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The damage of the novel Coronavirus disease (COVID-19) is reaching unprecedented scales. There
are numerous classical epidemiology models trying to quantify epidemiology metrics. Usually, to
forecast the epidemics, these classical approaches need parameter estimations, such as the contagion
rate or the basic reproduction number. Here, we propose a data-driven, parameter-free approach to
access the fragility and systemic risk of epidemic networks by studying the Forman-Ricci curvature.
Network curvature has been used successfully to forecast risk in financial networks and we suggest
that those results can be translated for COVID-19 epidemic time series as well. We first show that
our hypothesis is true in a toy-model of epidemic time series with delays, which generates epidemic
networks. By doing so, we are able to verify that the Forman-Ricci curvature can be a parameter-free
estimate for the fragility and risk of the network at each stage of the simulated pandemic. On this
basis, we then compute the Forman-Ricci curvature for real epidemic networks built from epidemic
time series available from the World Health Organization (WHO). The Forman-Ricci curvature allow
us to detect early warning signs of the emergence of the pandemic. The advantage of the method
lies in providing an early geometrical data marker for epidemics, without the need of parameter
estimation and stochastic modeling. The strategy above, together with other data-driven tools for
investigating epidemic network dynamics, can be readily implemented on a daily basis to quickly
estimate the growth, risk and fragility of real COVID-19 epidemic networks at different scales.

Epidemic outbreaks represent a significant concern for
global health. Currently, the COVID-19 outbreak has
caught the attention of researchers worldwide due to its
rapid spread, high fluctuation in the incubation time and
uncertain health and economic outcomes. One of the
most urgent challenges of this outbreak concerns the de-
velopment of a coordinated and continuous data-driven
feedback system that could quantify the spread and the
risk of the epidemic, without strongly depending on pa-
rameter estimation and even when data is heterogeneous
or subject to noise. Such a data-driven system would
allow to develop adequate responses at different scales
(global, national or local) and allocate limited resources
in the most effective ways.

Recent developments in topological and geometric data
analysis [1–5] offer useful perspectives regarding real data
treatment, having yielded outstanding results over the
past years across many fields [6–9]. As an emerging and
promising approach in network science and complex sys-
tems more generally [10], topological and geometric data
analysis describes the shape of the data by associating
high dimensional objects [1, 8, 11].

Among the numerous successful interdisciplinary ap-

plications of applied geometry and topology, ranging
from differentiating cancer networks [12] to modeling
phase transitions in brain networks [13], one idea in par-
ticular can be beneficial to measure the systemic risk
and fragility of COVID-19 epidemic networks in a data-
driven way: Using network curvature to infer the network
fragility and systemic risk. This could give insights into
the current aspects of the pandemics without the need
for parameter estimations.

Our idea is inspired by earlier results obtained for fi-
nancial networks [14], where the authors showed that
it was possible to relate financial network fragility with
the Ollivier-Ricci curvature of a network. Most impor-
tantly, the Ollivier-Ricci curvature emerged as a data-
driven ”crash hallmark” for major changes in stock mar-
kets over the past 15 years. In their study of market
fragility, they used these geometric tools to analyse and
characterize the interaction between the economic agents
(the nodes of a financial network) and its correlation lev-
els (which defines the edges’ weights). In addition, these
tools also allowed them to track the curvature of the fi-
nancial network as a function of time, i.e. how the shape
of the financial network changed according to a dynamic
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economic scenario.
As a result, the Ollivier-Ricci curvature emerged as a

strong quantitative indicator of the systemic risk in finan-
cial networks. From a implementation perspective, [15]
proved that there is an alternative, simpler discretization
for computing the Ricci curvature, namely the Forman-
Ricci curvature, which has analogous properties to the
Ollivier-Ricci curvature, with the added value that the
Forman-Ricci curvature has a faster computation time
in large-scale, real-world networks. Therefore, this paper
will use the Forman-Ricci curvature as an estimator of
fragility in an epidemic network, which is simply defined
as follows[16]:

F(e) =#{triangles containing e}+ 2

−#{edges parallel to e}, (1)

where the parallel edges to e are the edges that are sharing
a node or a triangle with e, but not both. Here, we refer
to triangles as the simultaneous connection between three
nodes.

Given that both epidemic and financial networks are
built on correlations between time series, we use geo-
metric tools analogous to [15] to provide a novel applica-
tion of the Forman-Ricci curvature: Inferring the fragility
and systemic risk of epidemic networks, in particular, the
COVID-19 network.

In this paper, we create an epidemic network consist-
ing of edges and links, based on the reported epidemic
time series. We define each spatial domain of the epi-
demic as the node of a network, and the links between
two locations are based on the Pearson correlation coeffi-
cient (or any similarity measure) between their epidemic
time-series. We chose the links of the network according
to the Pearson correlation coefficient between two loca-
tions in descending order, which means that we include
the strongest links first in the network, until the net-
work reaches the Giant components (the state in which
we have a single cluster of connected nodes).

Given that we are still in the early stages of the
COVID-19 pandemic, we need to show that the Forman-
Ricci curvature suffices to detect fragility and risk in a
toy-model, i.e., a simulated epidemic network obtained
from simulated time series for the epidemic. We will first
build this simple model heuristically and in second step
move towards the analysis of real COVID-19 data.

