various age classes 9. We found that in all 

transmission scenarios, the areas with high relative burdens of hospitalizations and intensive care 

unit (ICU) admissions were those with high population density (See Figure 1 A, Figure 2 A, D, 

and Figure 3 A, D). However, we observed the opposite pattern for the per capita burden of 

hospitalizations and ICU admissions, which were distributed heterogeneously and were generally 

highest away from major population centers. Due to the positive correlation between age and 

disease severity, the areas with the highest per capita burden were those with older populations 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 11, 2020. ; https://doi.org/10.1101/2020.04.05.20054700doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.05.20054700
http://creativecommons.org/licenses/by-nc-nd/4.0/


(See Figure 1 B, Figure 2 B, E, and Figure 3 B, E,). Correspondingly, we identified a positive 

correlation between both hospitalization and ICU admission rates with age across all counties. We 

further found that older age classes were even more disproportionately affected in the ‘pessimistic’ 

transmission scenario that assumed no age assortative contact patterns (See Figure 2 G, Figure 3 

G). Despite this, we found that the sets of counties with very high projected burdens of per capita 

hospitalizations and ICU admissions remained similar across different transmission scenarios. 

Indeed, of the 315 counties at or above the 90% quantile of per capita hospitalization in the 

‘optimistic’ transmission scenario (see Figure 1 legend), 244 were also at or above this quantile in 

the ‘pessimistic’ scenario. Of the 315 counties at or above the 90% quantile of per capita ICU 

admissions in the ‘optimistic’ transmission scenario, 258 were also at or above this quantile in the 

‘pessimistic’ scenario.  

 

Figure 1: Population characteristics of the U.S. 

Panel A shows the population of each county. Panel B shows the fraction of individuals within each county over the 

age of 60. 
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Figure 2: Burden of hospitalizations in the US 

We mapped the burden of COVID-19 hospitalizations (assuming a 20% cumulative infection rate) in the U.S. Panels 

A, B, and C show results for the ‘optimistic’ scenario, and panels D, E, and F show results for the ‘pessimistic’ 

scenario. A and D show the relative number of hospitalizations in each county. B and E show the number of projected 

hospitalizations per capita in each county. In A, B, D, and E cases have not yet been allocated to healthcare systems. 

C and F show the cumulative number of hospitalizations per hospital bed after cases have been allocated to healthcare 

systems. G shows the percentage of each age class infected in each transmission scenario. Each of the 315 lines for 

each transmission scenario represents a different county. H and I show the counties estimated to be in the 90% quantile 

of hospitalizations per capita and hospitalizations per hospital bed (after case allocation). Colors in H and I indicate 

whether the counties were estimated to be in the 90% quantile in the optimistic scenario, the pessimistic scenario, 

both, or neither. A high-resolution version of this figure is provided in the supplementary materials.  
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Figure 3: Burden of ICU admissions in the US 

Figure 3 shows the projected burden of COVID-19 in terms of ICU admissions. Scenarios and subplots are the same 

as in figure 2. A high-resolution version of this plot is provided in the supplementary materials.  

 

 Next, we sought to identify how patterns of case burden aligned with healthcare system 

capacity. We distributed cases to healthcare systems within and outside of their county of origin 

based on an allocation algorithm (see Methods). In brief, this algorithm distributes severe and 

critical cases based on relative distance and the relative capacity of healthcare systems to provide 

care (quantified as the number of hospital beds and ICU beds respectively). The vast majority of 

cases originating from within a county with substantial medical resources stay within that county. 

Most severe and critical cases originating from within a county with few hospitals or ICU beds are 

allocated to nearby counties with greater care capacity. All severe or critical cases originating in a 

county that lacks the capacity to provide appropriate care entirely are distributed to nearby 

counties.  
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 The maps of relative hospitalizations per bed (See Figure 2 C, F) and relative ICU 

admissions per bed (See Figure 3 C, F) indicate which counties are expected to experience a 

relatively higher burden of disease relative to medical resources. Several regions have higher 

concentrations of these counties, including much of the western United states, the northern 

Midwest, Florida, and northern New England. These patterns appear to be robust to assumptions 

about transmission rates and age-specific mixing patterns. The ‘optimistic’ and ‘pessimistic’ 

transmission scenarios each identified 248 countries as being at or above the 90% quantile of 

cumulative hospitalizations per hospital bed, and 223 counties were identified in both transmission 

scenarios. In the case of ICU admissions per bed, 125 of the 136 counties identified as being at or 

above the 90% quantile were the same for both transmission scenarios.  

