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Abstract. The spread of COVID-19 is expected to put a large strain on many
hospital resources, including ICU bed space, and mortuary capacity. In this re-
port we study the possible demands on ICU and mortuary capacity in Sydney,
Australia, using an adapted SEIR epidemiological model.
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1. Introduction

The novel coronavirus that causes COVID-19 has been spreading rapidly through-
out the world, and has emerged in several hotspots in Sydney. Because the spread
in other places has been so rapid, health systems have been overwhelmed. In re-
sponse, authorities have instigated a number of measures to mitigate the spread,
and attempt to ease this burden.

In this study we explore the consequences of various mitigation effects on demand
for critical services, in particular intensive care units (ICU), and mortuary space.
The key inputs into the model are the basic reproductive number of the virus, the
R0, and the effect of mitigation strategies on this reproductive number. A number of
estimates of R0 for COVID-19 have now been published (e.g., [3, 5, 10]), and likewise
information is being gathered about the effect of certain mitigations elsewhere on
the reproductive number [5]. We use these estimates as input into a published
mathematical model, and apply the model to the Sydney environment.

The model we use is an extension of the well-established SEIR family of mathe-
matical models (Susceptible, Exposed, Infectious, Removed), that has been adapted
specifically for COVID-19 by the Neher lab at the University of Basel [6]. The
extension involves including various stages of illness, from infectious, to severe (in
hospital), and critical (in the ICU). This level of detail is important for predicting
the demands on the ICU.

Aside from running the model for a range of values of the basic reproductive
number R0 (consistent with published estimated ranges) and two different mitigation
effects (moderate and strong), the model takes as input a number of other key
parameters. These include age-specific severity data, which we obtain from a recent
Imperial College, London report [3], data on the length of stay of COVID-19 patients
in each stage of hospital care, also from [3], age distribution data from Sydney [7],
and a seasonal forcing effect that takes into account the likely contribution of the
winter months to transmissibility.

Key findings:
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• For low values of the basic reproductive number, and strong effect of miti-
gation in Sydney, the model predicts an ICU capacity of 800 beds may be
sufficient. However, for higher values of R0 or any “moderate” mitigation
effect, it will not.

• The range of possible outcomes for this outbreak is vast. For example if
mitigation is moderate then any of the R0 values we tested leads to ICU
capacity being exceeded. At the higher end, if R0 = 2.95 then the ICU
capacity is predicted to be over-run by a factor of 7.

• Demand for mortuary capacity is also very sensitive to the underlying R0 and
strength of mitigation effect. For low values of R0 and strong mitigation, less
than 50 spaces are predicted to be sufficient. However in any other scenario,
capacity will need to exceed 150 spaces, and up to 1700 could be needed.

2. The extended SEIR model

We model the spread of COVID-19 in Sydney using an extended SEIR model
developed by the Neher lab at the University of Basel [6]. In this model, Infectious
are taken to be “in the community”, and there are several populations in the hos-
pital system: Severe (H - in hospital), Critical (C - in ICU), and Dead (D). While
normally R is “Removed”, which might include recovered and dead, we now use it
for Recovered.

A schematic of the model is shown in Figure 1. The model can be expressed as a
set of ordinary differential equations giving the rates of changes of the size of each
sub-population. The mathematical details are given in Appendix A.
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Figure 1. Model from the Neher lab at University of Basel [6] that
we have used to generate scenarios for Sydney. The dotted red box
indicates the subpopulations usually subsumed as “infectious” in tra-
ditional SEIR models, and the dotted blue box is usually treated to-
gether as “removed”.

Like other models, ours has many assumptions including the choices of parameters.
We provide these details in the Appendix. The key scenarios we have modelled are:

• Basic reproductive numbers (R0) between 1.95 and 2.95.
• Strong or moderate effects of mitigation strategies (scaling the R0 by a factor

of 0.45 or 0.6 respectively).

These numbers were chosen using the modeling of the team at the London School
of Hygiene and Tropical Medicine, published in The Lancet on March 11, 2020 [5].
Their estimate of the R0 in Wuhan before any intervention is R0 = 2.35, and one
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week after intervention began was R0 = 1.05 (that is, 45% of 2.35). The estimate
of 2.35 pre-intervention is also commensurate with the estimate of the group at
Imperial College London, who arrived at a value of R0 = 2.4 [3]. Further estimates
in the literature are mentioned in Appendix A. We consider the intervention in
Wuhan as “strong”, and also consider a “moderate” intervention with scaling factor
0.6. These factors are also close to those considered in the Neher lab modelling,
which considered mitigation factors of 0.4 and 0.6.

