1

1 Dissecting clinical heterogeneity of bipolar disorder using multiple polygenic

- 2 risk scores
- 3 Brandon J. Coombes, Ph.D.¹; Matej Markota, M.D.²; J. John Mann, M.D.^{3,4}; Colin Colby¹; Eli
- 4 Stahl, Ph.D.^{5,6}; Ardesheer Talati, Ph.D.^{3,7}; Jyotishman Pathak, Ph.D.⁸; Myrna M. Weissman,
- 5 Ph.D.^{3,7,9}; Susan L. McElroy, M.D.¹⁰; Mark A. Frye, M.D.²; Joanna M. Biernacka, Ph.D.^{1,2}
- 6
- ¹Department of Health Sciences Research, Mayo Clinic, Rochester, MN
- 8 ²Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN
- ⁹ ³Department of Psychiatry, Columbia University Vagelos College of Physicians & Surgeons,
- 10 New York, NY
- ⁴Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute,
- 12 New York, NY
- ¹³ ⁵Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai,
- 14 New York, NY
- 15 ⁶Medical and Population Genomics, Broad Institute, Cambridge, MA
- ⁷Divisions of Translational Epidemiology, New York State Psychiatric Institute, New York,
 NY
- ⁸Department of Healthcare Policy & Research, Weill Medical College, Cornell University,
 New York, NY
- ⁹Department of Epidemiology, Mailman School of Public Health, Columbia University, New
 York, NY
- 22 ¹⁰Lindner Center of HOPE/University of Cincinnati, Cincinnati, OH
- 23

24 **Running title:** Dissecting clinical heterogeneity of BD using PRSs

- 25
- 26 Corresponding Author: Brandon J. Coombes
- Address: Mayo Clinic, Harwick Building 7-23. 200 First St. SW, Rochester, MN 55905
- 28 Phone: (507) 293-0051
- 29 Fax: (507) 284-9542
- 30 Email: <u>coombes.brandon@mayo.edu</u>
- 31
- 32 Word Count: 3286/3500

2

33 Abstract (273 words)

- 34 Bipolar disorder (BD) has high clinical heterogeneity, frequent psychiatric comorbidities,
- 35 and elevated suicide risk. To determine genetic differences between common clinical sub-
- 36 phenotypes of BD, we performed a systematic PRS analysis using multiple polygenic risk
- 37 scores (PRSs) from a range of psychiatric, personality, and lifestyle traits to dissect
- 38 differences in BD sub-phenotypes in two BD cohorts: the Mayo Clinic BD Biobank (N = 968)
- and Genetic Association Information Network (N = 1001). Participants were assessed for
- 40 history of psychosis, early-onset BD, rapid cycling (defined as four or more episodes in a
- 41 year), and suicide attempts using questionnaires and the Structured Clinical Interview for
- 42 DSM-IV. In a combined sample of 1969 bipolar cases (45.5% male), those with psychosis
- 43 had higher PRS for SCZ (OR = 1.3 per S.D.; p = 3e-5) but lower PRSs for anhedonia (OR =
- 0.87; p = 0.003) and BMI (OR = 0.87; p = 0.003). Rapid cycling cases had higher PRS for
- 45 ADHD (OR = 1.23; p = 7e-5) and MDD (OR = 1.23; p = 4e-5) and lower BD PRS (OR = 0.8; p =
- 46 0.004). Cases with a suicide attempt had higher PRS for MDD (OR = 1.26; p = 1e-6) and
- 47 anhedonia (OR = 1.22; p = 2e-5) as well as lower PRS for educational attainment (OR =
- 48 0.87; p = 0.003). The observed novel PRS associations with sub-phenotypes align with
- 49 clinical observations such as rapid cycling BD patients having a greater lifetime prevalence
- 50 of ADHD. Our findings confirm that genetic heterogeneity underlies the clinical
- 51 heterogeneity of BD and consideration of genetic contribution to psychopathologic
- 52 components of psychiatric disorders may improve genetic prediction of complex
- 53 psychiatric disorders.
- 54

3

55 Introduction

56 Many psychiatric disorders have moderate to high heritability; however, the genetics of 57 psychiatric disorders are complex and highly polygenic, with each risk variant only 58 conferring a small effect[1]. Psychiatric disorders also have a high level of overlapping 59 clinical heterogeneity, with shared genetic risk explaining some of the clinical overlap, and 60 certain combinations of alleles may contribute to the same psychopathological symptoms 61 in multiple psychiatric disorders. Furthermore, some psychiatric disorders may lie on a 62 continuum rather than being disorders with distinct genetics and biological mechanisms[2, 63 3]. 64 To accommodate this genetic complexity, investigations of psychiatric disorders have 65 increasingly relied on polygenic risk scores (PRSs), leveraging knowledge from prior large 66 genome-wide association studies (GWASs) to predict genetic risk of particular disorders in 67 a new sample [4]. When the PRS for one disorder is predictive of a second disorder, this 68 indicates a common polygenic contribution to the two disorders[5]. 69 Bipolar disorder (BD) is a complex illness with heterogeneous clinical presentation, and 70 apparent sub-phenotypes often have a different course of illness, prognosis, and treatment 71 response[6–9]. In order to personalize treatment, it is crucial to better understand biological underpinnings of BD clinical sub-phenotypes. One approach is to examine 72 73 potential relationships of clinical phenotypes to different genetic profiles. 74 Historically, the relationship between schizophrenia (SCZ) and BD has shaped classification 75 systems in psychiatry[10]. The corresponding link between phenotype and genetics was 76 recently established with the demonstration that BD patients with a history of psychosis, 77 particularly mood incongruent psychosis and psychosis during mania, have increased

