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Abstract
On March 11, 2020, the World Health Organization de-
clared the COVID-19 outbreak, originally started in China, a
global pandemic. Since then, the outbreak has indeed spread
across all continents, threatening the public health of numer-
ous countries. Although the Case Fatality Rate (CFR) of
COVID-19 is relatively low when optimal level of healthcare
is granted to the patients, the high percentage of severe cases
developing severe pneumonia and thus requiring respiratory
support is worryingly high, and could lead to a rapid satura-
tion of Intensive Care Units (ICUs). To overcome this risk,
most countries enacted COVID-19 containment measures.
In this study, we use a Bayesian SEIR epidemiological model
to perform a parametric regression over the COVID-19 out-
breaks data in China, Italy, Belgium, and Spain, and estimate
the effect of the containment measures on the basic reproduc-
tion ratio R0.
We find that the effect of these measures is detectable, but
tends to be gradual, and that a progressive strengthening of
these measures usually reduces the R0 below 1, granting a
decay of the outbreak. We also discuss the biases and incon-
sistencies present in the publicly available data on COVID-19
cases, providing an estimate for the actual number of cases in
Italy on March 12, 2020. Lastly, despite the data and model’s
limitations, we argue that the idea of “flattening the curve” to
reach herd immunity is likely to be unfeasible.

Introduction
More than 100 countries (1) in the world are currently af-
fected by the coronavirus disease (COVID-19) pandemic (2).
COVID-19 is a respiratory infectious disease caused by the
SARS-CoV-2 virus (previously known as 2019-nCOV), and
it originated in December 2019 in Wuhan (China), most prob-
ably following a zoonotic event (3, 4). COVID-19 epidemics
are now affecting many European countries, which are at dif-
ferent stages of contagion and containment measures (4). The

virus can be found in the respiratory tract of patients 1-2 days
before the onset of symptoms, where it shows active replica-
tion (5), persisting 7-15 days (4).
Italy was the first to be seriously affected (6), with Spain,
France, Belgium, and other countries being 7-14 days behind.
Although definitive data on the COVID-19 Case Fatality Rate
(CFR) are still missing and the current ones are biased by the
testing policies and the demographic structure of the popula-
tion, the observed CFR may be as high as of 10.0% in Italy,
4.0% in China, 6.0% in Spain, and 4.3% worldwide. In Italy,
it has been observed that 7-11% of the cases present Acute
Respiratory Distress syndrome (ARDS) caused by SARS-
CoV-2 pneumonia, and thus require respiratory support in In-
tensive Care Units (ICUs) (6, 7). European Countries tend to
have between 4.2 (Portugal) and 29.2 (Germany) ICU beds
per 100,000 inhabitants (8) (EU average is 11.5). This indi-
cates that an exponential-like growth of the COVID-19 cases
can rapidly reach oversaturation of the available ICU beds,
thereby decreasing the quality of the medical treatments pro-
vided to patients and worsening the case fatality rate (6, 9).
To avoid this scenario, almost every country affected by the
COVID-19 pandemic has put in place measures to contain the
epidemic, limiting travels and minimizing physical social in-
teractions, in an attempt to relieve the strain on the healthcare
system, in particular ICU units. When it comes to epidemic
modeling, these measures affect the basic reproduction ratio
R0, which is typically interpreted as the expected number of
cases directly generated by an infected individual in a popu-
lation susceptible to infection (10). Current estimates of this
value range from 2 and 6.5 in China (11–14) and 3.1 in the
first phase of the outbreak in Italy (15).
In SEIR (Susceptible, Exposed, Infected, Removed) (16)
modeling of epidemics, R0 = β/γ, with β representing the
number of contacts from an infected individual per unit of
time and γ−1 the period in which a patient is infectious.
When R0 > 1, the number of cases is growing, else, the
epidemic is receding. Countries affected by COVID-19 epi-
demics deployed containment measures that acted on these
two parameters. China, for example acted on R0 by quaran-
tining or hospitalizing cases as soon as they were becoming
symptomatic, with an average time elapsed between symp-
toms and hospitalization of 2.3 (12, 13) or 2.9 days (14). At
the same time, China instituted incremental forms of quar-
antine in Wuhan and the Hubei province, reducing the av-
erage number of physical social contacts between residents
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of the most affected zones, and introduced the use of self-
prophylaxis praxis to further reduce the risk of infection, thus
effectively reducing β.
Similar measures have been adopted by the European coun-
tries in which COVID-19 started spreading (4). Italy was the
first country affected in Europe, and the first COVID-19 clus-
ter prompted the lockdown of the town of Codogno and later
of the Lodi province. The further spreading of the cases led
to the lockdown of the most affected regions in northern Italy
(Lombardia, Veneto, and Emilia-Romagna) and eventually of
the entire country on March 10, 2020. The growth of cases
in Spain started with a delay with respect to Italy, but the
worrying trend prompted the government to lock down first
Madrid and then the entire country. Similar incremental ac-
tions have been adopted in Belgium, on the March 13, 2020
and on March 18, 2020.
In this study, we collected the publicly available data regard-
ing cases, recovered and deaths related to the COVID-19 epi-
demics in China, Italy, Belgium and Spain and we trained
a Bayesian SEIR model to perform a parametric regression
on these time series. This approach allowed us to model the
outbreak progression in those countries inferring the change
of basic reproduction ratio R0 due to the introduction of
government-issued containment measures aimed at slowing
the outbreak. To do so we used a Markov Chain Monte Carlo
(MCMC) approach to fit the SEIR model on the cumula-
tive cases time series by inferring a βi value corresponding
to each containment measure adopted, thus estimating their
effectiveness in reducing the transmission or SARS-CoV-2.
This approach could help governments nowcasting the be-
havior of the outbreaks and detecting flaws in the contain-
ment measures in place and thus act as rapidly as possible,
ensuring a proper containment of the disease.
We show that the parameters learned by the SEIR model sug-
gest an gradual effectiveness of the containment, with the
most drastic effect observed in Spain, with a 71% reduction
of R0 after the measures introduced on March 3, 2020.
We also provide an estimation of the actual number of
COVID-19 cases in Italy for March 12, 2020, suggesting that
this number have been at that time around 3 times higher than
the official cases count.
Finally, despite our model’s limitations, we argue that the
idea of “flattening the curve” (i.e., reducing the R0 of the
epidemic to a level that would allow the gradual build up of
natural immunity in the population) is likely to be unfeasi-
ble. Indeed, reaching herd immunity at a manageable pace is
probably not possible in a reasonable time scale.