3. Results

The outputs of simulations relating to hospital demand (“Severe” cases, popu-
lation H) are shown in Figure 2 (a) and (b), for ICU demand (“Critical” cases,
population C) are shown in Figure 2 (c) and (d), and for mortuary demand (popu-
lation D) in Figure 2 (e) and (f).

Key outputs of the model are summarized in Table 1.

Scenario

Peak
hospital

(non-
ICU)

demand

Date of
peak

hospital
demand

Date ICU
threshold
reached

Peak
ICU

demand

Date of
peak
ICU

demand

Peak
mortuary
demand

Date of
peak

mortuary
demand

Cumulative
deaths

(Feb. 2021)

R0 M

2.95 0.45 6638 12 Aug 02 Jun 2596 18 Aug 690 19 Aug 24919
2.75 0.45 4559 11 Sep 05 Jul 1864 17 Sep 462 19 Sep 18931
2.55 0.45 2269 16 Oct 01 Sep 1068 20 Oct 210 21 Oct 10064
2.35 0.45 569 31 Oct — 303 08 Nov 48 08 Nov 2798
2.15 0.45 87 23 Sep — 47 06 Oct 8 30 Sep 560
1.95 0.45 26 07 Apr — 13 12 Apr 3 20 Apr 152

2.95 0.6 15560 24 Jun 02 May 5691 30 Jun 1655 02 Jul 37985
2.75 0.6 13506 10 Jul 15 May 4989 16 Jul 1436 19 Jul 35716
2.55 0.6 11225 01 Aug 01 Jun 4201 07 Aug 1191 09 Aug 32596
2.35 0.6 8534 29 Aug 26 Jun 3261 03 Sep 898 05 Sep 27865
2.15 0.6 5207 06 Oct 03 Aug 2088 11 Oct 533 14 Oct 19715
1.95 0.6 1725 21 Nov 30 Oct 879 25 Nov 150 25 Nov 6604

Table 1. Summary of key results, showing predicted peak values
for hospital demand (excluding ICU), ICU demand, and mortuary
demand, as well as the dates those peaks are expected. We also show
the date the ICU capacity is predicted to be reached under each set of
assumptions. The last column shows the cumulative deaths predicted
under the model after one year of the simulation. A mitigation effect
of M = 0.45 is designated “strong”, while M = 0.60 is “moderate”.
Values of R0 = 2.35 and M = 0.45 (bold) are the estimated numbers
for the mitigation achieved by Wuhan’s initial response. All dates in
the columns are in 2020.

4. Conclusions

The model predicts that hospital demand (excluding ICU) under the default sce-
nario of R0 = 2.35 and strong mitigation will peak at about 570 beds by the end
of October 2020. If mitigation is only of moderate effect, demand will swamp the
system, with even a low R0 = 2.15 giving rise to demand for more than 5000 beds.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2. Model outputs with strong mitigation (left panels) and
moderate mitigation (right panels): Hospital demand, excluding ICU,
panels (a) and (b); ICU demand, panels (c) and (d); mortuary spaces
required, assuming each space is occupied for 3 days, panels (e) and
(f); and expected cumulative fatalities, panels (g) and (h).
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An ICU capacity of 800 beds is predicted to only be sufficient if there is a strong
mitigation effect and for values of baseline R0 at 2.35 and below (Figure 2(c)). If
the mitigation effect is only moderate (Figure 2(d)), they will not be sufficient, and
there will be extreme overload beginning in May if the baseline R0 is high. Under
the default R0 = 2.35 and strong mitigation, ICU demand will exceed 300 beds in
November. Note: this models demand from COVID-19 alone and does not account
for regular demands on the ICU capacity.

Mortuary requirements vary greatly depending on the R0 and strength of miti-
gation (Figure 2(e) and (f)). If R0 ≤ 2.35 and mitigation is strong, peak demand
would be under 50 beds in Sydney. Any scenario with only moderate mitigation or
a higher underlying R0 would result in the need for hundreds of mortuary beds.