78	genetic risk for SCZ[11–16]. However, it is well recognized that BD genetically overlaps–
79	and has high clinical comorbidity with–other major psychiatric conditions, including major
80	depressive disorder (MDD), attention deficit and hyperactivity disorder (ADHD), anxiety
81	disorders, post-traumatic stress disorder (PTSD), obsessive compulsive disorder (OCD),
82	borderline personality disorder and substance use disorders[17–24]. While significant
83	advances have been made in understanding the genetic relationship between BD psychotic
84	sub-phenotypes and SCZ[11–16], little is known about how genetic risks for other
85	psychiatric disorders as well as important personality and lifestyle traits such as body mass
86	index (BMI), risk-taking, and neuroticism relates to psychosis or other BD clinical sub-
87	phenotypes.
88	The goal of this study was to systematically test if PRSs for major psychiatric conditions
89	and other traits related to BD are predictors of distinct BD sub-phenotypes, in particular
90	with regards to psychosis, age-of-onset, rapid cycling and suicidal behavior. Understanding
91	the shared genetic risk factors between BD clinical sub-phenotypes and other comorbid
92	conditions may contribute to psychiatric clinical classification systems with a more
93	biologically-informed nosological system[25].
94	
95	Methods and Materials
96	1. Ethics Statement
97	Data were collected according to Declaration of Helsinki principles. Mayo Clinic
98	Bipolar Disorder Biobank participants' consent forms and protocols were reviewed
99	and approved by the Mayo Clinic Institutional Review Board (IRB # 08-008794 00).
100	Opt-in written informed consent was obtained.

101			
102	2.	Studie	25
103		а.	Mayo Clinic Bipolar Disorder Biobank
104			The Mayo Clinic Bipolar Disorder Biobank collection has been described in
105			previous papers[9, 11, 26]. We restricted our analyses to cases with
106			European ancestry (N = 968), because PRSs derived from GWASs of
107			participants with European ancestry perform much worse in non-European
108			ancestries[27]. Sub-phenotypes were determined using the Structured
109			Clinical Interview for DSM-IV (SCID)[28] as well as a patient questionnaire.
110			Detailed information on the assessment of each sub-phenotype can be found
111			in Supplementary Table 1.
112		b.	Genetic Association Information Network (GAIN)
113			The Bipolar Disorder Genome Study Consortium conducted a genome-wide
114			association study (GWAS) of BD as part of the Genetic Association
115			Information Network (GAIN)[29]. We obtained the data from dbGaP
116			(phs000017.v3.p1), and restricted our analyses to cases with European
117			ancestry (N = 1001). All cases met criteria for DSM IV-defined bipolar I
118			disorder (BD-I). Subjects recruited at different times were interviewed
119			with the Diagnostic Interview for Genetic Studies 2, 3, or 4 (DIGS 2, 3, 4).
120			Detailed information on the assessment of each sub-phenotype can be found
121			in Supplementary Table 1.
122	3.	Genot	yping and Quality Control
123		а.	Mayo Clinic Bipolar Biobank

124			Genotyping and genetic data quality control of this sample was previously
125			described as part of a larger case-control study[11]. Briefly, the Illumina
126			HumanOmniExpress platform was used to genotype 1046 BD cases. For
127			quality control purposes, we excluded subjects with <98% call rate and
128			related subjects. SNPs with call rate <98%, MAF <0.01, and those not in
129			Hardy-Weinberg Equilibrium (HWE; P<1e-06) were removed. After these
130			steps 643 011 SNPs and 968 subjects remained.
131		b.	GAIN
132			Genotyping and quality control procedures for the GAIN-BD data were
133			previously described by Smith et al.[30], Briefly, the Affymetrix Genome-
134			Wide Human SNP Array 6.0 platform was used to genotype cases and after
135			excluding SNPs with call rate <98%, MAF <0.01, and those not in HWE, 726 $$
136			315 SNPs and 1001 subjects of European ancestry remained.
137		C.	Imputation
138			Genotypes in both the GAIN and Mayo samples were imputed to the 1000
139			genomes reference panel, as previously described for the GAIN sample[9].
140			Specifically, SHAPEIT[31] was used for haplotype phasing and imputation
141			was performed using IMPUTE2.2.2[32] with the 1000 genome project
142			reference data (phase 1 data, all populations). Dosage data was converted to
143			best guess genotype for the well-imputed (dosage $R^2 > 0.8$) and common
144			(MAF >0.01) SNPs, resulting in more than 5 million SNPs in both datasets.
145	4.	Polyg	genic Risk Scores (PRSs)

146	PRSs were included in the analysis if: 1) there was evidence of significant genetic
147	correlation of the trait with BD and 2) we had at least 80% power to detect PRS
148	association in a general case-only analysis of our data assuming 50% prevalence of
149	the subphenotype. We began by considering PRSs for major psychiatric disorders
150	(BD[33], SCZ[34], MDD[35], ADHD[36], anxiety[37], PTSD[19], OCD[38], anorexia
151	nervosa (AN)[39], alcohol use disorder (AUD)[40], and insomnia[41]) and
152	personality and lifestyle traits related to BD (alcohol consumption[40], educational
153	attainment (EA)[42], risk-taking[43], subjective well-being (SWB)[44],
154	neuroticism[45], anhedonia[46], and body mass index (BMI)[47]). GWAS summary
155	statistics were restricted to well-imputed variants (INFO >0.9) when information on
156	imputation quality was available.
157	Using LD score regression[48], we estimated the genetic correlation of the above
158	traits with BD[33] (Supplementary Table 2). Insomnia and alcohol consumption
159	didn't have significant genetic correlation with BD and were therefore excluded
160	from further analysis.
161	Using the R package avengeme[49], we estimated that training sample sizes of
162	20,000 would achieve at least 80% power in our analysis assuming moderate
163	overlap of the trait with the sub-phenotype (genetic covariance = 0.1), high
164	polygenicity (# of independent SNPs = 20,000), and 0.005 α -level to account for
165	multiple testing. The study of OCD included an effective sample size of less than
166	4000 and was thus excluded from further analysis. The final list of PRSs that were
167	tested for association with BD sub-phenotypes is shown in Supplementary Table 2.

