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Abstract 
 
Background: While recent research efforts to reduce pressure ulcers in the clinical 
context have focused on key retrospective characteristics, little work has focused on 
creating real-time predictive models to prevent this avoidable hospital-acquired injury. 
Furthermore, existing machine learning heuristics often fail to surpass traditional 
statistical models or provide individual-level risk assessments with explanations for each 
patient. Thus, we sought to compare the predictive performance of five machine 
learning and traditional statistical modeling techniques to predict the occurrence of 
Hospital Acquired Pressure Injuries (HAPI).  
 
Methods: Electronic Medical Record (EMR) information was collected from 57,227 
hospitalizations, containing 241 positive HAPI cases, acquired from Dartmouth 
Hitchcock Medical Center from April 2011 to December 2016. The five classifiers were 
trained to predict HAPI incidence and performance was assessed using the C-statistic 
or Area Under the Receiver Operating Curve (AUC). 
 
Results: Logistic Regression was the best modeling approach (AUC=0.91±0.034). We 
report discordance between predictors deemed important by the machine learning 
models compared to traditional statistical model. We provide means to visually assess 
factors important to every patient’s prediction, regardless of the modeling approach, 
through Shapley Additive Explanations.  
 
Conclusions: Machine learning models will continue to inform decision making 
processes but should be compared to traditional modeling approaches to ensure proper 
utilization. Disagreements between important predictors found by traditional and 
machine learning modeling approaches can potentially confuse clinicians and as such 
need to be reconciled. Future efforts to analyze time-stamped, prospective medical 
record data will be enhanced by patient-specific details. These developments represent 
important steps forward in developing real-time predictive models that can be integrated 
and readily deployed in electronic medical record systems to reduce unnecessary harm. 
 

 

  



Background 

Hospital Acquired Pressure Injuries (HAPI) are preventable medical errors with costly 

implications for patients, health care institutions and consumers [1]. These injuries arise 

from a sustained period of compression between a bony surface and an external 

surface, often due to immobility and shear[2]. The development and occurrence of these 

events are difficult to detect and localize during early stages due to little superficial 

presentation and thus provide further motivation for the development of methods that 

are able to detect and preempt occurrence of HAPIs[3]. 

 

Reported rates of HAPIs vary considerably across the United States, which is largely 

attributed to inappropriate coding and underreporting. Despite the inability to precisely 

pinpoint the burden of this condition, a prior study from 2012 has indicated that HAPIs 

have cost the US healthcare system an estimated 6 to 15 billion dollars per year[4]. 

Most of these costs have been shifted to the hospitals, but patients bear additional 

liability when factoring for deductibles, co-payments and coinsurance and the additional 

length of stay needed to treat this condition[5]. 

 

Thus, these individual and societal burdens may be reduced by better understanding 

patient-specific factors associated with HAPI and by using information regularly 

collected in electronic medical records to develop predictive risk models for prevention 

of HAPIs. The ability of prediction models to fit a set of data can be evaluated and 

compared by taking note of the concordance index, otherwise known as the C-statistic 

or alternatively the area under the receiver operating curve (AUROC/AUC). The receiver 



operating curve explores changes in the model’s sensitivity and specificity as the 

predictive threshold for assignment to the positive class (or outcome, i.e. a HAPI event) 

is changed[6]. The AUC of the fitted model estimates the probability that a randomly 

selected hospital encounter that resulted in a HAPI event has a greater predictive 

probability than a randomly selected hospital encounter without a HAPI event. The 

larger the C-statistic, the better a model is at predicting these adverse events. 

 

A well-known clinical predictor of HAPIs is the Braden Scale, a measure that 

incorporates information from six sub-scales (sensory perception, moisture, activity, 

mobility, nutrition, and friction/shear) to arrive at a risk score between 6 to 23, where 

scores below 9 indicate severe risk [7]. Prior studies that utilized this scoring system 

yielded C-statistics of 0.67 and 0.77[8, 9]. Nevertheless, the reported low specificity of 

the measure begs the inclusion of other important predictors. This has led to the 

expansion and critical evaluation of the covariates sought to predict HAPI incidence[8]. 

 

Machine learning, the specification of a model after a heuristic search for the ideal set of 

non-linear interactions between predictors, may be a useful tool that can enhance 

clinical encounters for the prediction and reduction of patient risk [10]. Recently, some 

of these HAPI predictors have been incorporated into logistic regression and machine 

learning approaches. A 2015 article applied six diverse machine learning algorithms to a 

cohort of 7,717 ICU patients and reported a C-statistic of 0.83[11], while another study 

reported a C-statistic of 0.84 for a general hospital population of 8,286 observations 

using logistic regression with under-sampling of the negative cases during model 



fitting[12]. Other studies have applied Bayesian Network approaches to Braden 

subscales[13], random forest[14] and models built off of Electronic Medical Records 

(EMR) and claims data [15, 16]. 