Results
Containment measures in China. We performed a para-
metric Bayesian regression (see Methods) on the mainland
China COVID-19 epidemic data by training a SEIR model
on the cumulative cases time series, with the goal of infer-
ring the change in R0 = β/γ produced by the increasingly
stringent containment measures introduced by the Chinese
government. Such lockdowns and quarantines mainly aim at
reducing the frequency of the contacts β−1 between individ-

Fig. 1. Figure showing the fit of the SEIR model with β allowed to change after the
introduction of the increasingly strict lockdown measures in China.

uals. We thus used the βi before and after the introduction of
each containment measures and the γ as trainable parameters.
In this study we used an average incubation time δ−1 = 5.2
days, as reported in (12).
The implementation of the first containment measure in
China happened on February 23, 2020, when all public trans-
portation was suspended in Wuhan, corresponds to a 66% de-
crease in the inferredR0, bringing it down from 3.36 (CI 95%
[2.88,4.29]) to 1.15 (CI 95% [0.92,1.4]). The introduction of
the more stringent measures on February 23, 2020, including
closing all non-essential companies and manufacturing plants
in Hubei province corresponded to a further reduction to the
R0 identified by our SEIR model, down to 0.19.

Containment measures in Italy. Italy is the first European
country that has been severely hit by the COVID-19 pan-
demic, and, at the time of writing, it is the second nation
in the world in terms of cases, with 92,472. The Italian gov-
ernment reacted to the epidemic by closing all schools and
universities on March 4, 2020, putting the north of Italy un-
der lockdown on March 8, 2020, and extending this lock-
down to the entire country few days later, on March 10, 2020.
On March 20, 2020, the government introduced even stricter
measures, banning open-air sports and closing parks and pub-
lic green.
We used the data of the Italian COVID-19 outbreak provided
by the Protezione Civile to infer the R0 before and after the
containment measures were implemented. The free parame-
ters are the βi associated to each containment measure intro-
duced and γ that was kept constant across the containment
measures.
From this analysis, shown in Fig. 2, it appears that the ini-
tially inferredR0 = 2.68 (CI 95% [2.42, 3.08]) is in line with
the 3.1 estimate provided in (15). The R0 = 1.86 (CI 95%
[1.36, 2.37]) inferred after the nationwide lockdown in effect
from March 10, 2020 suggests that the effectiveness of the
containment measures was gradual and did not immediately
bring R0 below 1. Nevertheless, the data clearly departed
from a situation without measures put in place (see Suppl.
Fig. 8). When we modeled also the measures introduced on
March 20, 2020, the inferred R0 decreased to 0.46 (CI 95%
[0.08, 0.85]), initiating the decrease of the new cases.
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Fig. 2. Figure showing the fit of the SEIR model with β allowed to change after the
introduction of the increasingly strict containment measures in Italy.