A simple way to access the number of cases in an epi-
demic network is to use the fractal growth hypothesis,
as observed in [17], where the daily number of cases n(t)
in an epidemic follows a power-law distribution with an
exponential cutoff:

n(t) = Ktx exp(−t/t0), (2)

where, K, x and t0 are fitting parameters. In Fig. 1, we
show examples of the fit between (2) and the number of

FIG. 1: COVID-19 per country. Illustration of the
number of cases and fitting through fractal growth

(dashed lines), Eq. (2), for a representative number of
countries.

reported COVID-19 new cases for four countries, namely,
China, Iran, South Korea and Japan. This fit suggests
that (2) paves a simple way for building a toy-model for
epidemic time series. We stress that our aim here is not to
find whether the best fit for the pandemic is exponential
or power law, which was already addressed in [17, 18],
but to build a simple toy-model that allows us to test our
hypothesis relating Forman-Ricci curvatures to epidemic
networks.

Inspired by this equation, we can suggest a phe-
nomenological toy-model for generating epidemic time
series with noise that can capture the growth of an epi-
demic network. We assume that in each node i of the
epidemic network, the daily number of cases follows a
fractal epidemic growth with Gaussian noise wi(t) and a
time delay di in relation to the epicenter:

ni(t)=

{
wi(t) if t ≤ di
Ki(t− di)xi exp

(
− (t−di)

ti0

)
+ wi(t) if t > di

.

(3)
We now show that the Forman-Ricci curvature suf-

fices to detect fragility and risk for the simulated epi-
demic network. The starting point for creating a fractal
epidemic network is based on simulating epidemic time
series with delays from (3). In a second step, we define
the weights of the epidemic network through the Pearson
correlation coefficient between time series ni(t) and nj(t).
The temporal epidemic network is computed for a given
time window, and the process is repeated for the next
time window, thus obtaining an evolving network. This
approach is inspired by network analysis in other fields,
such as neuroscience [19] or finance [20]. We illustrate
the delayed epidemic time series, its Pearson correlation
matrix and its corresponding network for a given time
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FIG. 2: Illustration of the creation of epidemic networks based on the correlations between epidemic time series
across spatial domains for a given time window. This approach allow us to infer network signatures for epidemic

outbreaks without relying on parameter estimation of classic stochastic epidemic approaches.

FIG. 3: (Top) Illustration of toy-model epidemic curves, both new cases and cumulative cases, according to (3) and
its respective Forman-Ricci curvature at the bottom, with white noise parameter σ = 0.01.

point in Fig. 2, resulting in a time evolving network.

The third step is to infer the fragility of the time evolv-
ing epidemic network by tracking geometric changes in
this network as a function of time. More specifically, we
observe the mean changes in the discrete version of the
Forman-Ricci curvature [21] for a selected moving win-
dow for each location affected by the epidemic and use
the network curvature as a indicator for its fragility and
risk. Thus, we assume that the application to epidemic
time series follows an analogous behaviour to the one ob-
served for stock markets in [14].

As a proof of concept, we then investigate a simulated
time series with delays in (3). We generated 50 time
series with parameters Ki, xi, di, and ti0 randomly chosen
in the interval Ki ∈ [0, 20], xi ∈ [0, 5], di ∈ [10, 21], and
ti0 ∈ [0, 1]. We also included a small white noise with zero
mean and variance of σ = 0.01.

Fig. 3 shows that the epidemic curve generated from
our toy-model in Eq. (3) is compatible with an epi-
demic outbreak and contrasts the simulated epidemic
curve with its Forman-Ricci curvature. We observe that
the curvature is constant before the starting of the simu-
lated epidemic, grows during its progression and reaches
its maximum during the peak of the simulated outbreak.
After the end of the simulated epidemic, the curvature
comes back to its initial level. We emphasize that the in-
clusion of white noise wi(t) in our model was very impor-
tant to destroy spurious deterministic correlations that
appear at the end of the outbreak.

Having proven that our hypothesis is true for a toy-
model of epidemic networks, we are now ready to test
whether the Forman-Ricci curvature is a reliable network
fragility metric for real COVID-19 data available from
the World Heath Organization (WHO). In Fig. 4 we illus-
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FIG. 4: (Top) Reported epidemic cases per time window, both new cases and cumulative cases, vs. its Forman-Ricci
curvature (bottom) for the same time period. In red, we indicate the moment when the WHO declared COVID-19

as a pandemic.

FIG. 5: Illustration of the ditribution of the
Forman-Ricci curvature for two different time windows

based in cumulative cases.

trate both the epidemic curve (top) and the Forman-Ricci
curvature (bottom) for the COVID-19 database [22]. As
in the simulated data, the curvature was stable at the
beginning and grows over time, signaling increasing risk
and fragility of the epidemic network. Remarkably, we
observe that the curvature of the epidemic network gives
an early warning sign for the emergence of the pandemics,

as the curvature starts to increase weeks before the ex-
ponential growth in number of cases is observed and the
WHO declares COVID-19 as a pandemic (see Fig. 4, in
red). Fig. 5 provides an additional geographical illus-
tration of the distribution of the Forman-Ricci curvature
across countries for two time windows in March.

We conclude that the Forman-Ricci curvature metric
used in this paper might be a strong indicator for the
fragility and systemic risk in the COVID-19 epidemic
and, consequently, a data-driven approach to epidemic
outbreaks more generally. Another added value of this
geometric approach, in contrast to the classical stochas-
tic and modelling simulations, is that the results emerge
intrinsically and empirically independent of parameter
estimations for the pandemic, e. g. its contagion rate
or basic reproduction number. This paves the way for
predicting and tracking the risk of the epidemic in the
absence of reliable parameter estimations. More gener-
ally, geometric and topological methods seem to emerge
as promising support tools for future epidemic control
policies.
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