168		For traits that satisfied our inclusion criteria, the PRS-CS[50] auto setting was
169		applied to estimate SNP weights using a fully Bayesian shrinkage approach that
170		shrinks SNP effects with a continuous shrinkage prior. This setting allows the
171		algorithm to learn the global shrinkage parameter from the data to create one set of
172		weights per PRS and therefore does not require a validation dataset. This setting
173		also reduces the multiple testing of standard PRS analyses that search over many p-
174		value thresholds[51]. PLINK version 1.9[52] was used to create PRSs using the
175		shrunken SNP weights. The PRSs were then standardized to have a mean of zero
176		and standard deviation (SD) of one.
177	5.	Statistical Analyses
178		In each dataset, we performed principal components (PCs) analysis of the
179		genotyped SNPs and kept the first four PCs to be used as within-study nested
180		covariates in subsequent PRS association analyses. In all models, study indicator
181		and an interaction of study and within-study PCs were included as covariates to
182		control for population stratification. All twelve PRSs were individually modeled
183		using a multivariate logistic regression model with each sub-phenotype (psychosis,
184		early-onset BD, rapid cycling, and attempted suicide) as the outcome.
185		We used 10,000 permutations to find the significance threshold to control the false
186		positive rate testing for association with each sub-phenotype with fourteen PRSs ($\boldsymbol{\alpha}$
187		= 0.005) as well as the family-wise error rate (α = 0.001). For each sub-phenotype,
188		we also included all significant PRSs (p < 0.005) in a joint model, to estimate the
189		relative contribution of the PRSs after adjusting for other important PRSs. We
190		report the variance explained in the sub-phenotype by each PRS after adjustment

. . . .

.

D2.

9

194	Results
193	
192	performed in R 3.5.2.
191	for other PRSs using Nagelkerke's pseudo-R ² statistic. All statistical analyses were

195 Sample Description

404

DD0

196 Table 1 summarizes the demographic and sub-phenotype information of each study. There

- 197 was a difference in the sex distribution between the two samples. The GAIN study only
- 198 included BD type I cases, and the distributions were also significantly different for all sub-
- 199 phenotypes besides attempted suicide. GAIN BD cases had a higher rate of psychosis and
- 200 early-onset BD, while Mayo cases had higher rates of rapid cycling, which is more prevalent

201 in women[53].

Figure 1 shows a forest plot of the significant PRS associations with each sub-phenotype

203 further broken down by study. Further detailed results for each sub-phenotype can be

found in Supplementary Tables 3-6.

205 Psychosis

- 206 Cases with psychosis versus no psychosis had higher PRSs for SCZ (OR = 1.3, 95% CI 1.15 to
- 207 1.48; p-value = 3.5e-5), but lower PRSs for anhedonia (OR = 0.87, 95% CI 0.79 to 0.95; p-
- 208 value = 0.003), and BMI (OR = 0.87, 95% CI 0.79 to 0.95; p-value = 0.004). These three
- 209 PRSs explained 2.6% of the variation in psychosis in the joint model. While anhedonia is a
- component of MDD and the two PRSs are positively correlated (r = 0.41), the PRS for MDD
- 211 was not associated with psychosis in BD (OR = 0.96, 95% CI 0.87 to 1.06; p-value = 0.45).

212 Early-onset BD

- 213 Higher PRSs for risk-taking (OR = 1.21, 95% CI 1.09 to 1.35; p-value = 0.0005; adj.
- 214 Nagelkerke's R² = 0.8%) and anhedonia (OR = 1.16, 95% CI 1.05 to 1.29; p-value = 0.0047;
- adj. Nagelkerke's R² = 0.8%) were observed in cases with early-onset BD compared to cases
- that developed BD after age 18.
- 217 Rapid Cycling
- 218 Cases with rapid cycling versus those without rapid cycling had higher ADHD PRS (OR =
- 219 1.23, 95% CI 1.11 to 1.36; p-value = 7e-5; adj. Nagelkerke's R² = 0.8%), MDD PRS (OR =
- 220 1.23, 95% CI 1.11 to 1.36; p-value = 4e-5; adj. Nagelkerke's R² = 0.5%), PTSD PRS (OR =
- 221 1.28, 95% CI 1.14 to 1.44; p-value = 4e-5; adj. Nagelkerke's $R^2 = 0.7\%$), and PRS for anxiety
- 222 (OR = 1.19,95% CI 1.07 to 1.33; p-value = 0.001; adj. Nagelkerke's R² = 0.1%). Cases with
- rapid cycling also had lower BD PRSs (OR = 0.80, 95% CI 0.68 to 0.93; p-value = 0.004; adj.
- Nagelkerke's $R^2 = 0.9\%$). The five PRSs explained 3.9% of the variation in rapid cycling
- when included in one model.