 

Many of these studies attempt to utilize sophisticated machine learning models without 

critically evaluating whether it is a more appropriate model than traditional statistical 

techniques that are more readily adoptable by clinicians. Some studies do not include a 

traditional statistical model baseline [14], while others appear to neglect the implications 

of the failure to outperform these traditional techniques [11]. In some cases, 

inappropriate predictors (e.g. those that occur or that are measured in the future) have 

been included in machine learning models by implementers focused on predictors to 

such a degree that they bypass questioning whether their model makes sense. In 

addition to this, none of these models offer/provide intuitive explanations for predicted 

risk scores for individual patients, but rather report how the important variables behave 

globally; individual-level information could better inform the clinician’s treatment of a 

specific patient, thereby reducing these costly medical errors.  

 

We wanted to apply machine learning techniques to one example of patient outcomes, 

pressure injury prevention, to demonstrate the utilities of such approaches and illustrate 

the importance of individual-level model explanations. Here, we improve on previous 

analytical benchmarks through the rigorous evaluation of a diverse set of machine 

learning and traditional statistical methods. We arrive at a prediction model that can be 

understood clearly at the individual level and explains the heterogeneity in the patient 



population to serve as grounds for the development of future personalized real-time 

predictive models. Finally, based on our results, we critically assess the role of machine 

learning for the development of retrospective HAPI prediction models. Nonetheless, 

these applications may augment standard modeling approaches when evaluating real-

time prospective data captured through the EMR. 

 

Methods 

Data Collection, Variable Selection and Preprocessing 

The data utilized for our predictive models were acquired from a prior retrospective 

study conducted at Dartmouth Hitchcock Medical Center from April 2011 to December 

2016[8] after approval of an Institutional Review Board. Data was collected from EMR 

for patients who were 18 years or older; each observation represented an individual’s 

hospital stay of three or more days and at least 3 recorded Braden scale 

measurements. This constituted a dataset of 57,227 hospitalizations, containing only 

241 positive HAPI cases, which epitomizes a highly imbalanced dataset that requires 

further techniques to manage such class imbalance. 

   

EMR variables were selected for our study based on prior literature, expert opinion and 

based off of selection criteria from a previous study [8] (Additional Figure 1, 

Supplementary Table 1). All individual predictors demonstrated statistically significant 

associations with HAPIs (Additional Figure 1, Supplementary Table 2), save for 

ambulatory status and race. We recapitulated the results from Miller et. al. [8] to validate 

our variable selection; however, we removed the length of stay (LOS) variable because 



it is not valid for use in a task of predicting an outcome from an interim point of a 

patient’s stay. We imputed two variables with missing data (Additional Figure 1, 

Supplementary Figure 1); time in operating room (OR) was imputed with zeros under 

the assumption that a non-record was never present in the OR, and body mass index 

was imputed using Multiple Imputation by Chained Equations (MICE)[17]. The data was 

split into 80% training to update the model parameters and 20% testing for analysis of 

the ability of the model to generalize to an unseen population. A detailed explanation of 

the selected variables is included in Additional File 1. 

 

Description of Modeling Approaches 

We performed rigorous evaluations of five different predictive modeling approaches: 

Naïve Bayes, Decision Trees, Random Forest, XgBoost, and Logistic Regression. We 

estimated the ideal set of model tuning heuristics for the Decision Tree, Random Forest 

and XgBoost approaches using an exhaustive grid search on the training set with 5-fold 

cross-validation. Then, we trained the final predictive model on the training set for all 

five approaches. The primary metric to assess model performance across a wide range 

of sensitivity thresholds was the area under the receiver operating curve (AUC). We 

have included a discussion of each of these analytical techniques in Additional File 1. 