Containment measures in Belgium. Belgium is one of the
European countries in which the COVID-19 pandemic appar-
ently arrived later, with the first confirmed case reported on
February 4, 2020. The growth of the number of cases in Bel-
gium started from March 1, 2020, and on March 12, 2020,
the Belgian government issued containment measures involv-
ing the closure of schools, cafes and restaurants starting from
March 14, 2020. The government then extended these mea-
sures, enforcing stricter "physical distancing", starting from
March 18, 2020, at noon.
In Fig. 4, we can see that the SEIR model infers a change
in R0 that increases it from the original 2.1 (CI 95%
[1.94,2.12]) to 3.19 (CI 95% [2.43,4.14]). The fact that the
lockdown leads to an increase of R0 is very surprising and
could be explained by the number of tests carried out during
that period (see Discussion).
The second set of measures appears to be more effective with
a reduction of R0 to 0.88 (CI 95% [0.39,1.21]), initiating the
decrease of the new cases.

Fig. 3. Figure showing the fit of the SEIR model with β allowed to change after the
introduction of the increasingly strict lockdown measures in Belgium.

Containment measures in Spain. Although the first
COVID-19 case in Spain dates to March 1, 2020, the epi-
demic there did not show worrying numbers until the end of
February, with a rapid growth starting from the beginning of
March. This crisis was answered first with containment mea-
sures in the Community of Madrid, enforced from March
11, 2020, followed by nationwide measures enforced from
March 15, 2020.
We fitted the SEIR model to infer the change in β result-
ing from the implementation of the containment measures.

Similarly to the Italian and Belgian case, we observe a clear
decrease in R0, but the value inferred by the model is still
slightly above 1, indicating a significantly reduction in the
acceleration of the epidemic, but still insufficient to revert
the increase of the new cases. This might be due to the effect
of under-reporting of the actual number of COVID-19 cases
on our SEIR model.

Fig. 4. Figure showing the fit of the SEIR model with β allowed to change after the
introduction of the increasingly strict lockdown measures in Spain.

Analysis of reporting in official counts and biases in
testing. In an attempt to address the under reporting of cases,
we computed a reasonable estimate of the actual number of
COVID-19 cases in Italy on March 12, 2020. To do so we
relied on the fatality rate (CFR) of the disease and the age
distribution of the cases in South Korea, which adopted an
extensive testing strategy to face the COVID-19 crisis, ad-
ministering one test every 142 citizens. Since South Korea
has tested a very large part of its population with no evi-
dent biases, we considered this to be the most reliable data
when it comes to reporting the actual numbers and age group
of infected individuals. South Korea shows indeed a Pear-
son correlation coefficient between the number of cases de-
tected among 10-yrs age bins and its demographic structure
of r = 0.69 (p-value= 0.039), while Italy has an r = 0.21
(p-value= 0.591), suggesting a much more skewed testing.
Our estimation is based on three other assumptions. First, we
assume that the disease propagated similarly in South Ko-
rea and Italy over the different age bins. Second, we as-
sume that South Korean and Italian healthcare have similar
standards, thus suggesting a comparable fatality rate once the
testing bias is addressed. Third, we assume that the health-
care system in Italy (e.g., the availability of ICU beds) has
not reached saturation, and to satisfy this condition we in-
deed chose to perform this estimation for March 12, 2020,
as lockdown measures in Italy appear to be the result of the
healthcare system rapidly approaching saturation.
We first adjusted the South Korean number of cases by age
group with respect to the demographic structure of the Ital-
ian population. As reported on Figure 5 (green bars), the age
of confirmed patients is heavily skewed towards older indi-
viduals in Italy, while it is more consistent with the demo-
graphic structure in the South Korean data. We argue that
the skewness of the Italian cases towards older age groups re-
sults from the fact that on the February 26, 2020 on the Italian