226 Attempted suicide

- The genetic risk for MDD (OR = 1.26, 95% CI 1.15 to 1.39; p-value = 1e-6; adj. Nagelkerke's
- 228 $R^2 = 0.7\%$) and anhedonia (OR = 1.22, 95% CI 1.12 to 1.34; p-value = 2e-5; adj. Nagelkerke's
- $R^2 = 0.3\%$) was higher in cases with at least one suicide attempt versus those with none.
- 230 Cases with an attempted suicide also had a lower PRS for educational attainment (OR =
- 231 0.87, 95% CI 0.79 to 0.96; p-value = 0.0036; adj. Nagelkerke's R^2 = 0.2%). The three PRSs
- explained a total of 2.3% of the variation when included in one model, but only the MDD
- 233 PRS remained significant after accounting for the other PRS associations.
- 234
- 235 **Discussion**

11

236 To our knowledge, this is the first PRS dissection of clinical sub-phenotypes in BD that is 237 comprehensive with respect to the range of psychiatric, personality, and lifestyle 238 phenotypes for which genetic liabilities were estimated and used to predict the BD sub-239 phenotypes. Previous analyses of BD sub-phenotypes of psychosis, early onset BD and 240 suicide focused on genetic liability to the major psychiatric diagnoses of BD, SCZ, and 241 MDD[6, 11, 12, 16, 54]. Here, we took an expanded agnostic approach to PRS analysis by using many different PRSs beyond just these three to more systematically test for PRS 242 243 association with clinically important sub-phenotypes of BD, including rapid cycling. 244 Importantly, the contribution of each PRS to a sub-phenotype was assessed after adjusting 245 for the other PRSs' contributions, thereby assessing how predictive a genetic risk is above 246 and beyond other genetic risks. The forest plots in Figure 1 show that our results were 247 highly comparable in the two cohorts, lending greater confidence to the conclusions. 248 Overall, we find that the different BD clinical sub-phenotypes have different profiles of PRS 249 associations with major psychiatric conditions.

250 **BD with psychosis**

251 Previously, using the Mayo Clinic sample, we showed that BD patients with a history of 252 psychosis during mania had higher genetic risk for SCZ [11]. Here, this finding is replicated 253 in the GAIN cohort. This finding was also reported by Ruderfer *et al.*[16], in a larger study 254 that included both the Mayo and GAIN BD cohorts. However, in addition to this 255 relationship, in the present study we also found that BD cases that have not experienced 256 psychotic symptoms had higher genetic scores for anhedonia and BMI. Association of 257 higher genetic risk for anhedonia with a subtype of BD without psychotic features implies 258 that a patient with more genetic predisposition for anhedonia during major depressive

12

259	episodes is less likely to include episodes with psychotic features. In fact, rates of psychotic
260	features are higher in BD compared with MDD and familial studies show a greater
261	heritability of psychotic features in BD relative to in other mood disorders[55].
262	Interestingly, we did not observe a significant association with MDD PRS despite a strong
263	genetic correlation between anhedonia and MDD. This may underscore the importance of
264	relying on core symptoms in these analyses, instead of using more complex and syndromal
265	entities like MDD. The relationship between BMI and psychosis is complex and influenced
266	by heritable, environmental, and iatrogenic factors. Over the course of illness, most
267	patients with BD and psychosis gain weight, which contributes to morbidity and
268	mortality[56, 57]. Our finding that BD patients with psychosis have lower genetic
269	predisposition to elevated BMI than BD patients without psychosis suggest that weight gain
270	in those with psychosis likely occurs primarily as a side effect of medications. However, the
271	complex relationship between BD and greater body weight needs to be further explored in
272	the context of sub-phenotypes and use of atypical antispychotics or lithium.
273	Early-onset BD

274 We found evidence that higher genetic liability for risk-taking behavior was associated with 275 early-onset BD, but no evidence that genetic risk for SCZ or BD were associated with age of 276 onset of illness. A previous study of polygenic associations with age-of-onset of BD also 277 showed no association of SCZ or BD genetic risk with both a dichotomous sub-phenotype, 278 as defined in our study, or continuous age-of-onset[58]. Risk-taking is a hallmark feature of 279 normative adolescence, but is also commonly seen in mania. There are several possible 280 explanations for the risk-taking PRS and early-onset BD association found in this study. 281 Perhaps the simplest explanation is that youth with particularly high propensity for risk-

13

282 taking behaviors come to clinical attention earlier and subsequently have BD identified at 283 an earlier age. However, there are several potential limitations that may have affected 284 these findings. Due to the way the data were collected, for this study, age of onset was dichotomized based on a cutoff age of 18, which may have reduced power. Also, our early-285 286 onset BD definition did not differentiate between age of first manic and first depressive 287 episodes. Furthermore, given the high genetic and clinical overlap between BD and other 288 conditions investigated here (e.g. ADHD), a study of age-of-onset of any psychiatric 289 disorder/symptom rather than just BD could be informative. It is of note that earlier onset 290 MDD is associated with more pronounced aggressive/impulsive traits[59]. Nevertheless, 291 the observed association of risk-taking PRS with early vs. late onset BD is intriguing and 292 warrants further investigation.

293 **BD** with rapid cycling

294 Previous clinical studies have shown a strikingly higher clinical comorbidity rate of ADHD 295 in BD patients with rapid cycling compared to non-rapid cycling BD patients[60]. While the 296 general genetic association between ADHD and BD has been described before [17], our 297 results are the first study to show possible genetic underpinnings for this specific rapid 298 cycling BD and ADHD association. We also found a strong association of MDD genetic risk 299 with rapid cycling. This implies that genetic variation related to ADHD and MDD may also 300 be related to episode frequency in BD, and that comorbid ADHD and more depressive 301 episodes would be clinically associated with the rapid cycling form of BD, though the 302 predominant directionality of mood episodes was not discernible from the available data. 303 Rapid cycling BD has been reported to have more episodes of major depression and a 304 higher rate of parental MDD compared with non-rapid cycling BD[61], which is consistent

14

305 with our PRS association findings. Finally, rapid cycling cases had lower BD PRS as 306 reported in a previous investigation [15]. This could simply reflect that prevalence of rapid 307 cycling in cases ascertained for the sample used in the GWAS of BD by the Psychiatric 308 Genomics Consortium (PGC) was lower than in the two samples included here, but still 309 demonstrates a systematic difference in genetics of rapid cycling and non-rapid cycling BD. 310 BD with a history of a suicide attempt 311 Our finding of increased MDD genetic load in BD patients with a history of suicide attempts 312 is consistent with a recent study that included both of the Mayo and GAIN data, which 313 showed that genetic risk factors for MDD increase the risk for suicide trans-314 diagnostically[54]. BD with a history of suicide attempt having a higher MDD genetic 315 liability is consistent with the clinical observation that suicide attempts are most common

316 during major depressive episodes or mixed states and rare during manic episodes or while

euthymic[62, 63]. Interestingly, even after adjusting for MDD PRS, we also found that

318 genetic liability for anhedonia is marginally associated with suicide, suggesting that

anhedonia may be a particularly relevant factor contributing to suicidality, compared to

320 other components that comprise the MDD syndrome. This is consistent with findings from

321 non-genetic studies, which found that association of anhedonia with suicidality is

independent of the association with depression and psychotic features[64].