[18] [19] [20, 21] [22] [23, 24] 

  

Circumventing Class Imbalance Issues 

As aforementioned, there are only 241 HAPI-positive samples in a dataset of 57,227 

samples. In accordance with a recent pressure ulcer modeling study that found 



undersampling negative samples to be an effective modeling technique[12], we 

employed techniques to upweight the importance of the positive samples [25]. For 

logistic regression, this meant assigning a higher weight attributed to the positive class, 

while for random forest techniques, this meant under-sampling the occurrence of 

negative controls during training time. Experiments with other class balancing 

techniques such as oversampling and SMOTE (Synthetic Minority Over-Sampling 

Technique, which over-samples the minority class) [26] appeared to not be as effective 

as reweighting the model objective and under-sampling during training. Preliminary 

testing of this technique demonstrated that adding the class balanced weighting 

marginally improved the AUC of the resultant model. Logistic regression techniques are 

well-equipped to handle rare events and thus do not usually require class balancing. 

However, other machine learning models may not explicitly account for rare events and 

thus require class balancing. To this end, we implemented these class balancing 

techniques for all models to offer a fair comparison.  

 

Developing Individual Level Explanations 

Many “black box” machine learning models have difficulties in explaining exactly how 

they arrived at their predictions. The ability to explain predictions in real world 

applications is paramount to the actual use and applications for HAPI predictions. While 

a number of explainability techniques seek to find important predictors across all 

patients as a way to demonstrate how the model is learning, very few methodologies 

have been developed to explain for each patient what variables the model had found 

important. Here, we utilized Shapley Additive Explanations (SHAP) [27] to directly 



indicate the contribution of each predictor to the predicted probability of being 

associated with a HAPI event. SHAP estimates a linear model for each held-out 

observation under scrutiny, where the importance of each predictor is given by the 

unique model coefficients. However, these personalized models, when summing their 

coefficients across the cohort, are able to find the overall importance of each predictor. 

While the SHAP importance from a linear modelling approach should exhibit properties 

of the linear model, SHAP scores for machine learning models indicate variables that 

are important and specific to each patient. Plots that summarize the behavior of the 

model predictors over the entire dataset could offer an insightful tool for aiding the 

clinician to quickly interpret patient symptoms and intervene to prevent HAPI from 

occurring. 

 

Code Availability 

The results were derived using a custom data pipeline that utilized Jupyter Notebook 

version 5.7.8 with a Python 3.7.3 Kernel. The model graphics were generated using the 

SHAP library. We tested for possible interaction effects using the InteractionTransformer 

package [28]. Code is available upon request. 

 

Results 



Figure 1: Comparison of classification performance of the five analytical models 

 

We fit the five modeling approaches to our HAPI dataset and derived C-statistics on the 

held-out test set (Figure 1). Out of all of the models, decision trees performed the worst 

with a C-statistic of 0.76, followed by Naïve Bayes with an AUC of 0.87. Results indicate 

that the logistic regression model (AUC=0.91) outperforms the other modeling 

approaches (Random Forest, XGBoost AUC=0.89). These results provide supporting 

 

e 
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evidence that the logistic regression model identifies the model specification closest to 

the underlying true model.  

 

Concerns about the transparency of machine learning techniques have been raised by 

researchers and professionals working in highly regulated environments such as in the 

practice of law and medicine[29]. While high predictive accuracy is important, 

understanding how an algorithm makes a recommendation is fundamental to establish 

trust and foster acceptance. We applied the SHAP methodology to find the overall 

important global variables that were important for the prediction of the logistic 

regression, XGBoost and Random Forest models. While we found a significantly strong 

positive correlation between the importance of the predictors across all three models 

(Additional Figure 1, Supplementary Tables 3-5), we noted important disagreements 

between predictors identified by each model with regards to their level of importance. 

For instance, low nutrition, average activity and moisture were found to be highly 

important by the Logistic Regression model, but not by the Random Forest or XGBoost 

models. Alternatively, smoking was upweighted by the Random Forest and XGBoost 

models, but not by Logistic Regression. All models found low friction, average mobility 

and whether the patient’s diet was taken by mouth (NPO status) to be important. 



 

Figure 2: Global predictor importance (SHAP summary plots) of patient specific 
factors for: a) Logistic Regression, b) Random Forest, c) XGBoost; The plots for each 
model (a-c) consist of a point per patient hospitalization across all predictors. The points 
are colored by the features value and lateral displacement from the centerline indicates 
the importance of that feature for that particular individual.  Values that increase the 
probability of being classified as a HAPI are displayed to the right of the centerline of 
each plot; red dots indicate a high feature value, while blue dots indicate a low feature 
value. For instance, increased HAPI incidence was associated with decreases in the 
Braden subscale score for low friction, average mobility, average friction and low 
nutrition in the logistic regression plot (a).  
 