De Brouwer et al. | My Template Arxiv | 3

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2020. ; https://doi.org/10.1101/2020.04.02.20046375doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.02.20046375
http://creativecommons.org/licenses/by-nc/4.0/


testing strategy changed from blanket testing to focusing on
symptomatic and high-risk individuals (15), thus introducing
a clear sampling bias. We then adjust the proportion of cases
per age in Italy by computing

α∗It[i] = δIt[i]
δSK[i]αSK[i],

where α∗It[i] is the non-normalized proportion of Italian cases
in age bin i, αSK[i] the proportion of South Korean cases
in age bin i and δ[i] are the proportion of the corresponding
age bin in the total demographics of the respective country.
The normalized proportion of Italian cases α[i] is obtained
by dividing by the sum of α∗[i] over all age bins. They are
reported in orange on Figure 5.
In a second stage, we compute the expected number of cases
in Italy based on the number of deaths and use it to further
adjust the age distribution. We use South Korea death rates
per age bins to infer the number of closed cases. We com-
pute the expected number of cases per age bin by dividing
the number of deaths by the fatality rate measured in South
Korea:

ω[i] = deaths[i]
rSK[i] ,

where ω[i] is the number of Italian closed cases in each age
bin i, deaths[i] is the number of Italian deaths in that bin and
rSK is the corresponding fatality rate. Applying this formula
for ω will result in undefined numbers for the youngest age
bins. This effect is caused by the very low mortality at those
ages (the denominator or the numerator is 0). In our case,
bins from 0 to 30 years old were undefined. We address this
issue by using the corrected age distribution of Italian cases
αIt. We compute the proportions of cases over 30 years old
as

Prop>30y =
>90∑

i=30−40y
α[i].

We then compute the estimated total number of closed cases
in Italy as

Nit =
∑>90
i=30−40y ω[i]
Prop>30y

Using the data available on March 12, 2020 for Italy and
South Korea, we find an estimated number of real cases
Nit = 45,052. This is to be compared with the total num-
ber of reported cases in Italy at that date which is 15,113.
The inferred number of cases is thus 3 times higher than the
reported figure.
The undefined ω bins can then be inferred by multiplying
their α with the total number of cases Nit. The resulting
distribution of cases per age is presented on Figure 5 in red.

Fig. 5. Proportions of COVID-19 cases per age bins in South Korea (Blue) and Italy
(Green). The orange bars give the estimated Italian distribution when adjusted for
the age sampling bias with demographics only. The red bars additionally accounts
for the number of deaths in Italy in each age bin. The data we used was the one
available on the March 12, 2020 for Italy and South Korea.

Analysis of the healthcare system strain-level during
the epidemic progression. The COVID-19 pandemic has
been putting immense pressure on the healthcare systems of
many countries because it spreads widely in the population in
an asymptomatic or mild form (4), but a significant percent-
age of the symptomatic cases (6-11% in Italy (6, 7)) requires
ICU treatment, which is a limited resource in any country,
including European countries (8). The availability of ICU
beds is crucial (9) because so far there is no established cu-
rative treatment for COVID-19 and the clinical best practice
is to put patients suffering from Acute Respiratory Distress
Syndrome under respiratory support, for a period that may
last up to two weeks (6). Saturation of ICU capacity causes
a dramatic decrease of the quality of the medical treatments
provided to patients, thereby worsening the observed Case
Fatality Rate (CFR) (6, 9).
To analyze the burden that the COVID-19 epidemic brings
to the national healthcare systems of the affected countries,
we plot the evolution over time of the log-CFR (the log-ratio
of deaths per confirmed COVID-19 case). More specifically,
it is the logarithm in base 10 of the ratio of the cumulative
number of deaths over the cumulative number of cases. We
used the cumulative numbers as they are more stable that the
instantaneous ones.
During the first days of the epidemics, we expect this rate
to be noisy during the first phase of the epidemics. Due
to the delay between infections and deaths, the number of
deaths remains very low during the first days while the num-
ber of cases increases exponentially. After this transition pe-
riod, first deaths occur and if ICU units do not reach satu-
ration, we expect this rate to be stay constant. However, if
this rate increases, this suggests that the healthcare system is
under strain as it tries to cope with the growing number of
patients requiring ARDS treatment. Towards the end of the
epidemics, when the cumulative number of cases flattens out,
the rate is expected to increase, again due to delay between
the reporting of cases and the occurrence of deaths.
Fig. 6 shows this log-ratio over time in China. After some
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expected initial oscillations (also possibly due to the change
in the policies regulating the detection of the cases), China
showed a steep increase incidence of deaths with respect
to the number of cases, indicating a significant strain over
its healthcare system, and possibly the degradation of the
quality of the care provided. Towards, the end of the epi-
demics, when the number of cases flattens, we observe a
slower steady increase.