323 Methodological limitations

PRSs used in this study are based on data from previously published large scale
investigations and are limited by the diagnostic accuracy, recruitment criteria, and
methodology of previous studies. The most recent PGC study of BD[33] included the cases
and controls from the GAIN and Mayo samples, and most PGC studies of other disorders

15

328 used controls from the GAIN study. Sample overlap of testing datasets with training data 329 can create substantial biases in PRS analyses. However, here we studied genetic 330 differences within cases and thus, the sample overlap is not expected to bias our results, 331 because there is no correlation between case-control status used to build the training 332 models and the within-case sub-phenotypes. Another limitation in this study is the lack of 333 data on the number, duration and severity of major depressive and manic episodes to more 334 precisely map the clinical picture onto the PRS profile. Finally, it is important to note that 335 no PRS explained a large amount of variation in our analysis. Thus, while the associations 336 identified in this study provide evidence of genetic differences that may underlie clinical 337 subtypes of BD, these PRSs cannot yet be used for purposes of personalized psychiatry. 338 339 Conclusion 340 Our findings contribute to the understanding of the underlying genetic causes of clinical 341 heterogeneity of BD and of comorbidity between BD and other major psychiatric 342 conditions. We find evidence that psychopathologic components of BD, including psychotic 343 symptoms, rapid cycling and suicidal behavior are linked to the PRSs for related disorders 344 including schizophrenia, ADHD and MDD, respectively. Finally, larger studies are needed to 345 more precisely map genetic risk factors to clinical sub-phenotypes. Harmonization of sub-346 phenotypes across studies is a well-recognized challenge. Nevertheless, such efforts are 347 critical in helping to classify psychiatric disorders more accurately and identify risk of 348 suicide, psychosis, and other adverse outcomes in patients. 349 Supplementary information is available at MP's website.

351	Acknowledgments
352	This work was supported by the Marriott Foundation and the Thomas and Elizabeth
353	Grainger Fund in Bipolar Functional Genomics and Drug Development awarded to the
354	Mayo Clinic. Establishment of the Bipolar Disorder Biobank was supported by a generous
355	gift from the Marriot Family and the Mayo Clinic Center for Individualized Medicine. The
356	contributions from authors JJM, AT, and MMW was supported by NIMH R0MH121921
357	(Wickramaratne and Mann, M.P.I.s).
358	
359	Conflicts of Interest
360	Dr Frye has received grant support from Assurex Health, Myriad, Pfizer, National Institute
361	of Mental Health (R01 MH079261), National Institute of Alcohol Abuse and Alcoholism
362	(P20AA017830), Mayo Foundation; has been a consultant to Janssen Global Services, LLC,
363	Mitsubishi Tanabe Pharma Corporation, Myriad, Sunovion, and Teva Pharmaceuticals; has
364	received CME/Travel Support/presentation from CME Outfitters Inc. and Sunovian; Mayo
365	Clinic has a financial interest in AssureRx and OneOme. Dr. McElroy is a consultant to or
366	member of the scientific advisory boards of Bracket, MedAvante, Naurex, Shire, and
367	Sunovion. She is a principal or co-investigator on studies sponsored by the Agency for
368	Healthcare Research & Quality (AHRQ), AstraZeneca, Cephalon, Forest, Marriott
369	Foundation, National Institute of Mental Health, Orexigen Therapeutics, Inc., Shire, and
370	Takeda Pharmaceutical Company Ltd. She is also an inventor on United States Patent No.
371	6,323,236 B2, Use of Sulfamate Derivatives for Treating Impulse Control Disorders, and
372	along with the patent's assignee, University of Cincinnati, Cincinnati, Ohio, has received
373	payments from Johnson & Johnson, which has exclusive rights under the patent. In the last

374	three	e years, Dr Weissman has received research funds from NIMH, Templeton Foundation,		
375	Brair	Brain and Behavior and the Sackler Foundation and has received royalties for publications		
376	of bo	of books on interpersonal psychotherapy from Perseus Press, Oxford University Press, on		
377	othei	r topics from the American Psychiatric Association Press and royalties on the social		
378	adjus	stment scale from Multihealth Systems. None of these represent a conflict of interest.		
379	Refe	rences		
380	1.	Smoller JW, Andreassen OA, Edenberg HJ, Faraone S V, Glatt SJ, Kendler KS.		
381		Psychiatric genetics and the structure of psychopathology. Mol Psychiatry.		
382		2019;24:409-420.		
383	2.	Owen MJ, O'Donovan MC. Schizophrenia and the neurodevelopmental		
384		continuum:evidence from genomics. World Psychiatry. 2017;16:227–235.		
385	3.	Tesli M, Espeseth T, Bettella F, Mattingsdal M, Aas M, Melle I, et al. Polygenic risk		
386		score and the psychosis continuum model. Acta Psychiatr Scand. 2014;130:311–317		
387	4.	Martin AR, Daly MJ, Robinson EB, Hyman SE, Neale BM. Predicting Polygenic Risk of		
388		Psychiatric Disorders. Biol Psychiatry. 2019;86:97–109.		
389	5.	Torkamani A, Wineinger NE, Topol EJ. The personal and clinical utility of polygenic		
390		risk scores. Nat Rev Genet. 2018;19:581–590.		
391	6.	Charney AW, Ruderfer DM, Stahl EA, Moran JL, Chambert K, Belliveau RA, et al.		
392		Evidence for genetic heterogeneity between clinical subtypes of bipolar disorder.		
393		Transl Psychiatry. 2017;7.		
394	7.	Alda M. The phenotypic spectra of bipolar disorder. Eur Neuropsychopharmacol.		
395		2004;14 Suppl 2:S94-9.		

