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Abstract 
Background:​ Urine drug screening (UDS) assays can rapidly and sensitively detect drugs of 
abuse, but can also produce spurious results due to interfering substances. We previously 
developed an approach to identify interfering medications using electronic health record (EHR) 
data, but the approach was limited to UDS assays for which presumptive positives were 
confirmed using more specific methods. Here we adapted the approach to search for 
medications that cause false positives on UDS assays lacking confirmation data. 
 
Methods: ​ From our institution’s EHR data, we used our previous dataset of 698,651 UDS and 
confirmation results. We also collected 211,108 UDS results for acetaminophen, ethanol, and 
salicylates. Both datasets included individuals’ prior medication exposures. We hypothesized 
that the odds of a presumptive positive would increase following exposure to an interfering 
ingredient independently of exposure to the assay’s target drug(s). For a given assay-ingredient 
pair, we quantified potential interference as an odds ratio from logistic regression. We evaluated 
interference of selected compounds in spiking experiments. 
 
Results:​ Compared to the approach requiring confirmation data, our adapted approach showed 
only modestly diminished ability to detect interfering ingredients. Applying our approach to the 
new data, three ingredients had a higher odds ratio on the acetaminophen assay than 
acetaminophen itself did: levodopa, carbidopa, and entacapone. The first two, as well as related 
compounds methyldopa and alpha-methyldopamine, produced presumptive positives at 
< 40 μg/mL. 
 
Conclusions: ​ Our approach can reveal interfering medications using EHR data from institutions 
at which UDS results are not routinely confirmed. 
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Introduction 
Urine drug screening (UDS) assays play a role in various clinical contexts, from the emergency 
department to outpatient rehabilitation and treatment centers. Because UDS assays prioritize 
sensitivity over specificity, positive UDS results can occur due to interference by non-targeted 
substances, e.g., other medications ​[1]​. For this reason, positive UDS results are considered 
presumptive until confirmed by a more specific technique such as mass spectrometry. Results 
of confirmatory testing, however, are often not available until several days later, and many 
hospitals do not confirm presumptive positives at all. Better knowledge of the substances that 
cause false positives would help laboratorians and physicians who rely on UDS results to guide 
patient care. 
 
Recently we developed and validated an approach, based on statistical analysis of electronic 
health record (EHR) data, to identify interfering medications that cause false positive UDS 
results ​[2]​. In this initial work we relied on confirmation data to determine whether each 
presumptive positive was a true positive or a false positive. For the hospitals where presumptive 
positives are not automatically confirmed, however, our approach is not applicable. 
 
In this study we extended our approach to identify medications capable of causing false 
positives on UDS assays that lack confirmation data. At our institution, this includes the assays 
for acetaminophen, ethanol, and salicylates. We applied our approach to approximately 5 years’ 
worth of UDS results and co-occurring medication exposures documented in the EHR, then 
validated the top hits experimentally. 

Materials and Methods 
Code and summary-level data for this study are available at 
https://doi.org/10.6084/m9.figshare.12067233. The Vanderbilt Institutional Review Board 
reviewed and approved this study as non-human subjects research (IRB# 081418 and 190165). 

Extraction of UDS results and drug exposures from electronic health record 
data 
EHR data came from the Synthetic Derivative, a collection of deidentified clinical data from 
Vanderbilt University Medical Center (VUMC) ​[3]​. In addition to using the dataset from our 
previous study ​[2]​, we made a new dataset consisting of all UDS results for the currently used 
assays for acetaminophen, ethanol, and salicylates. The acetaminophen (Sekure Chemistry) 
and salicylates (Abbott Multigent) assays were validated as laboratory-developed tests, as they 
are not FDA-cleared for use in urine. The ethanol assay (Abbott Multigent) was FDA-cleared for 
use in urine. All testing was performed on an Abbott Architect c16000 automated chemistry 
analyzer. 
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For each person in the new dataset, we identified drug exposures documented between 1 and 
30 days prior to each UDS result. We excluded UDS results that occurred less than 30 days 
after the person’s first ever visit at VUMC, since we would lack a prior 30 days of documented 
drug exposures. Documented drug exposures are available as structured data in the Synthetic 
Derivative and come primarily from medication lists. We mapped each drug to its active 
ingredient(s) using RxNorm ​[4]​. As described previously, having a documented exposure within 
30 days is only a proxy for being exposed at the time of the UDS ​[2]​. 

Statistical analysis of drug exposures and UDS results 
We quantified associations between drug exposures and UDS results using Firth’s logistic 
regression ​[5,6]​. Given the coefficients and standard errors from the logistic regression fits 
(where each coefficient corresponded to a log odds ratio), we then used an Empirical Bayes 
approach called adaptive shrinkage to estimate the posterior mean of the log odds ratio and the 
corresponding 95% credible interval for each assay-ingredient pair ​[7]​. The latter is analogous to 
a confidence interval, but for Bayesian statistics. 
 