Fig. 6. Figure showing the strain that the COVID-19 pandemic put on the NHS of
China.

The same plot is shown for Italy in Figure 7. Shortly after the
first days of the epidemics, the mortality rate started grow-
ing quickly, suggesting an increasing strain on ICUs and the
Italian healthcare system, as reported also in (9).
Again, it is important to notice that both number of deaths
and cases are likely to be significantly under-reported, al-
though possibly in different proportions and thus impact our
conclusions.

Fig. 7. Figure showing the strain on the Italian national health services from the
COVID-19 epidemic.

Discussion
Effectiveness of containment measures. Containment
measures in China significantly reduced COVID-19 spread-
ing. The first lockdown resulted in a 65% decrease of the
reproduction factor R0 and the second, stricter wave of mea-
sures eventually managed to bring it to close to 0. We do
however observe that while the model was able to fit the Ital-
ian, Belgian, and Spanish data relatively well, its fit of the
data from China was rather mediocre. We are unsure about
what could have caused this discrepancy.
Containment measures in Italy appear to have had a more
gradual effect. The reason for this is not entirely clear,

but data from the Lombardy region, based on anonymous
cell phone tracking (not showed here), suggests that almost
40% of the population of Lombardy were still commuting
and moving around notwithstanding quarantine measures, al-
though the trend from February 26, 2020 and March 16, 2020
clearly indicates a progressive reduction of displacements.
This progressive trend is also consistent with the Community
Mobile Reports provided by Google.
Such large percentage of the population moving across Lom-
bardy might in part be explained by the fact that factory
closures were only partial until March 23, 2020, when the
Italian government issued a decree mandating the immedi-
ate halt of all non-essential production, industries, and busi-
nesses across the country. Data from the Italian Ministry of
Interior (17) also indicates that during the lockdown 1.7 mil-
lion police controls were carried out with infractions to the
containment registered in 4% of controls.
The analysis of the data from Belgium suggests at first that
the enforcement of the first lockdown measures were counter-
productive. This is very unlikely. Instead, a plausible expla-
nation may lie in the variation of number of tests during the
the transition period between the two belgian lockdowns. As
show on Figure 10 in the Supplementary, the number of tests
significantly dropped during this period, leading to under-
reporting of new infections. When, 5 days later, the number
of tests increases again, so does the number of newly infected
patients. Under the assumptions of our model, this rapid but
rather artificial sudden increase of infected patients is sup-
posed to have been contaminated by patients infectious dur-
ing the between lockdowns period. As this number was un-
derestimated, the R0 automatically increases to account for
the too low number of infectious patients.
More generally, the compliance of the population to the mea-
sures was progressive as suggested by seismic data (18) and
community mobility reports of Google.