Another output of the model is the number of fatalities over time, and this is shown
in Figure 2(g) and (h). Here we see the major effect of the strength of mitigation: no
scenario with only moderate mitigation predicts fewer than 6,600 fatalities. Under
moderate mitigation effects, those large numbers of fatalities mostly stop increasing
by late 2020, indicating the epidemic has washed through the population, albeit at
massive cost to life. On the other hand, the effect of strong mitigation can be seen
in the lower predicted numbers of fatalities, with some scenarios (R0 = 1.95 or 2.12)
staying under 1000, but it also shows that the outbreak will persist longer, into 2021.

There are several key uncertainties in the modelling:

• What is the effect on underlying R0 of the actual mitigation strategies that
have been put in place and are being considered? While it would appear that
the measures introduced in Sydney — physical distancing, and the closure
of non-essential businesses — should have a “strong” effect on R0, this key
question is beyond the scope of this study. What we can say from the results
here is that mitigation strategies need to be strong enough to produce the
desired effect on R0.

• What is the baseline R0 for Sydney? The Imperial College study used 2.4
as default [3], and Kucharski et al. in Lancet estimated it at 2.35 [5]. These
estimates have wide confidence intervals, and it could be lower in Sydney
due to earlier awareness and also a more diffuse population. The Harvard
group had a lower estimate of approx 1.9 but that assumed a quite high
exposed-to-symptomatic probability of ≥ 0.5 [10]. This assumption has the
effect in their models of lowering estimates of R0.

5. Extensions, further questions

Some possible extensions that could be made within the same modelling frame-
work include:

• Focusing on specific region of Sydney, which could be relevant if each hospital
receives patients from local catchment.

• Including specific comorbidities may be valuable. For instance, Sydney may
have higher rates of diabetes or obesity than Wuhan, which might affect
death rates, while Wuhan has higher rates of smoking, especially in men.
These variations could be implemented by changing the age-related param-
eters, assuming these conditions are aligned with different age profiles.
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Appendix A. The mathematical model and implementation

A.1. The mathematical model. The basic model used in this study was intro-
duced in [6], and is a generalisation of classical “SEIR” epidemiological models that
have been in the literature since the SIR model was introduced in 1927 [4]. An
introduction to such models can be found in the text [1].

In this implementation of the SEIR-type model shown in Figure 1, each compart-
ment (sub-population) is further divided into age brackets, and these have different
features based on what has been inferred about COVID-19 to date. Thus the model
is really a set of models, one for each age bracket, denoted a (so that Sa refers to the
susceptible population in age-bracket a). Age brackets and age-specific parameters
are shown in Table 3.
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The differential equations that govern the flow of people through the compart-
ments are as follows, as in [6]:

dSa(t)

dt
= −βa(t)

Sa(t)

N

∑
b

Ib(t)

ti

dEa(t)

dt
= βa(t)

Sa(t)

N

∑
b

Ib(t)

ti
− Ea(t)

tl

dIa(t)

dt
=
Ea(t)

tl
− Ia(t)

ti
dHa(t)

dt
= (1 −ma)

Ia(t)

ti
+ (1 − fa)

Ca(t)

tc
− Ha(t)

th
dCa(t)

dt
= ca

Ha(t)

th
− Ca(t)

tc
dRa(t)

dt
= ma

Ia(t)

ti
+ (1 − ca)

Ha(t)

th
dDa(t)

dt
= fa

Ca(t)

tc
.

For instance, the first equation says that the rate of flow of people out from Sa

(susceptible in age category a), to Ea (exposed) at time t, is the total infectious
population

∑
Ib times the infection rate βa at time t, times the proportion of the

population still susceptible, Sa(t)/N . Patients leave the hospital on average after th
days, so each day on average Ha(t)/th patients leave hospital (seen in the expression
for dHa/dt). Of these, ca go to the Ca (the ICU), and (1 − ca) recover (go to Ra).

If a patient needs ICU but ICU is not available, we assume (following [6]), that
leads to a fatality.

To summarize the parameters, we have:

• Transmission rate βa(t). This is essentially a function of the basic repro-
ductive number R0, but also accounts for mitigation effects and seasonal
forcing:

βa(t) := R0M(t)(1 + ε cos(2π(t− tmax))).

The expression for seasonal forcing is standard (see eg [1, Sect. 1.8]), but
includes the mitigation effect M(t) on R0.