 

Discussion 

Even with unprecedented efforts to speed the development of a vaccine 15, it is unlikely 

that a pharmaceutical intervention against COVID-19 will become available in the near future. 

SARS-Cov-2 transmission is expected to continue over the coming months and affect virtually 

every locality in the U.S. The central aim of our analyses is to identify counties that consistently 

emerge as being likely to experience a relatively large burden of disease (across a range of 

assumptions about transmission) on their population and healthcare systems to inform and urge 

both preparedness and the allocation of emergency medical resources. We identified several 

regions in need of support, including much of the western portion of the country, the northern 

Midwest, Florida, and northern New England. At a finer geographical scale, our results suggest 

considerable rural-urban inequity, with the per capita burden of disease being highest away from 

major population centers.  
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Before even considering the increased case burden these more rural places are projected to 

experience relative to the rest of the U.S., it is evident that hospitals, and to a greater extent, 

hospitals with the capacity to provide intensive care, are unevenly distributed. Many regions have 

limited, or even no, facilities with the ability to provide the type of acute or critical care needed to 

treat COVID-19. Case fatality rates in these regions may rise above the national average if people 

are unable to access care. Bolstering the capacity of rural health systems and ensuring equitable 

access to care should be central goals of COVID-19 management strategies. It is important to note 

that while the healthcare systems of major population centers aren’t identified as weak spots in our 

analysis, they do service a much larger number of people. Given the magnitude of the 

consequences of their potential failure, they should, of course, remain a priority for preparedness 

efforts. 

Our findings are robust to different assumptions about transmission patterns. However, it 

is imperative that they be interpreted in the context of our methods. We were deliberately 

conservative in not considering the impact of potential therapeutics and vaccines. Our results only 

underscore the urgency of developing these interventions. We specifically did not attempt to 

predict the epidemic peak timing or magnitude. Given the time-invariant scenario we model (i.e., 

20% of the population acquires infection), it is likely that our projections will not match future 

observed patterns of disease burden in the short term as many regions are still in the early phases 

of their epidemics. However, our results provide a first best guess as to the expected patterns of 

burden in the long term rooted in basic features of demography and health system capacity. 

Notably, we did not consider how other factors, such as comorbidities 16 (e.g. hypertension, 

pulmonary disease) or socioeconomic status 17, might result in increased disease burden in certain 

regions. Incorporating such factors into mathematical models and their forecasts is an essential 
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area of future research. Finally, we urge public health officials using our results to carefully 

consider location-specific details and nuances not explicitly included in our analyses when 

planning their response. 

In conclusion, we have identified areas in the U.S. expected to be particularly heavily 

affected by COVID-19. Our findings suggest assisting hospitals and communities away from 

major population centers will be crucial as we aim to mitigate the consequences of the ongoing 

COVID-19 epidemic. 
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Methods 

Data 

We obtained counts of the number of individuals in 10 year age bins in each U.S. county from the 

2018 American Community Survey available from the United States Census Bureau. We define 

the set of age categories as G={0-9, 10-19,...70-79, 80+}. We obtained data on hospital location 

and bed number from the American Hospital Association 2018 annual survey. We used the 

calculated total of all beds for each hospital to represent the number of hospital beds, and the 

number of adult medical/surgical intensive care beds to represent the number of intensive care unit 

beds. We aggregated hospital and ICU bed data by county in accordance with American Hospital 

Association data use policy.  