Data biases and heterogeneity in the testing strategies
limit the ability to draw clear conclusions. The models
fits presented in the Results section are based on the offi-
cially available COVID-19 cases counts from China, Italy,
Belgium, and Spain. Even from a superficial analysis of this
data, several biases that hinder the modeling of these out-
breaks become clear.
First, the number of tests that can be run each day is finite,
because of the limited availability of supplies and person-
nel, making blanket testing currently impossible to perform
in many countries. This results in a large number of unre-
ported cases with respect to the available data.
Second, if tests are performed mainly on symptomatic pa-
tients for diagnostic purposes, because of the generally higher
age of the hospitalized cases, the resulting official COVID-19
cases data will show a striking proportion of patients over 60
years old, regardless of the actual demographic structure of
the population (see Suppl. Fig. 9).
Another reason why the sheer number of tests performed is
not a clear indication of the level of bias present in the data
is that the number of test performed is just an upper bound
for the actual number of individuals screened, because for
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example medical personnel with high risk of exposure may
undergo periodic tests. Moreover, the directives of the Italian
Ministry of Health indicates that a COVID-19 patient must be
negative to two consecutive tests performed with a 24h delay
(19) to be considered as having recovered from the disease.
The cumulative number of cases we used to fit the SEIR
model is therefore most probably both severely under-
estimated and skewed towards older age groups in the pop-
ulation. Both in Belgium and in Italy, for instance, patients
who are diagnosed as suspect COVID-19 case over the phone
by their GP, but who present no immediate risk of compli-
cation, are nor tested, nor reported as new cases. As the
epidemic progresses and healthcare resources become mo-
bilized, testing capacity increases and we observe a growing
number of newly tested individuals.
Yet a key assumption of our model is that new infections are
caused by contamination from currently reported infectious
individuals, because our modeling is based on the observed
cases, for which official data exists. However, in practice,
many of the newly diagnosed patients have been infected by
the majority of unreported infectious people. Our model will
thus infer an higherR0 to compensate for the underestimated
pool of infectious patients. This might explain the seemingly
high values of R0 estimates in the inter-lockdowns period in
Belgium for instance.
Interestingly, the estimation of the actual (vs. reported) num-
ber of cases on March 12, 2020 in Italy suggests that, al-
though heavily under-represented in the official data because
of testing bias, the 20-29 age group is the most affected by
COVID-19. Given that age group is particularly socially ac-
tive, one might speculate that infections via this age group
may have played a key role in the spread of COVID-19 across
Italy, even though these cases ended up almost completely
unreported. There are however some limitations to this anal-
ysis. While South Korea’s testing strategy has clearly been
comprehensive, it is not clear that it has been completely un-
biased. In particular, the low number of cases in the 10-19
years bin compared to the 20-29 years bin might be explained
by a radical difference in the true proportion of cases be-
tween those two age groups, but also by lower testing among
younger individuals because they might have been consid-
ered at very low risk of complications and/or unlikely to be
infectious. The information available does not allow us to
discriminate between those explanations. Moreover, the as-
sumption that the case fatality rate in South Korea and (north)
Italy is identical is subject to discussion as physicians in
South Korea are more experienced in managing patients suf-
fering from Acute Respiratory Distress Syndrome following
the 2015 Middle East Respiratory Syndrome (MERS) epi-
demic in South Korea.
Moreover, every country adopted its own specific strategy for
testing and reporting of cases, resulting in heterogeneity of
the COVID-19 data coming from different countries. For ex-
ample, South Korea opted for blanket testing of its population
and selective quarantine of the positive cases, while Italy fo-
cused on testing high-risk and symptomatic subjects and gen-
eralized lockdown of the country to reduce the R0 by acting

on the frequency of social contacts.
Even within the same country, the reporting strategy changed
over time in some cases, leaving a trace in the data. For exam-
ple, the number of daily new cases in China presents an un-
likely spike of 14,108 new cases in a single day (February 12,
2020) because of a change in the reporting strategy, since also
clinically diagnosed COVID-19 cases started to be included
in the cases count, alongside laboratory tests. This measure
was probably necessary to overcome the saturation of the
maximum number of tests that could be performed every day,
but caused the sudden inclusion of previous "suspect" cases
in the official count. Similarly, Italy opted for testing only
high-risk individuals and symptomatic cases from February
26, 2020 on (15).

Limitations of the model. The SEIR model does make im-
portant assumptions and shows significant limitations. The
size of the population is considered constant without births
and external deaths. Given the time scale for studying the
epidemics here, this assumption is likely to have a negligible
effect. Next, individuals who have recovered from the disease
are considered to be immune. Based on what is known about
SARS-CoV-1 and SARS-CoV-2, which are closely phyloge-
netically related, it is reasonable to assume that individuals
who recover from COVID-19 will benefit from immunity at
least over the period modeled here. Also, it has been reported
that asymptomatic and mildly symptomatic individuals (who
will not be recognized as carrying the disease), and presymp-
tomatic individuals (during at least 2-3 days of the incubation
period) are likely to be contagious with a degree of infectiv-
ity that is not yet well characterized. The SEIR model does
not account for these effects and the high value of β obtained
might in part be caused by the need to account for those miss-
ing contagion events. Moreover, the number of symptomatic
individuals might also be underestimated because testing is in
some cases being focused on most severe cases, which simi-
larly will lead to the inflation of β and R0.
More sophisticated models (with more patient compart-
ments) might better capture the different effects described
before, but such models will have significantly more free pa-
rameters, which means that those parameters might simply
be unidentifiable from the available data or that overfitting is
likely.

