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Abstract

Objectives: The main objective is twofold: first, to model the fatality
curves of the COVID-19 disease, as represented by the cumulative number
of deaths as a function of time; and second, to use the corresponding math-
ematical model to study the effectiveness of possible intervention strategies.

Methods: We applied the Richards growth model (RGM) to the COVID-
19 fatality curves from several countries, where we used the data from the
Johns Hopkins University database up to April 1, 2020. Countries selected
for analysis were China, Italy, Spain, Iran, Germany, and Brazil.

Results: The RGM was shown to describe very well the fatality curves of
China and Italy, which are respectively in a late stage and in the middle of the
COVID-19 outbreak. The model was also successful in describing the trend
in the other countries studied and which are at the same or earlier stages of
the epidemics as Italy. An analytic formula for the efficiency of intervention
strategies within the context of the RGM is derived. Our findings show that
there is only a narrow window of opportunity, after the onset of the epidemic,
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during which effective countermeasures can be taken.

Keywords: COVID-19, Fatality curve, Richards growth model,
Intervention strategies

1. Background

The response interventions to the pandemic of the novel coronavirus dis-
ease (COVID-19) have varied from country to country. Several countries,
specially those first hit by the disease, have adopted a standard progres-
sive protocol, from containment to mitigation to supression [I]. As these
strategies failed to deter the spread of the virus, government authorities in-
troduced ever more stringent measures on their citizens’ movements in an
attempt to suppress or sharply reduce the propagation of the virus. More
recently, countries have adopted drastic countermeasures at the very outset
of the outbreak. For example, on March 24, 2020, India announced a three-
week total ban on people “venturing out” of their homes [2], even though
there were fewer than 500 confirmed cases and only nine people had died
from COVID-19 in a country with a population of 1.3 billion people. One
difficulty in deciding the best approach to counter the spread of the novel
coronavirus (SARS-CoV-2) is that the virus propagation dynamics is not yet
well understood.

In this stark context, it becomes relevant to have simple models for the
evolution of the COVID-19 epidemics, so as to be able to obtain estimates
—however tentative—for the rise in the number of infected people as well
as in the number of fatal cases, both in the near and in the more distant
future. Such estimates are, of course, prone to high uncertainty: the less
data available and the further in the future, the greater the uncertainty.
Notwithstanding their inherent shortcomings, simple mathematical models
provide valuable tools for quickly assessing the severity of an epidemics and
help to guide the health and political authorities in defining or adjusting
their national strategies to fight the disease [3, [ [5, [6] [7, 8, [, 10].

In the same vein, it would be desirable to have simple methods to assess
the effectiveness of intervention measures as a function of the time at which
they are adopted. As a general rule, the sooner an intervention is put in
place the more effective it is expected to be. It is however difficult to model a
priori how effective any given set of interventions will be. The effectiveness of
interventions are often investigated through complex agent-based simulation
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models [IT],[12], which require a synthetic population and a host of parameters
related to the human-to-human transmission, and as such they are very costly
computationally [I3] and heavily dependent on the choices of values for the
various model parameters.

In this paper we use the Richards growth model (RGM) [14] to study the
fatality curves, represented by the cumulative number of deaths as a function
of time, of COVID-19 for different countries that are at different stages of
the epidemics. We show that the RGM describes reasonably well the fatality
curves of all selected countries analysed in this study. We also introduce a
theoretical framework, within the context of the RGM model, to calculate
the efficiency of interventions. Here an intervention strategy is modelled by
assuming that its net result is to alter the parameters of the RGM after a
given time %y, so that the full epidemics dynamics is then described in terms
of two RGM models: one before and the other after the time ¢y, where certain
‘matching conditions’ are imposed at ty. In this way, we are able to derive
an analytical formula for the efficiency of the corresponding intervention as a
function of the adoption time t,. We show, in particular, that the intervention
efficiency quickly decays past a critical adoption time, thus showing that time
is really of essence in containing an outbreak.