- 396 8. Alda M, Hajek T, Calkin C, O'Donovan C. Treatment of bipolar disorder: new
- 397 perspectives. Ann Med. 2009;41:186–196.
- 398 9. Winham SJ, Cuellar-Barboza AB, McElroy SL, Oliveros A, Crow S, Colby CL, et al.
- 399 Bipolar disorder with comorbid binge eating history: A genome-wide association
- 400 study implicates APOB. J Affect Disord. 2014;165:151–158.
- 401 10. Kraepelin E. Manic-depressive insanity and paranoia: classics in psychiatry. Salem
- 402 (NH): Ayer Company Publishers; 1921.
- 403 11. Markota M, Coombes BJ, Larrabee BR, McElroy SL, Bond DJ, Veldic M, et al.
- 404 Association of schizophrenia polygenic risk score with manic and depressive
- 405 psychosis in bipolar disorder. Transl Psychiatry. 2018;8:188.
- 406 12. Ruderfer DM, Fanous AH, Ripke S, McQuillin A, Amdur RL, Gejman P V., et al.
- 407 Polygenic dissection of diagnosis and clinical dimensions of bipolar disorder and
- 408 schizophrenia. Mol Psychiatry. 2014;19:1017–1024.
- 409 13. Hamshere ML, O'Donovan MC, Jones IR, Jones L, Kirov G, Green EK, et al. Polygenic
- 410 dissection of the bipolar phenotype. Br J Psychiatry. 2011;198:284–288.
- 411 14. Allardyce J, Leonenko G, Hamshere M, Pardiñas AF, Forty L, Knott S, et al. Association
- 412 Between Schizophrenia-Related Polygenic Liability and the Occurrence and Level of
- 413 Mood-Incongruent Psychotic Symptoms in Bipolar Disorder. JAMA Psychiatry.
- 414 2018;75:28–35.
- 415 15. Ruderfer DM, Ripke S, McQuillin A, Boocock J, Stahl EA, Pavlides JMW, et al. Genomic
- Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. Cell.
- 417 2018;173:1705-1715.e16.
- 418 16. Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics

419		Consortium. Electronic address: douglas.ruderfer@vanderbilt.edu, Bipolar Disorder
420		and Schizophrenia Working Group of the Psychiatric Genomics Consortium. Genomic
421		Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. Cell.
422		2018;173:1705-1715.e16.
423	17.	van Hulzen KJE, Scholz CJ, Franke B, Ripke S, Klein M, McQuillin A, et al. Genetic
424		Overlap Between Attention-Deficit/Hyperactivity Disorder and Bipolar Disorder:
425		Evidence From Genome-wide Association Study Meta-analysis. Biol Psychiatry.
426		2017;82:634–641.
427	18.	Wozniak J, Biederman J, Monuteaux MC, Richards J, Faraone S V. Parsing the
428		comorbidity between bipolar disorder and anxiety disorders: a familial risk analysis.
429		J Child Adolesc Psychopharmacol. 2002;12:101–111.
430	19.	Duncan LE, Ratanatharathorn A, Aiello AE, Almli LM, Amstadter AB, Ashley-Koch AE,
431		et al. Largest GWAS of PTSD (N=20 070) yields genetic overlap with schizophrenia
432		and sex differences in heritability. Mol Psychiatry. 2018;23:666–673.
433	20.	Yilmaz Z, Halvorsen M, Bryois J, Yu D, Thornton LM, Zerwas S, et al. Examination of
434		the shared genetic basis of anorexia nervosa and obsessive-compulsive disorder. Mol
435		Psychiatry. 2018. 7 August 2018. https://doi.org/10.1038/s41380-018-0115-4.
436	21.	Witt SH, Streit F, Jungkunz M, Frank J, Awasthi S, Reinbold CS, et al. Genome-wide
437		association study of borderline personality disorder reveals genetic overlap with
438		bipolar disorder, major depression and schizophrenia. Transl Psychiatry.
439		2017;7:e1155.
440	22.	Schulze TG, Akula N, Breuer R, Steele J, Nalls MA, Singleton AB, et al. Molecular
441		genetic overlap in bipolar disorder, schizophrenia, and major depressive disorder.