About “flattening the curve”. Despite their limitations,
our models show that the idea of “flattening the curve” (i.e.,
reducing the R0 of the epidemic to a level that would allow
the gradual build up of natural immunity in the population) is
likely to be unfeasible. Any significant reduction of R0 that
would not bring it extremely close to 1 would overwhelm the
healthcare system because the ICU capacity and the height
of the epidemic peak in a immunologically naïve population
are simply on different scales (in the SIR, the proportion of
the population infectious at the epidemic peak is given by
1−1/R0− ln(R0)/R0. For example, 30% of the population
is infectious at the epidemic peak for R0 = 3, while the ICU
capacity in for example Belgium is 15.9 beds per 100,000 in-
habitants (8)). Even if the epidemic could be controlled at a
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fixed level corresponding to a heavy but non-overloading load
of the ICU capacity, the time needed to build herd immunity
would be measured in years. As an example, a back-of-the-
envelope calculation for Belgium based on a permanent ICU
capacity of 1,000 beds for coronavirus patients (compared
to the pre-existing capacity of 1,750 (8) beds, which would
mean a major continuing strain on the hospital system and
thus the need to maintain supplementary capacity for several
years), assuming an average ICU stay of 10 days (6, 20), and
assuming that 2% of patients affected in the general popu-
lation would eventually require ICU care, would mean that
100 patients would be admitted at ICU care per day and that
5,000 individuals in the general population would be infected
by the disease each day. Reaching a level where 50% of the
population (of about 11 million people) has achieved natural
immunity would require 1,100 days or 3 years. Given that
the immunity to the disease might be relatively short-lived
(around 2 years for SARS (21)), it might simply be next to
impossible to achieve herd immunity without overwhelming
the healthcare system.
Moreover, such a strategy would require maintaining the
number of cases in the population at a tightly controlled level
with R0 being maintained on average at 1. Whenever R0
would be above 1, the disease would flare up, which would
quickly overload a healthcare system maintained at satura-
tion. When R0 would be below 1, the disease would start
vanishing, which would extend the time needed to build herd
immunity. Given that it is completely unclear what the pre-
cise impact of any containment measure is on R0, a strategy
based on lifting and reimposing measures to switch between
R0 slightly below 1 and R0 slightly above 1 does not appear
realistic.
If a treatment became available that would greatly diminish
the risk of complications (for example, by a factor 10), or
if it turns out that the proportion of the general population
that develops severe complications when infected by SARS-
CoV-2 is much lower than 2%, it might be possible to revisit
strategies based on “flattening the curve”.
In the absence of such a silver bullet treatment, the only plau-
sible option for the moment seems to be the immediate quash-
ing of the epidemic together with the development of strate-
gies to try to contain the disease at a minimal level driven
by imported cases, while waiting for greatly improved treat-
ments or a vaccine. In such strategies, as currently deployed
by South Korea, Hong Kong, and Singapore for example, pa-
tients only arise from imported cases and small local clusters
that are rapidly quashed. It is likely that such strategies will
sometimes fail in insufficiently prepared populations leading
to the reimposing of heavy quarantine measures during the
time needed to quash the new epidemic flare. It seems ad-
visable to reimpose strict quarantine measures as soon as un-
controlled local circulation of the disease is suspected.

Methods

Data collection. We collected COVID-19 data from official
sources. The Italian Protezione Civile releases COVID-19

data daily on its git repository1. Chinese COVID-19 data has
been obtained from the official bulletins2. Belgian COVID-
19 data has been collected from Sciensano, the Belgian cen-
ter for epidemiology of infectious diseases 3. The Span-
ish COVID-19 data has been obtained from the official bul-
letins4. The South Korean data has been collected from the
official KCDC press releases5.