While ranking of important predictors can be found in the SHAP summary plots (Figure 

2), one useful feature of SHAP, irrespective of modeling approach, is to portray the 

important predictors that influence the prediction of a single patient. To more closely 

interrogate the predictive model for individual patients, we assessed a few select force 

plots (Figure 3) that depict each model’s prediction and the predictors’ importance 

across select individuals. The logistic regression, random forest and XGboost models all 

appear to make similar predictions and find similar features to be important for the two 

observations chosen for display. We have included a figure that showcases the use of 

this to capture important predictors across 300 patients out of the entire study 

population (Figure 4). This figure is a static representation of a web-based application 



that the physician or end-user can interact with to reveal the important predictors for 

each patient. 

 

Averaging the absolute value of the SHAP scores for each predictor across the cohort 

derives an overall importance ranking of the predictors. We found that averaging the 

SHAP importances for the logistic regression model yields an approximation of the 

standardized regression coefficients (Pearson-r=0.914, p=4.5e-10, average absolute 

difference=0.08) (Additional Figure 1, Supplementary Tables 6-7, Supplementary Figure 

2). This convergence reinforces the notion of correspondence between the totaled 

SHAP coefficients across all of the individuals and the effect estimates of the Logistic 

Regression model. 



 

Figure 3: Predictions and decomposition of predictor importance (force plots) for 
two individuals (top versus bottom of each panel) using: a) Logistic Regression, b) 
Random Forest, c) XGBoost. The predictors are associated with both increased and 
decreased HAPI. Certain values (e.g., increasing values) may be associated with one or 
the other. Blue colors indicate predictors that are associated with decreased HAPI 
incidence, while red colors indicate predictors associated with increased HAPI 
incidence; magnitude of each arrow indicates the level of importance of predictor for 
that prediction 

a

b

c



 
Figure 4: Individual-patient explanations (force-plots) are rotated to a vertical position 
and stacked horizontally to form interactive plots detailing explanations of HAPI 
predictions across a large patient population while still allowing interrogation of each 
patient. We note here that this feature is a web-based interactive plot; the physician or 
end-user can hover over individuals with their computer mouse, from which the 
application will display/highlight the important predictors for those individuals. SHAP 
derived force plots depicting individual predictions and explanations for the first 300 
hospitalizations in the study population, ordered from highest HAPI predicted probability 
(red) to lowest (blue) for: a) Logistic Regression, b) Random Forest, c) XGBoost 
 

a

b

c



Discussion 

Our study sought to compare the predictive performance of ML and traditional statistical 

modeling techniques using the example of hospital acquired pressure injuries Thus, we 

built a predictive risk model for hospital pressure injuries based on a retrospective 

cohort of over 57,000 hospitalizations over a 5-year study period. Our results indicate 

that the logistic regression technique outperformed the five other machine learning 

approaches when applied to retrospective data without temporal changes in patient 

status. This ideal model specification (0.91 C-statistic) exceeded the performance 

recorded in prior publications (0.84 C-statistic) and presents opportunities for early 

detection of symptoms while minimizing the burden on the clinical staff. 

 

However, the fact that logistic regression was able to achieve such remarkable 

performance indicates that the use of machine learning for HAPI prediction is not 

optimal given the utilized variables and available retrospective data. This conclusion is 

not surprising because predictors that vary linearly and continuously with the outcome 

are better approximated by a line, not the step-function form that tree-based 

classification algorithms, optimized in machine learning, support. In this context, the 

selection of the features by expert opinion and testing univariable associations with 

HAPI outcomes may have biased the selection of our variables to those that are less 

likely to interact or vary nonlinearly with HAPI risk.  

 

Previous studies have reported the training and utilization of machine learning models 

without consulting traditional statistical approaches[14]. We find the allure of and 



immediate acceptance of automated machine learning approaches a cause for concern 

due to the implications of how it arrives at its decision. From our study, we reported 

discordance between some of the predictors found important by the Logistic Regression 

and machine learning-based modeling approaches. This disagreement may potentially 

confuse the clinician as to which model-learned factors to focus on. The clinician may 

focus on records of low friction, average mobility, and NPO status if utilizing either the 

machine learning or Logistic Regression modeling approaches. However, they may 

choose to more often disregard indicators of low nutrition, activity and high moisture 

while prioritizing smoking status if opting to utilize the machine learning models over 

Logistic Regression. Shifting the physician’s attention to these machine learning derived 

predictors may have unintended consequences for the patient, thus it is imperative to 

resolve any uncertainty introduced by these machine learning techniques before 

seeking to adopt them.  