For the re-analysis of our previous dataset, we fit two types of logistic regression models. In 
model 1, the dependent variable corresponded to the UDS result (negative or false positive) and 
the independent variable corresponded to presence or absence of prior exposure to the 
ingredient. In model 2, the dependent variable corresponded to the UDS result (negative or 
presumptive positive) and the independent variables corresponded to (i) presence or absence of 
prior exposure to the ingredient and (ii) presence or absence of prior exposure to the assay’s 
target drug(s) (if not the same as the ingredient of interest). For consistency with our previous 
study, we only fit a model for an assay-ingredient pair if exposure to the ingredient preceded a 
false positive (model 1) or presumptive positive (model 2) in at least five individuals. 
 
For the analysis of our new dataset, we fit model 2 for assay-ingredient pairs for which exposure 
to the ingredient preceded a UDS result in at least 20 individuals. For the ingredients most 
strongly associated with presumptive positive results on the acetaminophen assay, we 
calculated co-exposure frequencies as the percentage of exposures to one ingredient for which 
the person was also exposed to a second ingredient. 

Experimental validation of interference 
For each selected compound, we spiked a reference standard into drug-free urine at various 
concentrations and testing the spiked urine samples in singlicate on an Abbott Architect c16000 
chemistry analyzer. We used linear interpolation to estimate the concentration of the test 
compound at which the assay registered a concentration equal to the cutoff. 
 
We purchased reference standards from Tocris Bioscience (Bristol, UK). We prepared stock 
solutions of each standard in DMSO (carbidopa and entacapone), or in saline and HCl 
(levodopa). We spiked the urine samples using a fixed volume of 20% spiking solution, made of 
a combination of diluent and stock solution, including one sample per compound with only 
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diluent to serve as a negative control. In most cases, we tested the maximum technically 
feasible concentration for a compound, given the limits of solubility, the concentration of the 
reference material, and the fixed 20% spiking volume. 
 

 
Figure 1.​ Comparison of calculating potential interference with and without confirmation data. ​(A)​ Each plot 
corresponds to a UDS assay, and each point corresponds to an ingredient. A log​2​(odds ratio for false positives) of NA 
indicates that the association was not tested because < 5 individuals had a false positive UDS result preceded by 
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exposure to the given ingredient. The assay for cocaine metabolite is not shown, as it had no false positives. New 
interferent (intentional) indicates an ingredient we validated in our previous study based on its high odds ratios for 
false positives on the given assay. New interferent (incidental) indicates an ingredient we validated on a different 
assay than the one for which it had a high odds ratio. ​(B)​ Ranks of interfering ingredients on all assays based on 
odds ratio for false positives and odds ratio for presumptive positives. Ranks were calculated on a per-assay basis 
and excluded assay targets. Points are slightly jittered to avoid overlap. ​(C)​ Number of interfering ingredients across 
all assays with an odds ratio in the top k for each assay (where k = 5, 10, or 25), excluding assay targets. 

Results 
We started with the dataset from our previous study ​[2]​, which included results from urine drug 
screens and confirmations for ten classes of target drugs, as well as each person’s prior 
documented drug exposures in terms of active ingredients (Supplemental Table 1). Without the 
confirmation results, one cannot know whether a given presumptive positive UDS result was a 
true positive or a false positive. We hypothesized, however, that the odds of a presumptive 
positive would increase following exposure to an interfering ingredient independently of 
exposure to the assay’s target drug(s). 
 
We therefore used logistic regression followed by a technique called adaptive shrinkage ​[7]​ to 
quantify two types of associations: (1) between ingredient exposures and false positive UDS 
results, which used the confirmation as in our previous approach—yielding an odds ratio 
OR​FP​—and (2) between ingredient exposures and presumptive positive UDS results, adjusted 
for exposure to assay targets—yielding an odds ratio OR​P​ (Tables S2 and S3). 
 
We compared OR​FP​ and OR​P​ for assay targets, previously known interferents, and “new” 
interferents that we discovered in our previous study (Figure 1). Consistent with our hypothesis, 
most interfering ingredients with a high OR​FP​ also had a high OR​P​ (Figure 1A-B). In addition, 
ranking by OR​P​ captured only moderately fewer interfering ingredients than ranking by OR​FP 
(Figure 1C). Thus, our approach can detect ingredients that may cause false positive UDS 
results, even if confirmation data are unavailable. 
 