2. Data

2.1. Data Source

Data used in this study were obtained from the database made publicly
available by the Johns Hopkins University [15] [16], which lists in automated
fashion the number of the confirmed cases and deaths per country. We have
used data up to April 1, 2020 [15, I7]. In the present study we considered
the mortality data of COVID-19 from the following countries: China, Italy,
Spain, Iran, Germany, and Brazil.

2.2. Confirmed Cases vs. Mortality Data

Because a large proportion of COVID-19 infections go undetected [18], it
is difficult to estimate the actual number of infected people within a given
population. As many carriers of the virus are either asymptomatic or de-
velop only mild symptoms, they will will not be detected unless they are
tested. In other words, the number of confirmed cases for COVID-19 is a
poor proxy for the total number of infections. Furthermore, the fraction of
confirmed cases relative to the total number of infections depends heavily on


https://doi.org/10.1101/2020.04.02.20051557

medRxiv preprint doi: https://doi.org/10.1101/2020.04.02.20051557; this version posted April 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

the testing policy of each country, which makes it problematic to compare
the evolution of confirmed cases among different countries. In contrast, the
number of deaths attributed to COVID-19 is a much more reliable measure
of the advance of the epidemics and its severity. Of course, many other fac-
tors, such as age structure of a population and quality of care, may affect the
fraction of deaths relative to the number of confirmed cases. Nevertheless,
it is expected that overall the evolution of number of deaths bear a relation
to the dynamics of the number of infections [19]. Under these circumstances
and in the absence of reliable estimates for the number of infected cases for
COVID-19, we decided here to seek an alternative approach and model di-
rectly the mortality curves, defined as the cumulative number of deaths as
a function of time, rather than the number of confirmed cases, as is more
usually done.

3. Methods
3.1. Mathematical Models

We model the time evolution of the number of cases in the epidemic
by means of the Richards growth model (RGM), defined by the following
ordinary differential equation (EDO) [20, 21]:

< o (i (C2)). 0

where C'(t) is the cumulative number of cases at time ¢, 7 is the growth rate at
the early stage, K is the final epidemic size, and the parameter « measures the
asymmetry with respect to the s-shaped dynamics of the standard logistic
model, which is recovered for « = 1. It is worth to point out that the
Richards model has an intrinsic connection to the SIR epidemic model, see,
e.g., [20], with the advantage that it allows for an exact solution (see below),
which makes the data analysis much simpler. As already mentioned, here
we shall apply the RGM to the fatality curves of COVID-19, so that C(t)
will represent the cumulative numbers of deaths in a given country at time
t, where t will be counted in days from the first death.

Equation must be supplemented with a boundary condition. Here it
is convenient to choose

C"(t.) =0, (2)
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for some given t., where C”(t) = d*C(t)/dt*. A direct integration of
subjected to condition yields the following explicit formula:
K

Ct;r,a, K, t.) =
1+ aexp(—ar(t —t.))]

. 3)

where in the left-hand side we have explicitly denoted the dependence of the
solution of the RGM on the four parameters, namely r, a, K, and t.. In
Sec. 4| we show results of the application of the Richard growth curve to
the mortality data of COVID-19 for several countries.

We note, however, that the RGM is not reliable in situations where the
epidemics is in such an early stage that the available data is well below the
estimated inflection point t., i.e., when the epidemic is still in the so-called
exponential growth regime [I3]. In this case, it is preferable to use the so-
called generalized growth model [13, 22], which is defined by the following
EDO

dc

S =rlew), @

where the parameter ¢ provides an interpolation between the sub-exponential
regime (0 < ¢ < 1) and the exponential one (¢ = 1). The solution of (4]) is

Cltir,q, A) = [A+ (1= q)rt] /07 = AV e, (rt/A), ()

where e,(z) = [1 + (1 — g)z]/179 is known in the physics literature as the
g-exponential function [23],24]. Here the parameter A is related to the initial
condition, i.e., A = C'(0)179 but we shall treat A as a free parameter to be
determined from the fit of to a given dataset.

3.2. Statistical Fits

All statistical fits in the paper were performed using the Levenberg-
Marquardt algorithm [25] to solve the respective non-linear least square opti-
mization problems. In the case of the Richards model, there are four param-
eters, namely (r, K, a,t.), to be determined; whereas for the g-exponential
growth model we need to determine three parameters, (r,q, A).