 

In concert with cautionary advice on machine learning implementations, Logistic 

Regression approaches are more intuitive and easier to understand and currently are 

more readily adoptable in the biomedical community. The results corroborate with 

existing literature suggesting that machine learning models are frequently unable to 

outperform logistic regression models in the clinical setting, although a few other studies 

have disputed this claim [30–32]. The machine learning models in this study 

disregarded important predictors, such as nutrition and activity, corroborated by 

evidence from prior studies, and since these models underperform compared to 

traditional statistical modeling, it would be a safe option to continue to use the Logistic 



Regression approach. Nevertheless, in light of recent studies indicating relationships 

between excluded biomarkers such as albumin and C-reactive protein levels (CRP) [33] 

in the pressure ulcer setting, having time-stamped data with access to complete 

biomarker data may warrant us to revisit our modeling approach to incorporate the 

agility of machine learning techniques in order to specify and explore interactions. 

 

While SHAP coefficients for the Logistic Regression model converge on the global 

Logistic Regression model coefficients, they provide a quick and intuitive means for 

obtaining the patient’s risk and how certain predictors contribute to that risk. We further 

highlight a key difference between SHAP model coefficients and the Logistic Regression 

coefficients: the logistic regression model beta coefficients are a global descriptor for 

predictors from the training set, while the SHAP models are fit on the held-out test set 

and can converge to these coefficients. SHAP is useful for generating explanations for a 

machine learning model to capture the heterogeneity in the population by fitting 

separate models for each individual. While SHAP may be less useful for generating 

interpretations for the linear model, the software offered to produce these patient-level 

explanations can be easily deployed into an EMR system for clinical use. 

 

There are a few limitations to our study. The study data was collected from a single 

institution and our patient demographic (97% white) does not correspond to that across 

the United States. Also, we are unaware of the effect that Dartmouth Hitchcock specific 

HAPI intervention programs may serve to bias HAPI results [1]. Thus, our results may 

not generalize to other institutions. It is beyond the scope of this work to explore HAPI 



predictions outside the hospital setting; although a significant number of pressure 

injuries occur in long term care facilities, we should be careful to extend conclusions to 

those patients. 

 

In addition, we were unable to capture all possible clinical covariates or fully utilize real-

time repeated measures for this study. The mean length of stay (LOS) for a patient in 

our study population who does not experience a HAPI is 8.2 days (σ � 9.7) and for 

those who do experience a HAPI is 30.6 days (� � 28.6). A short length of stay for a 

HAPI patient may make it difficult to collect enough repeated measurements (at least 3) 

to make real-time predictions. Since primary pressure ulcers are often overlooked, a 

reduced observation time may limit our ability to make substantial inferences based on 

sparse information. A real-time predictive model should account for the impact that the 

length of stay can have on pressure injury incidence while avoiding issues associated 

with record completeness. Nevertheless, the addition of repeated lab measurements, 

unstructured clinical note data, and modalities such as biomedical imaging and sensor 

data from wearable technology [34–36], would be advantageous towards developing 

more sophisticated and actionable real-time predictive models. 

 

The use of Shapley feature attributions presents a great opportunity to develop a set of 

explanatory tools to more quickly assess machine learning predictions for any patient 

outcome. In this study, we used them as a means of comparison to understand which 

predictors were found to be important for each machine learning model in predicting 

pressure injuries. The preliminary inspection of these SHAP scores alerted us to the 



possibility that the machine learning approaches could potentially mislead the clinician 

in their treatment of symptoms associated with the occurrence of pressure ulcer injuries. 

While the ultimate utility in using SHAP lies in the ability to fit explanatory models for 

each individual in the case that machine learning approaches dominate, SHAP, in any 

model application, can generate instance-wise importance values for useful, patient-

specific readouts for the clinician. 

 

Conclusions 

Machine learning will likely continue to be incorporated into the clinic and inform clinical 

decision making. Its crescent popularity can be attributed to the promises of better 

handling large, unstructured, and heterogeneous datasets. We sought to understand 

how to best utilize these machine learning approaches through extension of its 

application to pressure injury prevention. In this study, we demonstrated that a Logistic 

Regression modeling approach outperformed four other machine learning methods for 

HAPI prediction while improving on existing HAPI prediction benchmarks. In addition, 

we highlight the potential to integrate patient-level explanations into existing EMR 

systems. We believe that future applications of machine learning algorithms that exploit 

repeated measurements, laboratory markers and unstructured clinical notes can provide 

a promising opportunity to build real-time prediction mechanisms that can be readily 

embedded into an EMR system to alert clinical staff to high risk patients. 
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