    Number of UDS results 
Target drug Format Manufacturer / 

Brand 
Cutoff 

(μg/mL) 
Negative Presumptive 

positive 
acetaminophen Enzymatic (acyl amidohydrolase) / 

colorimetric 
Sekure 
Chemistry /  L3K 
Assay 

3 54,220 16,180 

ethanol Enzymatic (alcohol dehydrogenase) 
/ colorimetric 

Abbott 
MULTIGENT 

100 65,012 5,473 

salicylates Enzymatic (salicylate hydroxylase) / 
colorimetric 

Abbott 
MULTIGENT 

5000 62,692 7,531 

 
Table 1.​ Characteristics of newly analyzed urine drug screening assays. 
 
We next assembled a dataset of UDS results for acetaminophen, ethanol, and salicylates, three 
assays for which presumptive positive results at our institution are not confirmed. The dataset 
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included 211,108 results from 39,658 individuals (Table 1), along with each person’s 
documented drug exposures occurring between 1 and 30 days prior. Each UDS result was 
preceded by exposure to a median of 2 ingredients and a mean of 7.7 ingredients. 
 
Using this new dataset, we calculated OR​P​ for 2,563 assay-ingredient pairs. Further supporting 
our approach’s validity, acetaminophen was the fourth-ranked ingredient on the acetaminophen 
assay and aspirin was the top-ranked ingredient on the salicylates assay (Figure 2). Ethanol as 
an ingredient had only 16 exposures in our dataset and showed no clear association with results 
on the ethanol assay (Supplemental Table 4). 
 

 
Figure 2.​ Top-ranked ingredients associated with presumptive positive UDS results for acetaminophen, ethanol, and 
salicylates. Gray lines over each point indicate 95% credible intervals. Exposure frequency corresponds to the 
fraction of UDS results preceded by exposure to the given ingredient. All tested associations for the three assays are 
in Supplemental Table 4. 
 
The three ingredients that had a higher OR​P​ than acetaminophen on the acetaminophen assay 
were levodopa, carbidopa, and entacapone (Figure 2). These associations were unlikely to be 
due solely to co-exposure with acetaminophen, as each logistic regression model already 
accounted for exposure to the respective assay’s target drug. Co-exposure analysis indicated 
that the associations of levodopa and carbidopa were indistinguishable, because the two 
ingredients were almost always given together (Figure 3). Subsequent logistic regression also 
suggested that entacapone’s association with presumptive positive UDS results could be 
explained by co-exposure with levodopa and/or carbidopa (Supplemental Table 5). 
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Figure 3.​ Co-exposure frequencies for the five ingredients most strongly associated with presumptive positive UDS 
results on the acetaminophen assay. 
 

 
Figure 4.​ Experimental validation of interference on the acetaminophen assay. Dashed lines show the cutoff normally 
used to call a sample presumptive positive. The text above each dashed line indicates the estimated minimum 
concentration at which the test compound would produce a presumptive positive. Both axes are 
square-root-transformed to better show the lower concentrations. 
 
We evaluated the interference of each of these three compounds experimentally (Figure 4). 
Consistent with our analysis of the EHR data, both levodopa and carbidopa interfered strongly 
on the acetaminophen assay, each producing a presumptive positive (corresponding to an 
acetaminophen concentration of 3 μg/mL) at less than 40 μg/mL. Entacapone, on the other 
hand, produced a presumptive positive at 400 μg/mL. 
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Levodopa and carbidopa are structurally related to alpha-methyldopamine, a metabolite of 
methyldopa that interferes on our institution’s UDS assay for amphetamines ​[2]​. Methyldopa 
was modestly associated with presumptive positive UDS results for acetaminophen (OR​P​ = 
1.32, rank 44 of 854, Supplemental Table 4), and both methyldopa and 
alpha-methyldopamine—but not a second metabolite 3-o-methyldopa—were strongly interfering 
(Figure 4). Conversely, neither levodopa nor carbidopa interfered on the amphetamines assay 
(Supplemental Table 6). Taken together, these findings indicate that several dopamine-related 
compounds can cause false positive UDS results for acetaminophen. 

Discussion 
Despite UDS assays’ vulnerability to interference, confirmatory testing is not always available, 
either for patient care or secondary analysis. Here we extended our previous approach in order 
to identify potentially interfering medications from EHR data without knowing which presumptive 
positive UDS results were true positives and which were false positives. 
 
As EHR data are observational, our approach only quantifies associations, it does not imply 
causality. Thus, the decision of which compounds to experimentally evaluate should involve 
both the statistical analysis and clinical expertise. For example, we did not pursue the 
top-ranked ingredients on the ethanol assay (thiamine, diazepam, and naltrexone), because we 
considered it likely that the associations were due to confounding with alcohol-use disorder. In 
the future, accounting for such underlying patient phenotypes could further improve our 
approach. In any case, our findings suggest that statistical analysis of EHR data may help 
reveal sources of interference on a variety of clinical laboratory assays. 
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