3.3. Intervention Strategy and Efficiency

We define an intervention strategy in the context of the RGM by assuming
that the corresponding actions applied to the actual population induce, at
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some time ty, a change in the parameters of the model, so that the solution
for the whole epidemic curve has the following piecewise form:

| Oty K, o t,), t <ty
() —{ Cltr Kol #),  t >t (6)

where we obviously require that K’/K < 1. Furthermore we impose the
following boundary conditions at %:

Clto;r, K, ayte) = Clto; ', K o, 1) (7)

and
C/(tU;T7 Kaavtc) = C,<t0;7"/,K/,O/,t/c), (8)

where C'(t) = dC(t)/dt. Note that condition takes into account, albeit
indirectly, the fact that intervention measures take some time to affect the
epidemic dynamics. In other words, the trend (i.e., the derivative) one sees at
a given time ¢ reflects in part the measures taken at some earlier time (or lack
thereof). Thus, imposing continuity of the derivative of the epidemic curve
at time ty in our ‘intervention strategy’ seeks to capture this delay effect. In
our intervention model above, we assume that the net result of the action is
to alter the parameters r and « of the Richards model at time ¢y5. Of course,
the difficult part is to estimate how a particular set of intervention measures
(e.g., contact tracing and quarantine of contacts, social distancing, school
closures, etc) would influence these parameters. Such an analysis is however
beyond the scope of the present paper. Note furthermore that, as discussed
above, the time t; is not the actual time of adoption of the intervention but
rather the time at which the corresponding measures have started to affect
the epidemics dynamics, as reflected in the number of cases. Nevertheless we
shall for simplicity refer to ¢ty as the intervention ‘adoption time.’

As defined in @, an intervention strategy adopted at time ¢y can be
viewed as a map (r, K, a,t.) — (7', K',a/,t.) in the parameter space of the
RGM, which results in the condition K'/K < 1. Let us therefore define the
intervention efficiency as the relative reduction in the total number of cases:
n(te) = (K — K')/K, where it is assumed that 7n(tg) > 0. Using conditions

and in , one obtains that

1 Y
o) = 1= )
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Figure 1: Cumulative number of deaths for China and Italy up to March 30, 2020.

where y = C(ty)/K and = r/r’. In the next section we will exemplify
the above measure of intervention efficiency, using as input the parameters
r and « obtained from the fatality curve of the COVID-19 from Italy. This
will allow us to investigate how the efficiency of different strategies (i.e., for
different choices of " and o) varies as a function of the adoption time t.

4. Results and discussion

4.1. Fuatality Curves

In Fig. we show the cumulative number of deaths (red circles) at-
tributed to COVID-19 for China, superimposed with the statistical fit of the
RGM curve (black solid line), with the respective parameters shown in the
inset of the figure. One sees from the figure that the fatality curve in this
case, where the epidemic has apparently leveled off, is well adjusted by the
RGM formula. This indicates that the evolution of the number of deaths in
the COVID-19 epidemic can be effectively described with a dynamical model
such as the Richards model. In Fig. we show the cumulative deaths for
Italy together with the respective RGM fit. Here again the RGM seems to
be able to provide a reasonably good fit to the data. In this case, owing to
the unavoidable incompleteness of the data, as the epidemics is still ongoing,
there is considerably larger uncertainty in the parameters, particularly in the
parameter K which represents an estimate of the total numbers of fatalities
at the end of the epidemics.
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The good performance of the RGM exhibited in Fig. [T}, for the two coun-
tries where the COVID-19 pandemic is most advanced, encouraged us to
apply the model to other countries at earlier stages of the epidemics. Here,
however, care must be taken when estimating the model parameters from
small time series, since it is well known that the Richards model [20, 21] and
its variants [13] are susceptible to the problem of over fitting, owing to the
redundancy of the parameters. This may lead, for example, to estimation
of certain parameters that are outside of biologically or otherwise reasonable
ranges [20]. For example, when applied to the number of infected cases in an
epidemics the parameter « should be constrained within the interval (0, 1).
Here we apply the RGM instead to the number of deaths, but we assume that
the same constraint should be observed. In other words, fits that return «
outside this interval are disregarded as not reliable. The unsuitability of the
RGM is particularly serious when the available data does not encompass the
inflection point ¢, [I3]. As more data is accumulated, the model is expected
to become more accurate. However, if strong measures are implemented to-
wards mitigation or suppression, the dynamics of the epidemics is likely to
change, so that different parameter models are required before and after the
adoption of the countermeasures; see next section.