- 442 World J Biol Psychiatry. 2014;15:200–208.
- 443 23. Chen Q, Hartman CA, Haavik J, Harro J, Klungsøyr K, Hegvik TA, et al. Common
- 444 psychiatric and metabolic comorbidity of adult attention-deficit/hyperactivity
- disorder: A population-based cross-sectional study. PLoS One. 2018;13.
- 446 24. McKowen JW, Frye MA, Altshuler LL, Gitlin MJ. Patterns of alcohol consumption in
- 447 bipolar patients comorbid for alcohol abuse or dependence. Bipolar Disord.
- 448 2005;7:377-381.
- 449 25. Salagre E, Dodd S, Aedo A, Rosa A, Amoretti S, Pinzon J, et al. Toward Precision
- 450 Psychiatry in Bipolar Disorder: Staging 2.0. Front Psychiatry. 2018;9.
- 451 26. Frye MA, McElroy SL, Fuentes M, Sutor B, Schak KM, Galardy CW, et al. Development
- 452 of a bipolar disorder biobank: differential phenotyping for subsequent biomarker
 453 analyses. Int J Bipolar Disord. 2015;3:14.
- 454 27. Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use of current
 455 polygenic risk scores may exacerbate health disparities. Nat Genet. 2019;51:584–
 456 591.
- 457 28. Association AP, others. Diagnostic and statistical manual of mental disorders (DSM458 5®). American Psychiatric Pub; 2013.
- 459 29. GAIN Collaborative Research Group, Manolio TA, Rodriguez LL, Brooks L, Abecasis G,
- 460 Collaborative Association Study of Psoriasis, et al. New models of collaboration in
- 461 genome-wide association studies: the Genetic Association Information Network. Nat
 462 Genet. 2007;39:1045–1051.
- 463 30. Smith EN, Bloss CS, Badner JA, Barrett T, Belmonte PL, Berrettini W, et al. Genome-
- 464 wide association study of bipolar disorder in European American and African

465	American individuals. Mol Psychiatry. 2009;14:755–763.
-----	--

- 466 31. Delaneau O, Marchini J, Zagury J-F. A linear complexity phasing method for
- thousands of genomes. Nat Methods. 2011;9:179–181.
- 468 32. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate
- 469 genotype imputation in genome-wide association studies through pre-phasing. Nat
- 470 Genet. 2012;44:955.
- 471 33. Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, et al. Genome-
- 472 wide association study identifies 30 loci associated with bipolar disorder. Nat Genet.
- 473 2019;51:793-803.
- 474 34. Consortium SWG of the PG, Ripke S, Neale BM, Corvin A, Walters JTR, Farh K-H, et al.
- 475 Biological insights from 108 schizophrenia-associated genetic loci. Nature.
- 476 2014;511:421-427.
- 477 35. Howard DM, Adams MJ, Clarke TK, Hafferty JD, Gibson J, Shirali M, et al. Genome-wide
- 478 meta-analysis of depression identifies 102 independent variants and highlights the
- importance of the prefrontal brain regions. Nat Neurosci. 2019;22:343–352.
- 480 36. Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, et al. Discovery of
- 481 the first genome-wide significant risk loci for attention deficit/hyperactivity
- 482 disorder. Nat Genet. 2019;51:63–75.
- 483 37. Purves KL, Coleman JRI, Meier SM, Rayner C, Davis KAS, Cheesman R, et al. A major
- role for common genetic variation in anxiety disorders. Mol Psychiatry. 2019. 20
- 485 November 2019. https://doi.org/10.1038/s41380-019-0559-1.
- 486 38. International Obsessive Compulsive Disorder Foundation Genetics Collaborative
- 487 (IOCDF-GC) and OCD Collaborative Genetics Association Studies (OCGAS). Revealing

- 488 the complex genetic architecture of obsessive-compulsive disorder using meta-
- 489 analysis. Mol Psychiatry. 2018;23:1181–1188.
- 490 39. Watson HJ, Yilmaz Z, Thornton LM, Hübel C, Coleman JRI, Gaspar HA, et al. Genome-
- 491 wide association study identifies eight risk loci and implicates metabo-psychiatric
- 492 origins for anorexia nervosa. Nat Genet. 2019;51:1207–1214.
- 493 40. Kranzler HR, Zhou H, Kember RL, Vickers Smith R, Justice AC, Damrauer S, et al.
- 494 Genome-wide association study of alcohol consumption and use disorder in 274,424
- 495 individuals from multiple populations. Nat Commun. 2019;10:1–11.
- 496 41. Lane JM, Jones SE, Dashti HS, Wood AR, Aragam KG, van Hees VT, et al. Biological and

497 clinical insights from genetics of insomnia symptoms. Nat Genet. 2019.

498 42. Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M, et al. Gene discovery and

499 polygenic prediction from a genome-wide association study of educational

500 attainment in 1.1 million individuals. Nat Genet. 2018;50:1112–1121.

501 43. Strawbridge RJ, Ward J, Cullen B, Tunbridge EM, Hartz S, Bierut L, et al. Genome-wide

502 analysis of self-reported risk-taking behaviour and cross-disorder genetic

503 correlations in the UK Biobank cohort. Transl Psychiatry. 2018;8.

504 44. Okbay A, Baselmans BML, De Neve JE, Turley P, Nivard MG, Fontana MA, et al. Genetic

505 variants associated with subjective well-being, depressive symptoms, and

neuroticism identified through genome-wide analyses. Nat Genet. 2016;48:624–633.

- 507 45. Nagel M, Jansen PR, Stringer S, Watanabe K, De Leeuw CA, Bryois J, et al. Meta-
- analysis of genome-wide association studies for neuroticism in 449,484 individuals
- identifies novel genetic loci and pathways. Nat Genet. 2018;50:920–927.
- 510 46. Ward J, Lyall LM, Bethlehem RAI, Ferguson A, Strawbridge RJ, Lyall DM, et al. Novel