• Average times in each state of the model are given by
– tl: latent time exposed before becoming infectious,
– ti: time infectious before either recovering or becoming severely ill,
– th: time severe, in hospital, before either recovering or becoming critical,
– tc: time critical, in ICU, before either dying or leaving the ICU within

the hospital.
• Age-specific parameters:

– ma is the proportion of cases in Ia that stay mild (asymptomatic).
– ca is the proportion of cases in Ha that become severe.
– fa is the proportion of cases in Ca that are fatal.

A.2. Parameter settings. Table 2 gives a summary of key parameter settings in
our implementation of the model.
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Time parameters (taken from modelling in [3]):

Time latent (E), before moving to I: 6 days

Time infectious (I), before moving to either S or R: 5 days

Time severe (S), before moving on to either C or I: 7 days

Time critical (C), before moving on to either D or S: 9 days

Capacity parameters (estimates assuming doubling of ICU):

Hospital beds Sydney: 8000

ICU beds Sydney: 800

Length of stay in mortuary (days per patient): 3

Population parameters and initial conditions:

Sydney population: 5.5 mill

Initial infected cases∗: 50 on 1st February 2020

Imports per day: 2

Seasonal forcing effect: 0.1

Epidemiological parameters:

R0 input values (align with the range used in [3, 10]) 1.95, 2.15, 2.35, 2.55, 2.75, 2.95

Mitigation factors (reducing R0): (see also Fig. 3) 0.45, 0.6

Scaling effect on rate of death given ICU needed but not
available:

2

Table 2. Parameter setting for the model.
∗Initial settings have been chosen because under these conditions with
weak mitigation strategies, we see outbreak parameters for Sydney
commensurate with those observed on 25th March.

The age related parameters given in Table 3 are from [3], and originate from
studies of Wuhan cases in [9].

There are now many estimates of the value of R0 in the literature, ranging from a
bit below 2 to above 3. Low R0 estimates of 1.8 − 2.0 were found in [10], assuming
a relatively high probability that an infection becomes symptomatic of Psym ≥ 0.5.
Lower values of Psym in that study give higher estimates of R0. An estimate of
R0 = 2.2 was given in [8], using stochastic simulations and data from the early
outbreak. A range of 2.0 to 2.6 was used in modelling in [3], with a default setting
of 2.4. An agent-based modelling study, calibrated with similar data, estimated
R0 = 2.27 [2]. Another study found pre-mitigation R0 in Wuhan to be 2.35 [5],
dropping post-intervention to 1.05, which is approximately 45% of 2.35. And an
estimate of R0 = 2.68 in [11], published 4th February, was based on the early spread
within Wuhan and seeding of new outbreaks within China.

Taking these into account, in this study we take R0 = 2.35 as a central parameter
setting (looking at several values to each side), and treat a mitigation scaling effect
of 0.45 to be “strong” (since the Wuhan intervention was very strong), and a scaling
of 0.6 for a moderate mitigation effect.
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Figure 3. Moderate and strong mitigation strategies applied over
the simulation period (left panel) are assumed to begin on March 1
2020, and be fully in effect by March 31st 2020. The demographics
in the Greater Sydney region compared to the overall demographics
in Australia (right panel) [7]. The younger population in Sydney
compared to the rest of Australia contributes to a relatively less severe
outcome of COVID-19.

Age group (yrs) 1 −ma ca fa Demographics

0 to 9 0.001 0.050 0.5 0.129

10 to 19 0.003 0.050 0.5 0.116

20 to 29 0.012 0.050 0.5 0.159

30 to 39 0.032 0.050 0.5 0.159

40 to 49 0.049 0.063 0.5 0.133

50 to 59 0.102 0.122 0.5 0.116

60 to 69 0.166 0.274 0.5 0.091

70 to 79 0.243 0.432 0.5 0.060

80+ 0.273 0.709 0.5 0.037

Table 3. Age-specific severity parameters, from [3], and the popula-
tion distribution in the Sydney region, from the Australian Bureau of
Statistics [7]. Our results were computed using this age distribution
specific to the Greater Sydney region (as at 30 June 2018), rather than
the overall Australian distribution, with the population extrapolated
to its current 5.5 million residents.

A.3. Implementations of the model. The publicly available code released by
the Neher lab was the starting point for our modelling, and we adapted some of the
javascript to produce the outputs required for this study. In parallel, we wrote an
implementation of the model in the statistical package R to give us more flexibility
in extending the model and changing assumptions. The two implementations were
checked for agreement on identical input parameter settings. The R package will be
made available for others to check and adapt for their own use.
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