Notwithstanding the above considerations, we observed that with the
available data to date the GRM also provides good fits for several other
countries, such as Spain and Iran, and less so for others, such as Germany.
In the case of Spain and Iran, see Figs. [2(a)| and [2(b), the last data point
is sufficiently beyond the inflection point . predicted by the model to lend
some credibility to the model predictions. In contradistinction, in the case
of Germany, see Fig. , t. is slightly past the last data point, which makes
the model predictions less reliable.

In the case of Brazil, see Fig. , the epidemic is still in such an early
stage that the RGM is not justifiable. Here it is more advisable to use a
simpler growth model, such as the g-exponential model described in Sec. [3
In Fig. we show the fit of the g-exponential curve to the Brazilian
data, and one sees that the agreement is very good. From the fit parameters,
see inset of Fig. we predict that the current time for doubling the
number of deaths in Brazil is approximately 4 days.

It should be emphasized, however, that besides China all countries con-
sidered above are still in the middle or early stages of the outbreak, so that
any long-term prediction based on our model—or any other model for that
matter—are only tentative at best. Furthermore, our interest in the RGM is
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Figure 2: Cumulative number of deaths attributed to COVID-19 up to April 1, 2020,
for Spain, Iran, Germany, and Brazil. The solid black curves in (a)-(c) are the fits by
the Richards growth model, see Eq. , with the corresponding parameters given in the
respective insets. In (d) the solid curve represents the fit with the g-exponential model
shown in Eq. for the parameters shown in the inset.

not so much aimed at its predictive capacity in the face of incomplete data,
but rather more so as a mathematical framework in which one can obtain
quantitative measures (in fact, an explicit formula) for the effectiveness of
mitigation strategies, as defined in Sec.[3] We now turn to discuss the results
of such a mitigation analysis as applied, for instance, to the Italian fatality
curve.
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Figure 3: Efficiency curves as a function of the adoption time ¢y for two different inter-
vention strategies applied to Italy’s fatality curve (black dots indicate the current time):
(a) mitigation actions with o = 0.21 = o’ and r = 0.44, where action 1 has 7' = 0.5 (red)
and action 2 has ' = 0.6 (blue); (b) suppression actions with r = 0.44 = v’ and o = 0.21,
where action 1 has o/ = 0.3 (red) and action 2 has &’ = 0.9 (blue).

4.1.1. Intervention Efficiency

As already mentioned, an intervention strategy in our model is defined by
the two parameters ' and o’ of the new Richards model after the adoption
time tg; see Eq. @ Recall that the parameter r in the RGM corresponds to
the growth rate at the early stage of the epidemics; hence an early interven-
tion should, in our language, seek to reduce this parameter, i.e., ' < r. We
shall therefore refer to this type of intervention as ‘mitigation’. Similarly, at
later stages of the epidemics one should try to increase the parameter o, i.e.,
we want to have o/ > «, so as to force the levelling off of the curve of cumu-
lative cases as soon as possible after the intervention; this type of strategy
will thus be said to be of the ‘suppression’ type. More specifically, in our
model we can define two general sets of intervention strategies: i) mitigation,
when we take @ = o/ and ' < r; and ii) suppression, meaning ' = r and
o’ > a. (More generally, a mixed strategy would modify both r and «a, but
for our purposes here it is preferable to study separately the effects of these
two parameters.)