 

Mechanistic models 

We developed an age stratified mechanistic epidemiological model based on that of Davies 

et al. 7 that follows a susceptible-exposed-infected-recovered (SEIR) framework. This model 

assumes no births or deaths. The subscript i denotes the index of the age strata. The parameter ri 

denotes the rate of symptomatic infection for age class Gi. We set values for ri according to the 

approximation for Wuhan, China from Davies et al. 

 r={0.056, 0.056, 0.129, 0.281, 0.429, 0.490, 0.740, 0.740, 0.740} 

The infected class is decomposed into asymptomatic (IA), symptomatic, pre-clinical (IP), and 

symptomatic, clinical (IC) classes order to reflect relevant aspects of SARS-Cov-2 epidemiology, 

namely that not all infected individuals show symptoms, and individuals are frequently 

quarantined upon presenting symptoms. We also decomposed the recovered class into separate 

compartments for those recovered from symptomatic infection, RS, and those recovered from 
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asymptomatic infection, RA, in order to simplify calculations of total symptomatic and 

asymptomatic cases. This model framework allows us to impose assumptions about the infectivity 

of asymptomatic individuals and clinically symptomatic individuals (bA and bC respectively) 

relative to the infected class likely responsible for the bulk of transmission (IP).  

𝑑𝑆#
𝑑𝑡 = −𝑆#	𝛽)𝐶#,,

𝐼., + 𝑏1𝐼1, + 𝑏2𝐼2,
𝑁,

4

,56

 

𝑑𝐸#
𝑑𝑡 = 𝑆#	𝛽)𝐶#,,

𝐼., + 𝑏1𝐼1, + 𝑏2𝐼2,
𝑁,

4

,56

− 𝛿9𝐸 

𝑑𝐼.:
𝑑𝑡 = 𝑟#𝛿9𝐸 − 𝛿.𝐼.: 

𝑑𝐼1:
𝑑𝑡 = 𝛿.𝐼.: − 𝛿1𝐼1:  

𝑑𝐼2:
𝑑𝑡 = (1 − 𝑟#)𝛿9𝐸 − 𝛿2𝐼2: 

𝑑𝑅@
𝑑𝑡 = 𝛿1𝐼1:  

𝑑𝑅2
𝑑𝑡 = 𝛿2𝐼2:  

 

Here, C is the contact matrix, whose entries Ci,j correspond to the mean number of contacts 

between individuals in the i-th and j-th age classes of G, 𝛿	parameters determine the mean amount 

of time that individuals spend in each class, and 𝛽 is the transmission parameter.  

We used this model to simulate a wide range of plausible epidemiological scenarios. 

Specifically, we considered values for bC in {0.1, 0.5, 1}, values for R0 in {2, 4, 6}, and values for 

the degree of homogeneous mixing, in {0, 0.5, 1}. In the sections below, we describe how we use 

to construct the contact matrix C. We set the values of the following model parameters according 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 11, 2020. ; https://doi.org/10.1101/2020.04.05.20054700doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.05.20054700
http://creativecommons.org/licenses/by-nc-nd/4.0/


to published estimates 7,18,19: 𝑏2 = 0.5, 	𝛿9 =
6
D
, 	𝛿. =

6
E.D
, 	𝛿1 =

6
F.E
, 	𝛿2 =

6
G
 . After constructing C 

and fixing these variables, we used numerical methods combined with the next-generation matrix 

approach20 to calculate the value for that corresponds to the value R0 we wished to assume for each 

scenario. 

 

Rescaling contact matrix 

We used the ‘socialmixr’ 21 R package to retrieve the UK contact matrix from the POLYMOD 

study22 with contacts binned according to the following age categories: {0-9,10-19,...60-69,70+}. 

We term this matrix A. No finer resolution was available for contacts involving individuals over 

the age of 70. However, in order to account for differences between individuals in the 70-79 and 

80+ age groups in terms of relevant COVID-19 parameters, we synthesized a new matrix, B, that 

includes contacts for individuals in the 70-79 and 80+ age classes: 

𝐵#,GIJG4 = 𝐴#,GIL
𝑁GIJG4
𝑁GIL

 

𝐵#,MIL = 𝐴#,GIL
𝑁MIL
𝑁GIL

 

𝐵	GIJG4,, = 𝐴GIL,, 

𝐵	MIL,, = 𝐴GIL,, 

 

Here Nx is the number of individuals in the entire U.S. in age class x.  