511		genome-wide associations for anhedonia, genetic correlation with psychiatric
512		disorders, and polygenic association with brain structure. Transl Psychiatry.
513		2019;9:1–9.
514	47.	UK Biobank — Neale lab. http://www.nealelab.is/uk-biobank. Accessed 24 February
515		2020.
516	48.	Bulik-Sullivan B, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N, et al. LD score
517		regression distinguishes confounding from polygenicity in genome-wide association
518		studies. Nat Genet. 2015;47:291–295.
519	49.	Dudbridge F, Cole CB, Palla L. avengeme: Analysis 1.0., of polygenic scoring methods.
520		R package version. 2019.
521	50.	Ge T, Chen CY, Ni Y, Feng YCA, Smoller JW. Polygenic prediction via Bayesian
522		regression and continuous shrinkage priors. Nat Commun. 2019;10.
523	51.	Choi SW, O'Reilly PF. PRSice-2: Polygenic Risk Score software for biobank-scale data.
524		Gigascience. 2019;8.
525	52.	Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation
526		PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.
527	53.	Kupka RW, Luckenbaugh DA, Post RM, Leverich GS, Nolen WA. Rapid and non-rapid
528		cycling bipolar disorder: A meta-analysis of clinical studies. J Clin Psychiatry.
529		2003;64:1483-1494.
530	54.	Mullins N, Bigdeli TB, Børglum AD, Coleman JRI, Demontis D, Mehta D, et al. GWAS of
531		Suicide Attempt in Psychiatric Disorders and Association With Major Depression
532		Polygenic Risk Scores. Am J Psychiatry. 2019;176:651–660.
533	55.	Black DW, Nasrallah A. Hallucinations and delusions in 1,715 patients with unipolar

534		and bipolar affective disorders. Psychopathology. 1989;22:28–34.
535	56.	Strassnig M, Kotov R, Cornaccio D, Fochtmann L, Harvey PD, Bromet EJ. Twenty-year
536		progression of body mass index in a county-wide cohort of people with
537		schizophrenia and bipolar disorder identified at their first episode of psychosis.
538		Bipolar Disord. 2017;19:336–343.
539	57.	Caravaggio F, Brucato G, Kegeles LS, Lehembre-Shiah E, Arndt LY, Colibazzi T, et al.
540		Exploring the relationship between body mass index and positive symptom severity
541		in persons at clinical high risk for psychosis. J Nerv Ment Dis. 2017;205:893–895.
542	58.	Kalman JL, Papiol S, Forstner AJ, Heilbronner U, Degenhardt F, Strohmaier J, et al.
543		Investigating polygenic burden in age at disease onset in bipolar disorder: Findings
544		from an international multicentric study. Bipolar Disord. 2018. 2018.
545	59.	Brent DA, Oquendo M, Birmaher B, Greenhill L, Kolko D, Stanley B, et al. Familial
546		transmission of mood disorders: Convergence and divergence with transmission of
547		suicidal behavior. J Am Acad Child Adolesc Psychiatry. 2004;43:1259–1266.
548	60.	Aedo A, Murru A, Sanchez R, Grande I, Vieta E, Undurraga J. Clinical characterization
549		of rapid cycling bipolar disorder: Association with attention deficit hyperactivity
550		disorder. J Affect Disord. 2018;240:187–192.
551	61.	Kupka RW, Luckenbaugh DA, Post RM, Suppes T, Altshuler LL, Keck PE, et al.
552		Comparison of rapid-cycling and non-rapid-cycling bipolar disorder based on
553		prospective mood ratings in 539 outpatients. Am J Psychiatry. 2005;162:1273–1280.
554	62.	Oquendo MA, Waternaux C, Brodsky B, Parsons B, Haas GL, Malone KM, et al. Suicidal
555		behavior in bipolar mood disorder: clinical characteristics of attempters and
556		nonattempters. J Affect Disord. 2000;59:107–117.

- 557 63. Valtonen HM, Suominen K, Mantere O, Leppämäki S, Arvilommi P, Isometsä ET.
- 558 Prospective study of risk factors for attempted suicide among patients with bipolar
- disorder. Bipolar Disord. 2006;8:576–585.
- 560 64. Ducasse D, Loas G, Dassa D, Gramaglia C, Zeppegno P, Guillaume S, et al. Anhedonia is
- associated with suicidal ideation independently of depression: A meta-analysis.
- 562 Depress Anxiety. 2018;35:382–392.

563

565 **Figure Legends**

566

567 **Figure 1.** Forest plot of significant PRS associations with each sub-phenotype stratified by

568 study (black = Combined; green = GAIN; maroon = Mayo). Each bar represents a 95%

569 confidence interval of the increased log(odds) in the sub-phenotype associated with one SD

570 increase in the PRS. P-values for each PRS included in the model by itself (P.m) or with

571 other significant PRSs (P.j) and adjusted Nagelkerke's R² (R2) are listed in the margins for

572 each PRS.

573 **Table 1.** Table of sub-phenotypes and sex for each study. P-value is for a chi-square test of 574 differences between GAIN and Mayo BD-I subject sub-phenotypes.

575

		All	GAIN	Мауо	
Variable	Value	N = 1969	N = 1001	N = 968	p-value
Sex	Male	895 (45.5%)	500 (50.0%)	395 (40.8%)	0.003
	Female	1074 (54.5%)	501 (50.0%)	573 (59.2%)	
BD Type	BD-II	263 (13.4%)	-	263 (27.2%)	-
	BD-I	1706 (86.6%)	1001	705 (72.8%)	
Psychosis	No Psychosis	880 (47.3%)	344 (34.9%)	536 (61.3%)	3e-7
	Psychosis	980 (52.7%)	642 (65.1%)	338 (38.7%)	
	Missing	109	15	94	
Age-of-onset	> 18 yrs	1292 (70.0%)	569 (60.3%)	723 (80.0%)	1e-13
	< 19 yrs	555 (30.1%)	374 (39.7%)	181 (20.0%)	
	Missing	122	58	64	
Rapid Cycling	No	903 (50.1%)	508 (60.3%)	395 (41.1%)	3e-11
	Yes	901 (49.9%)	334 (39.7%)	567 (58.9%)	
	Missing	165	159	6	
Suicide	None	1115 (57.2%)	554 (56.5%)	561 (58.0%)	0.619
attempts	1+	833 (42.8%)	427 (43.5%)	406 (42.0%)	
	Missing	21	20	1	

E Combined E GAIN E Mayo