In Fig. 3| we show the efficiency curve as a function of the adoption time ¢,
for the two types of intervention strategies described above, as applied to the
fatality curve of Italy shown in Fig. [Ib] Here we have chosen the adoption
time ty = 39, corresponding to the day before the last point included in the

10
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Figure 4: Resulting fatality curves after implementing two different interventions at
to=39 in Italy’s fatality curve, as compared to the no-action reference curve (black): (a)
mitigation actions with a = 0.21 = o’ and r = 0.44, where action 1 has ' = 0.5, n = 0.1
(red), and action 2 has ' = 0.6 and n = 0.25 (blue); and (b) suppression actions with
r =0.44 = " and o = 0.21, where action 1 has o/ = 0.29, n = 0.2 (red) and action 2 has
o' =0.62, =04 (blue).

data set; this is indicated as the black dots on the curves in Fig. 3] More
specifically, in our intervention strategies we take r = 0.44 and a = 0.21 for
t < to, as obtained from the fit showed in Fig. [I[b), whereas for ¢ > ¢, we
suppose two possible scenarios: mitigation and suppression. In the first type
of scenario, shown in Fig. we set o/ = «a and consider two mitigation
strategies: i) action 1 with " = 0.5 (blue) and ii) action 2 with " = 0.6
(red). In the second scenario shown in Fig. we consider instead 1’ = r
and implement two suppression strategies: i) action 1 with o/ = 0.3 (red)
and ii) action 2 with o/ = 0.9 (blue). Of course, only intervention strategies
with to > T, where T denotes the ‘present time’ (i.e., the time of the last
data point) would be of practical value in an ongoing epidemics. (For the
Italian data, 7' = 40.) Nevertheless, for ¢y < T the efficiency curve is still of
some interest, as it indicates the relative reduction in fatalities that would
have resulted had the corresponding strategy been adopted at some earlier
time ¢y in the past.

In all cases shown in Fig. [3] we see that there is a quick decrease in
efficiency as the adoption time increases. This confirms the commonly held
view that there is only a narrow window of opportunity, after the outbreak of
an epidemic, during which effective countermeasures can be taken that could

11
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have a significant impact in the final outcome.

In Figure [4| we show the resulting fatality curves after we apply (at time
to=39) to the Italian data two different actions for each of our two classes of
interventions, as compared to the no-action case (black curve). In Fig.
we show the complete fatality curves after implementing two different mit-
igation actions: i) action 1 with o/ = 0.29, n = 0.2 (red); and ii) action 2
with o/ = 0.62, n = 0.4 (blue). In Fig. we show similar curves for two
suppression actions: i) action 1 with " = 0.5, n = 0.1 (red); and ii) action 2
with 7 = 0.6, n = 0.25 (blue).

5. Conclusion

To summarize, this paper provides important insights into the time evolu-
tion of the accumulated number of deaths attributed to COVID-19, specially
for countries, such as Italy, which are in the middle of the outbreak. Our
modelling of the fatality curves is particularly relevant for the COVID-19
outbreak, because the actual number of infections remains largely unknown,
so one is required to turn to proxy measures, such as mortality data, to gain
a better understanding of the epidemics. The paper also shows how simple
and soluble mathematical models can provide a rich theoretical framework
in which to investigate some basic and deep aspects of epidemics dynamics.
In particular, we have successfully applied the Richards growth model to
describe the fatalities curves for four different countries, at different stages
of the COVID-19 outbreak, namely China, Italy, Spain, Iran, and Germany.
We also analysed the case of Brazil, which is in a much earlier stage of the
outbreak, so here we resorted to a modified exponential growth model, also
known as the generalized growth model. This model gave a good fit of the
rising fatality curve of Brazil, from which we could estimate that as of this
writing the time for doubling the number of fatalities from COVID-19 in
Brazil is about 4 days.

Another important contribution of the present study is to provide an ana-
lytical formula to quantitatively assess the efficiency of intervention measures
in an ongoing epidemics. Interventions strategies are defined in the context
of the Richards model as a change in the model parameters at some specified
time, referred to as the intervention adoption time. Our formula shows that,
in general, the efficiency of an intervention strategy decays quite quickly as
the adoption time is delayed, thus showing that time is really of essence in
containing an outbreak.
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