SEIR model. The SEIR (Susceptible, Exposed, Infected, Re-
covered) is a widely used mathematical model for the de-
scription of the behavior of infectious disease outbreaks. It
consists in the following system of ordinary differential equa-
tions (ODEs):

dS

dt
= −βIS

N

dE

dt
= βIS

N
− δE

dI

dt
= δE−γI

dR

dt
= γI,

where the variables S, E, I , and R are respectively the num-
ber of (1) susceptible individuals (not immune and never ex-
posed to the virus), (2) exposed individuals (currently in-
cubating the disease), (3) the infectious symptomatic indi-
viduals, and (4) recovered (healthy and currently immune)
and deceased individuals. The total number of individuals
in the population is assumed to remain constant with value
N = R(t) + I(t) +S(t). We further define C(t), the cumu-
lative number of cases as I(t)+R(t).
The parameters of this model are δ, β and γ. Those tune
the dynamics of the epidemics. δ−1 can be interpreted as
the average incubation period (i.e., the average time spent
in pool E before becoming infectious I). β corresponds to
the average number of infections an infectious individual will
cause per unit of time and γ−1 corresponds to the average
time necessary to recover from the disease (i.e., going from I
to R). The average number of new infections arising from a
single infectious person is then R0 = β/γ.
In this study we set δ−1 = 5.2 days (12) and we used β and
γ as trainable parameters. We inferred a single γ for each
country, therefore keeping both γ and δ constant over time,
before and after the introduction of containment measures.
The effect of these measures is then modelled by a change
in β. Importantly, in this work, we considered that the mea-
sures enforcement resulted in a adaptive change in β. This is
motivated by the fact that people are only gradually adopting

1https://github.com/pcm-dpc/COVID-19
2http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml
3https://epidemio.wiv-isp.be/ID/Pages/2019-nCoV.

aspx
4https://www.mscbs.gob.es/profesionales/

saludPublica/ccayes/alertasActual/nCov-China/
situacionActual.htm

5https://www.cdc.go.kr/board/board.es?mid=
a30402000000&bid=0030
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the enforced measures, as suggested by seismic data (18) and
mobile data (see Discussion for more details).
We assumed that the beta was then exponentially adapting to
a new target. Let β0 be the β right before lockdown enforce-
ment. We posit that the β after lockdown is decaying towards
its target β∞ as:

β(t− t∗) = β∞+(β0−β∞)e−ω(t−t∗)

where t∗ stands for the time when the lockdown was en-
forced. In this text, we reported the R0 computed with β∞
to study the impact of the measures. When 2 or more distinct
lockdowns are enforced over time, we take as β0 the value of
β at the time of lockdown of interest. We fixed 1/ω = 4 days
for all countries, meaning that after a week, β reached 85%
of the gap between its target and its starting value. This value
is inline with the sismic and mobile data (18).
We inferred the β parameters during each period by fitting the
cumulative number of cases C(t) with MCMC (Metropolis
Hastings). We use a Poisson likelihood and uniform priors
for β, such that β ∼ U(0,2), and we use another uniform
prior for γ, such that γ ∼ U(0.2,1). This leads to plausible
values of γ−1 between 1 and 5 days which is inline with the
current estimates for the mean time elapsed between onset of
symptoms and hospitalization in China (between 2.3 (12, 13)
and 2.9 days (14)) and Italy (4days (22)).We inferred the β
parameters during each period by fitting the cumulative num-
ber of cases C(t) with MCMC (Metropolis Hastings). We
use a Poisson likelihood and uniform priors for β, such that
β∼U(0,2), and we use another uniform prior for γ, such that
γ ∼ U(0.2,1). This leads to plausible values of γ−1 between
1 and 5 days which is inline with the current estimates for the
mean time elapsed between onset of symptoms and hospital-
ization in China (between 2.3 (12, 13) and 2.9 days (14)) and
Italy (4days (22)).
Additionally, to allow for more flexibility, we set a Gaussian
prior on the initial value of the infectious pool I(0). The
initial values of others pools are taken as the ones reported
in the available data. We generated 10,000 samples from the
posterior distribution of β and discard the first 5,000 as burn-
in period. For numerical integration, we used Euler with a
time delta of 0.05 days.
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Supplementary Note 1: Supplementary Fig-
ures

Fig. 8. Figure showing the fit of the SEIR model with no Quarantine (no changes in
betas allowed).

Fig. 9. Demographics age repartition of Italy along with the age distribution of
reported cases.

Fig. 10. Evolution of tests and new infectious cases in Belgium over time.

De Brouwer et al. | My Template Arxiv | 9

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2020. ; https://doi.org/10.1101/2020.04.02.20046375doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.02.20046375
http://creativecommons.org/licenses/by-nc/4.0/

	Supplementary Figures