 

Next, we constructed the contact matrix used in our model C by rescaling B to reflect our 

assumptions about mixing patterns. 
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𝐶#,, =
(1 − 𝜃)∑ 𝐵#,,4

,56

9 + 𝜃	𝐵#,, 

The quantity 𝜃	represents the degree of homogeneous mixing. When 𝜃 = 1, contact patterns are 

identical to the POLYMOD contact patterns. When 𝜃 = 0, contact rates are homogenous across 

age classes. Values of 𝜃 between 0 and 1 correspond to mixing patterns intermediate between the 

POLYMOD and homogenous scenarios. This rescaling procedure preserves the total number of 

contacts that each age class experiences while changing the identity of those contacts. 

 

Model simulation 

For each scenario in each county, we used the following conditions to initiate the model: 

𝑆# = 𝑁# − 4 

𝐸# = 1 

𝐼.# = 1 

𝐼1# = 1 

𝐼2# = 1 

𝑅@: = 0 

𝑅2: = 0 

The number of individuals within each age class for the county of interest is Ni. 

We then simulated the model in R, using the ‘ode’ function in the ‘deSolve’ package23 with the 

‘lsoda’ integrator and a step size of 0.25. We truncated the simulation when 

∑
RS:LRT:LRU:LVW:LVU:

@:L	9:L	RS:LRT:LRU:LVW:XVU:
4
#56 = 0.2 

and then extracted the number of individuals in each age stratified compartment.  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 11, 2020. ; https://doi.org/10.1101/2020.04.05.20054700doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.05.20054700
http://creativecommons.org/licenses/by-nc-nd/4.0/


Case Estimation 

We calculated the total number of symptomatic infections in each age class by the time the 

cumulative infection rate reaches 20% as 𝐼.# + 𝐼1# + 𝑅@:  at the end of the simulation. We then 

calculated the number of hospitalizations in each age class by multiplying the number of 

symptomatic infections in each age class by age stratified estimates9 of hospitalization rates for 

symptomatic cases: {0.001, 0.003, 0.012, 0.032, 0.049, 0.102, 0.166, 0.243, 0.273} 

We then calculated the number of ICU admissions in each age class by multiplying the number of 

hospitalizations by age stratified estimates9 of the rate of ICU admission given hospitalization: 

{0.05, 0.05, 0.05, 0.063, 0.122, 0.274, 0.432, 0.709}. 

  

Case Distribution 

We distributed cases originating in a given county to the healthcare systems of that county and 

other counties using the following algorithm. 

• Let the county of origin be denoted as 𝑐I	and the potential destination counties as 𝑐I	, … , 𝑐\	 

• Let the distances between the center of population of the county of 𝑐I	 and each potential 

destination county 𝑐#	be 𝑑I,#	 

o We obtained the latitude and longitude of the center of population for each county 

from publicly available data from the 2010 U.S. census, and calculated pairwise 

distances between counties using R package ‘geosphere’ 24.  

• We next removed all destination counties with 𝑑I,#	> 400km. 

• We calculated a distance weight, 𝑦#	, for each remaining potential destination county as 

 𝑦# =
6
EI
𝑒
_`,a
b`     
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• We calculated a bed weight, 𝑧#	, for each county as the number of total hospital beds in 𝑐#	. 

For projections involving ICU admissions, we used the number of ICU beds instead of the 

number of hospital beds. 

• We then calculated a composite weight, 𝑤#	, for each county as 𝑤#	 =
e:

∑ efg
fh`

i:
∑ ifg
fh`

   

• Lastly, cases originating in 𝑐I	 were then distributed to counties 𝑐I	, … , 𝑐\	 

•  proportion to j`
∑ j:g
:h`

, … jk
∑ j:g
:h`
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